
Bounds on Elasticities with Optimization Frictions:
An Application to Taxation and Labor Supply�

Raj Chetty

UC Berkeley and NBER

March 2009

Abstract
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and the size of the price change. I apply these bounds to the literature on labor supply and
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1 Introduction

The standard approach to estimating structural parameters of economic models is to use

revealed preference under the assumption that agents follow a known optimizing model. For

example, in the literature on labor supply, a common strategy to estimate the wage elasticity

of labor supply is to examine the e¤ect of a tax change on earnings. In a labor-leisure choice

model where agents optimize perfectly, the di¤erence in labor supply under the two tax regimes

identi�es the parameter of the utility function that controls the wage elasticity of labor supply.

In practice, however, agents are likely to deviate systematically from the optimal choices

predicted by a neoclassical model because of various �optimization frictions.� For instance,

adjustment costs in switching jobs or inattention to tax reforms could dampen behavioral

responses to tax changes. In the presence of such frictions, the labor supply response to a tax

change confounds structural preference parameters with the e¤ects of the frictions. A small

observed labor supply response to a tax change could be consistent with a large wage elasticity

and large adjustment costs or a small wage elasticity and small adjustment costs. Estimating

the fundamental wage elasticity rather than just the observed response is important both for

welfare analysis and for counterfactual predictions, e.g. of long-run responses where frictions

may become less relevant.

How can structural parameters be identi�ed when agents face optimization frictions? One

natural approach is to explicitly model the deviations from the standard model and estimate

the structural parameters that govern behavior in that more re�ned model. In the case of

adjustment costs, one can try to identify both the preference parameters and the distribution

of adjustment costs using additional moments. The limitation of this approach is that it

is di¢ cult to model all the factors that a¤ect choices. For example, the e¤ects of tax and

transfer policies on behavior di¤er substantially depending on their salience (see e.g., Du�o et

al. 2006, Chetty et al. 2008). Given the lack of a widely accepted theory of salience, it is

di¢ cult to credibly estimate preference parameters in a model that incorporates such e¤ects.

Even better understood frictions such as adjustment costs can enter models in a variety of

ways, creating model uncertainty.

In this paper, I show that even when one is uncertain about how frictions enter the agent�s

decision problem, one can obtain informative bounds on the structural parameters of interest.
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The key assumption I make is that optimization frictions lead to deviations whose utility cost

falls below an exogenously speci�ed threshold �. For instance, in the case of attention, a

plausible restriction is that agents pay attention to �important� features of their budgets �

that is, they have misperceptions about their budget sets only to the extent that they do

not generate large utility costs. The parameter � can be interpreted the degree of model

uncertainty due to optimization frictions that is permitted. Given a value of �, the support of

the optimization errors that agents make is bounded. This bounded support condition in turn

produces bounds on the range of structural parameters consistent with observed behavior.

To formalize this idea, I analyze a simple neoclassical demand model in which heterogeneous

agents have isoelastic demand functions with di¤erent intercepts but a common price elasticity.

The price elasticity is determined by a parameter of the utility function ". I introduce

optimization frictions into this nominal model through an additional error term in the demand

equation. The conditional expectation function of this optimization error is unknown. In

particular, the optimization error may not be orthogonal to the price. This permits systematic

di¤erences between observed responses to a price change and the responses predicted by the

nominal model, such as under-reaction to a price increase because of adjustment costs.

I restrict the range of the optimization error by requiring that agents choose points �near�

the optimum as predicted under the nominal model. Speci�cally, I permit any error such

that the agent�s choice yields a payo¤ within � percent of the maximal payo¤ attainable under

the nominal model.1 The restriction of the error based on a welfare metric is useful for two

reasons. First, there are a wide variety of optimization frictions that may a¤ect behavior in

di¤erent ways. By restricting the choice set for labor supply based on the utility loss, one can

remain agnostic about the particular model through which frictions a¤ect behavior. Second,

even for a particular class of deviations, it is di¢ cult to impose a priori restrictions directly

on the optimization errors.

I derive bounds on the price elasticity " that are accurate for small � in two steps. First,

I characterize the set of choices that give the agent a payo¤ within � units of the maximum

using a quadratic approximation to the objective function. The width of the choice set

1This should be viewed as a weak requirement: it is unlikely that any economic model predicts (average)
behavior perfectly. In practice, there is likely to be additional model uncertainty beyond that due to optimiza-
tion frictions. I do not consider such additional sources of model uncertainty here, e¤ectively assuming that
the econometrician has re�ned the model to the point that it accurately describes behavior up to optimization
frictions.
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depends inversely on the curvature of the objective function around the optimum and falls at

a square-root rate with �. The root-� convergence implies that even very small amounts of

model uncertainty can generate substantial uncertainty about agents�choices. Critically, the

curvature of the objective function is pinned down by the price elasticity ". This permits

characterization of the choice set without having to identify other parameters beyond the

elasticity of interest.

Next, I derive bounds on the set of fundamental price elasticities " that are consistent with

an observed response to a price change. The bounds are derived by calculating the smallest

and largest possible shifts in the choice sets that could generate an observed response to a

price change. Because of the connection between the curvature of the payo¤ function and

the price elasticity, the bounds on the price elasticity are invariant to parametric modelling

assumptions for small �. The bounds are a function of the observed elasticity, the degree

of optimization frictions (�), and the size of the price change used to identify the treatment

e¤ect.

The bounds shed light on the empirical strategies that are most informative in the presence

of model uncertainty due to optimization frictions. First, the bounds shrink at a quadratic

rate with the size of the price change used to identify the elasticity. As a result, pooling several

small price changes �although useful in terms of improving the statistical precision of estimates

�yields much less informative bounds than examining a single large price change. Second,

the bounds are asymmetric: for typical parameter values, the lower bound is generally much

closer to the observed elasticity than the upper bound. If a positive elasticity is observed, the

lower bound on the nominal elasticity is strictly positive. Hence, there is considerable value

in observing a positive elasticity in order to rule out the null of no response. Third, when a

zero elasticity is observed, the upper bound on " can be conveniently expressed in terms of

the utility cost of ignoring the price change. This permits straightforward calculations of the

range of elasticities consistent with zero behavioral response in a � class of models prior to an

empirical analysis, analogous to power calculations used to evaluate statistical precision.

I apply these methods to investigate the implications of optimization frictions for the

literature on taxation and labor supply. I �rst show that permitting optimization frictions

of less than 1% of consumption can reconcile several stylized facts in this literature. Using

simulations of the optimal labor supply choice coupled with the NBER TAXSIM calculator, I
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calibrate the utility costs of ignoring each of the tax reforms used in existing studies of labor

supply and taxation. The vast majority of the utility costs fall below 1%, indicating that

the bounds implied by most existing studies are very wide. In many cases, zero observed

responses to a tax change would be consistent with underlying elasticities greater than 1.

A few studies of labor supply generate tighter bounds. These include studies of the Tax

Reform Act of 1986 (TRA86), where utility costs of ignoring the tax change are close to

10% for high incomes. There are also very large utility costs of ignoring tax reforms on the

extensive margin, because these costs are a �rst-order function of the change in the tax rate.

In general, the studies which generate tight bounds on the fundamental elasticity " are those

which �nd non-zero behavioral responses. Optimization frictions can explain why we observe

larger behavioral responses among the rich, larger responses on the extensive margin, limited

evidence of bunching at kink points in non-linear budget set models, and di¤erences between

microeconometric and macroeconomic elasticity estimates.

I then calculate bounds on the taxable income elasticity using estimates from �fteen re-

cent empirical studies. Even though there is substantial dispersion in the observed elasticity

estimates, all �fteen estimates are consistent with one fundamental elasticity " given 1% opti-

mization frictions. That is, the lower bound of every study falls below the upper bound of every

other study with � = 1%. Few of the studies yield very informative bounds by themselves;

many cannot rule out elasticities well above " = 1. However, when the studies are pooled,

I obtain bounds on the taxable income elasticity of " 2 (0:47; 0:52). The tightness of the

bounds is partly driven by macroeconomic studies and certain studies of high-income earners

around the TRA86, whose estimates have been questioned on statistical grounds. Even when

one excludes these studies, the bounds remain fairly informative: " 2 (0:3; 0:54). Although

the numbers from this exercise are purely illustrative, they show that informative bounds can

be obtained while remaining fairly agnostic about the structure of optimization frictions.

This paper draws upon tools from the partial identi�cation, near rationality, and robust

control literatures. The recent literature on partial identi�cation considers problems such as

identi�cation in environments with missing data, where point identi�cation is infeasible unless

one makes strong assumptions about the missing data (see e.g., Manski 2007, Imbens 2007). In

the present paper, uncertainty about the structural model due to optimization frictions creates

nuisance parameters that make point identi�cation infeasible. Papers in the partial identi�-
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cation literature typically derive bounds by making assumptions such as stochastic dominance

of wage distributions for labor force participants relative to non-participants (Blundell et al.

2007). Here, I derive bounds by assuming that agents are �near rational,� as in the menu

cost literature in macroeconomics (Akerlof and Yellen 1985, Mankiw 1985). I use results from

the menu cost literature on the second-order costs of deviating from an optimum to bound

the range of the nuisance parameter. The focus on bounds in a class of models around a

pre-speci�ed nominal model parallels the robust control literature (Hansen and Sargent 2007).

The robust control literature analyzes optimal policy with a minimax criterion and model

uncertainty, whereas the present paper considers identi�cation of the nominal model�s para-

meters in the same setting. Like the robust control results, the methods proposed here do

not provide an excuse for failing to build an accurate model. The bounds are valid only if the

nominal model is correct up to optimization frictions. In this sense, the bounds here should

only be used as a method of evaluating the robustness of structural parameter estimates after

developing an appropriate model of economic behavior.

The remainder of the paper is organized as follows. The next section sets up a simple

framework to analyze the e¤ects of optimization errors on treatment e¤ect estimates of elas-

ticities. The results on price elasticity bounds are given in Section 3. Section 4 presents the

application to labor supply and taxation. Section 5 concludes.

2 A Simple Framework

Consider a static demand model with N individuals who have heterogeneous tastes over two

goods, x and y. Individual i has wealth Zi and quasilinear utility

ui(x; y) = y + �i
x1�1="

1� 1=" (1)

This utility function has two convenient properties: (1) it is a money metric and (2) it gen-

erates heterogeneity in the levels of demand across agents but a common price elasticity of

demand. I focus on this particular utility primarily for analytical convenience; a more general

utility speci�cation can be permitted by using equivalent-variation measures and numerical

computation of bounds following the method described below. Moreover, the standard speci-

�cation in many literatures �such as the literature on labor supply discussed below �assumes

5



a constant price elasticity of demand, making this a natural speci�cation to start with.2

The agent solves the following utility maximization problem:

max
x
Ui(x) = �i

x1�1="

1� 1=" � px

The optimal demand for good x satis�es the �rst order condition U 0i(x
�) = 0, implying

x�i (p) = (
�i
p
)" (2)

log x�i (p) = �i � " log p (3)

Let � =
P
i log x

�
i (p = 1)=N denote the mean (log) value of x in the population at a price of 1

and �i = log x�i (p = 1)� � denote the deviation of individual i from the mean. Then we can

write the individual i�s demand function as

log x�i (p) = �+ " log p+ �i

Our objective is to identify ", the structural preference parameter that controls the price

elasticity of demand absent frictions. We are interested in identifying " either to make

counterfactual predictions �such as how di¤erent (unobserved) prices would a¤ect demand �

or for welfare analysis, such as the deadweight cost of a tax or regulation.

In this paper, I focus on estimates of the demand elasticity " using a treatment e¤ect esti-

mator that compares demand under two prices, p0 and p1. Under an orthogonality condition

on the error term due to preference heterogeneity (E�ijp = 0), the elasticity " of interest is

identi�ed by the di¤erence in mean log demand across the treatments:

" =
E log x�1 � E log x�0
log p1 � log p0

(4)

Following the robust control literature, I refer to the initial model speci�ed in (2) as the

�nominal�model. Equation (4) shows that it is adequate to estimate the observed demand

response to a price change to point identify ". Figure 1 illustrates how measuring the demand

response to a price increase from p0 to p1 identi�es ". I now explore how this treatment e¤ect

estimator is a¤ected by the introduction of optimization frictions.

2Although the objective in (1) re�ects a consumption choice problem, it can be adapted to other problems
with a simple change of notation. For instance, standard models of the choice of labor supply for an individual
or the choice of quantity for a pro�t-maximizing �rm take the same form as (1).
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Optimization Frictions: Two Examples. Consider two examples of optimization frictions

that may lead agents to deviate from the optimal choice under the nominal model speci�ed in

(2). First, suppose each agent pays an adjustment cost ki to change his level of consumption.

Suppose that the initial price is p0 and that initial consumption x0i = x
�
i (p0) is set according

to (2). Agent i chooses xi to maximize

�i
x1�1="

1� 1=" � px� ki � (x 6= x
0
i ). (5)

Let �ui(p) = ui(x�i (p))� ui(x0i ) denote the utility gain from reoptimizing demand. Then the

resulting demand function xi(p) follows a threshold rule:

xi(p) = x�i (p) if �ui(p) > ki

= x0i else

Let the observed elasticity estimated using the price change from p0 to p1 be denoted by

b" = E log x1 � E log x0
log p1 � log p0

(6)

In this model, it is straightforward to establish that

b" = P (�ui(p) > ki)"
where P (�ui(p) > ki) denotes the fraction of agents who adjust their consumption. The

observed elasticity b" no longer identi�es the �fundamental�elasticity " because the observed
response is attenuated by adjustment costs.

As a second example, suppose agents misperceive the tax-inclusive price of a good p when

buying a good x. Evidence indicates that individuals are inattentive to tax rates and confuse

average with marginal tax rates (Fujii and Hawley 1988; de Bartolome 1995; Chetty, Looney,

and Kroft 2008; Finkelstein 2008; Chetty and Saez 2009). Let ep(p) denote the agent�s perceived
price as a function of the true price. After choosing x, agents spend the money they have left

on the other (numeraire) good. In this case, agent i chooses x to maximize

�i
x1�1="

1� 1=" � epi(p) � x (7)

The resulting demand function xi(p) is

xi(p) = (
�iep(p))"
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and the observed elasticity is

b" = "E log ep(p1)� E log ep(p0)
log p1 � log p0

Again, the observed elasticity b" confounds the fundamental elasticity of interest " with other
parameters, in this case the e¤ect of the price change on mean perceived prices.

How can one identify the fundamental elasticity " in the presence of optimization frictions?

One strategy is to derive estimators for " in the more general models described in (5) or (7).

For example, by estimating the distribution of adjustment costs, one may be able to infer the

fraction of agents who respond to the price change and thereby estimate " = b"=P (�ui(p) >
ki).3

While model re�nement should be the main strategy used to estimate ", there are two

problems with relying solely on this approach. First, it is hard to know precisely how to

model and estimate the impact of frictions on b". Adjustment costs could arise from time costs
of job search, the costs of switching consumption plans, or cognitive costs. Moreover, they are

likely to vary across occupations, income levels, and institutional settings. In the inattention

example, the modelling problem is more complex: lacking a theory of perceptions, it is unclear

how one would estimate the ep(p1) function.
A second problem is that it is di¢ cult to model all optimization frictions. The examples

above are merely two of numerous frictions that may arise. For instance, non-standard

preferences such as reference dependence and biases such as inertia and bounded rationality will

generate additional deviations in behavior. Hence, the mapping between observed behavioral

responses and structural parameters is likely to be imperfect even in rich structural models

that attempt to account for many frictions.

Bounds with Optimization Frictions. Even if the exact structure of optimization frictions

is unknown, it is possible to obtain bounds on the parameter of interest ". De�ne agent

i�s �optimization error�as the di¤erence between his optimal demand as predicted under the

nominal model in (2) and his observed demand:

�i = xi(p)� x�i (p)
3Chetty et al. (2009) implement this approach to estimate the taxable income elasticity in a model with

adjustment costs.
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Then the observed demand function can be written as

log xi(p) = �� " log p+ �i + �i (8)

The �i term is a nuisance parameter that enters agents� decision problems but cannot be

identi�ed by the econometrician. The key di¤erence between the optimization error �i and

the error due to preference heterogeneity �i is that we do not know the properties of the

distribution of �i. In the examples above, optimization frictions induce correlations between

�i and p. Hence, we wish to remain agnostic about the conditional expectation function

E�ijp, allowing agents�deviations from x�i to be endogenous to the price. Without placing

restrictions on the added �i error term, the standard treatment e¤ect comparison gives

E log x�i jp1 � E log x�i jp0 = "[log p1 � log p0] + [E�ijp1 � E�ijp0] (9)

Without assumptions on �i, " is unidenti�ed by the treatment e¤ect because the second term in

this expression is unknown. Intuitively, if we place no restrictions on perceptions or adjustment

costs, an observed response to a price change can be reconciled with any fundamental price

elasticity.

Equation (9) shows that by bounding the support of �i, one can obtain bounds on " without

making additional assumptions about E�ijp. The conventional orthogonality condition on the

error term can be dropped in exchange for a bounded support condition if one is willing to

settle for set identi�cation instead of point identi�cation. This approach is useful in situations

when the central tendency of the nominal model may di¤er from observed behavior in a manner

that changes with p, as is the case with un-modeled optimization frictions.

I restrict the support of �i by imposing the requirement that agents make choices �near�

the optimal choice under the nominal model. That is, restrict �i to lie within the set

�i(�) = f�i : U(x�i )� U(x�i + �i) < �g (10)

Equation (10) permits the agent to deviate from the model in (2) only to the extent that the

utility cost of doing so �as calculated under the nominal model �falls below an exogenously

speci�ed threshold �. This restriction captures the simple intuition that agents may deviate

from their unconstrained optimum if the welfare costs of doing so are not too large. The

parameter � measures the degree of optimization frictions that one permits, and can be

9



loosely interpreted as a measure of �economic robustness� � the larger the value of � one

permits when estimating ", the more robust the estimate is to optimization frictions. I refer

to the set of models that generate optimization errors �i 2 �� as a �� class of models�around

the nominal model. For example, the adjustment cost model speci�ed above with ki � � for

all i lies in the � class of models around (2). Similarly, the misperceptions model lies in the

� class of models around (2) if the price misperception jepi(p) � pj never generates a utility
loss of more than �.

A � class of models maps a price p to a choice set instead of a singleton. Let

Xi(p;�) = fx�i (p) + �i : �i 2 �i(�)g

denote the choice set predicted by a � class of models. Figure 2 illustrates the choice set

Xi(p;�). In this example, the optimal choice is x�i = 62 and the set of choices that yield

utility within � units of the optimum range from x = 56 to x = 68, as shown by the red

interval on the x axis.

To relate the choice sets to a bound on ", consider an experiment that raises the price

from p0 to p1. Figure 3 illustrates the choice sets at the two prices, X(p0;�) and X(p1;�).

The fundamental elasticity " controls the movement of the choice sets with the price p, as

illustrated by the dashed blue line in the �gure. The black lines illustrate that various

responses [x(p1) � x(p0)] may be observed for a given value of ", including large reductions,

zero response, or even small increases. Which response is observed depends on the nature

of the optimization frictions. Large adjustment costs could generate a zero response. If the

price increase re�ects a change in tax policy that raises tax rates but makes taxes less salient,

one might observe an increase in demand if consumers are inattentive. If consumers face

adjustment costs and are in an environment where their optimal consumption level is trending

over time, they may follow an (S,s) adjustment policy and �overreact,� cutting demand by

more than would be predicted by their fundamental elasticity.

These examples illustrate that optimization frictions destroy the one-to-one mapping from

the observed response to the fundamental elasticity in (4). Hence, there is a range of funda-

mental elasticities consistent with a given observed elasticity b" in a � class of models. Let

this range be denoted by

r(b";�) = ("L(b";�); "U (b";�)).
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The objective of this paper is to characterize r(b";�). The range r(b";�) measures the un-
certainty in the fundamental elasticity due to mis-speci�cation of the behavioral model, much

as a statistical con�dence interval measures the uncertainty in the parameter estimate due to

sampling error. I focus on the range of the estimates of " rather than other measures of their

dispersion (such as the variance) because we are uncertain about the prior distribution over

the models within the � class. A standard approach in such cases is to adopt a minimax

criterion, focusing on worst-case scenarios (Hansen and Sargent 2007).

3 Bounds on Price Elasticities

The characterization of r(b";�) can be broken into two steps that are conceptually analogous
to standard method-of-moments or maximum likelihood identi�cation procedures. I �rst

characterize Xi(p;�), the choice set at price p for a given value of the fundamental elasticity

". I then identify the set of fundamental elasticities " such that the movement in Xi(p;�)

with p is consistent with an observed treatment e¤ect b".
Note that the di¤erence in conditional expectations of the error due to preference het-

erogeneity ([E�ijp1 � E�ijp0]) drops out of the treatment e¤ect estimator in (9) under the

orthogonality condition Evijp = 0. Hence, preference heterogeneity that leads to shifts in

demand for x has no impact on r(b";�). I therefore drop the i subscript from this point

onward to simplify notation.

Bounds on Choice Set. The choice set can be computed numerically given a value of p and

" by identifying the set of points which yield utility within � units of the maximum under the

speci�cation in (2), as shown in Figure 2. The following lemma presents a simple analytical

characterization of the choice set for small � using a quadratic approximation to the utility

function u(x; y) in the nominal model. This approximate expression simpli�es implementation

of the bounds and o¤ers intuition about their key determinants.

Lemma 1. For small �, the agent�s choice set is approximately

X(p;�) = fx : jx� x�j < [�2 �

Uxx(x�)
]1=2g (11)

= fx : jx� x
�j

x�
< [2"

�

px�
]1=2g (12)
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Proof. By de�nition,

Xi(p;�) = fxi(p) : U(x�i (p))� U(xi(p)) < �g

Taking a quadratic approximation to U yields

U(x�(p))� U(x(p)) = �Ux(x�)(x� x�)�
1

2
Uxx(x

�)(x� x�)2 (13)

= �1
2
Uxx(x

�)(x� x�)2

where the second equality follows from the �rst-order condition under the nominal model,

U 0(x�) = 0. It follows that

X(p;�) = fx : jx� x�j < [�2�=Uxx(x�)]1=2g

To pin down the second derivative, use the comparative statics of the �rst order condition in

the nominal model (ux(x�(p) = p), which implies:

uxx(x
�)
dx�

dp
= 1 (14)

Note that the second order condition for the optimization problem, uxx(x�) < 0 implies that

dx�

dp < 0 and hence " > 0. Recognizing that Uxx(x) = uxx(x) and substituting this equation

into (11) yields (12). The approximation error in both of these equations vanishes as �! 0

because the remainder of the Taylor approximation in (13) involves higher-order terms.

Lemma 1 has two useful implications for the analysis that follows. First, the width of the

choice set shrinks as a square-root rate as � goes to zero:

�(X(p;�)) = max(X(p;�))�min(X(p;�)) = 2[�2�dx
�

dp
]1=2 / �1=2

Thus, even small amounts of model uncertainty generate a non-negligible choice set:

lim
�!0

�(X(p;�))

�
=1

The root-� shrinkage is driven by the second-order losses from moving away from the maxi-

mum of a smooth function. As illustrated in Figure 2, the utility function is necessarily �at

around interior extrema, and thus a small � leads to a relatively wide choice set.

Second, (11) shows that the choice set is inversely related to the curvature of the objective

function at the optimum, U 00(x�). Curved utilities generate a narrow interval around the
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optimum for a given �, because utility falls o¤ sharply as one deviates from the optimum.

Measuring the width of the choice set thus requires measurement of U 00(x�). Here, a very

useful property of the model is that U 00(x�) is related to " �the structural parameter of interest.

Highly curved utilities generate small elasticities because the agent has a strong preference to

locate near x�. For example, suppose the demand for an essential medicine is perfectly price

inelastic at a level x�. The price elasticity of demand approaches zero as the curvature of

the utility function approaches in�nity � agents demand the medicine at any price only if

they lose in�nite utility by not having it. Because the utility costs of deviating from x� are

in�nitely large, the choice set X(p;�) collapses to the singleton x� for any � when " = 0,

as illustrated in Figure 4a. More generally, more elastic demand functions imply less curved

utility functions and wider choice sets. This is illustrated in Figure 4b, which plots the choice

sets when " = 1. This connection between " and the curvature of utility is extremely helpful

in bounding " because it eliminates the need to estimate a separate parameter to identify the

width of the choice sets.

Bounds on the Elasticity. To derive easily interpretable bounds on ", it is convenient to

introduce a percentage measure of the degree of optimization frictions: � = �
px�(p) . The para-

meter � measures the degree of optimization errors permitted relative to the total expenditure

on x. By �xing � instead of �, we permit larger errors in absolute terms for choices that

are larger in magnitude. This proportional scaling simpli�es the comparison of choice sets at

di¤erent prices. I use the term �� class of models�to refer to models that lie in the class with

� = �px�(p).

Consider again the treatment e¤ect experiment that raises the price from p0 to p1, as

shown in Figure 3. The upper bound on the nominal elasticity " that could have generated

an observed treatment e¤ect b" is that which generates the maximum shift in the choice sets

consistent with b", as shown in Figure 5a. In a � class of models, the upper bound elasticity

"U satis�es the condition

[bx(p1)� bx(p0)] = min(X�(p1; "U ))�max(X�(p0; "U )) (15)

= x�1[1� (2�"U )1=2]� x�0[1 + (2�"U )1=2]

Similarly, the lower bound elasticity "L is that which generates the minimum shift in the choice
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sets consistent with b", as illustrated in Figure 5b:
[bx(p1)� bx(p0)] = max(X�(p1; "L))�min(X�(p0; "L)) (16)

= x�1[1 + (2�"L)
1=2]� x�0[1� (2�"L)1=2]

The general approach to bounding elasticities with optimization frictions that is illustrated in

Figure 5 does not rely on the parametric model used above. One could in principle calculate

the bounds "U and "L numerically for any given utility speci�cation. The bounds can also

be calculated numerically with other types of scaling of the degree of model uncertainty, such

as concave relationships between � and x�. In addition, the same logic can be used to

derive bounds in multi-parameter nominal models that already incorporate some aspects of

adjustment costs, inattention, or other frictions. The logic for deriving the bounds is the

same in all of these cases. Given a fully speci�ed model, one �rst computes the set of choices

that yield utility within � units of the maximum for a given set of parameters. One can

then calculate the boundaries of the set of structural parameters that are consistent with

an observed behavioral response as in Figure 5. The assumptions made above facilitate an

analytical characterization of the bounds, as shown in the following proposition, which provides

a formula for the bounds ("L(b"; �); "U (b"; �)) that is accurate for small �.
Proposition 1. For small �, the range of fundamental elasticities consistent with an observed

elasticity b" in a � class of models is approximately
r(b"; �) = [b"+ 4�(1� �)( p

�p
� b")2;b"+ 4�(1 + �)( p

�p
� b")2] (17)

where � = (1 +
1

2

b"
�
=(
p

�p
� b")2)1=2 (18)

Proof. Using the elasticity de�nitions in (6) and the approximation " ' � (x�1�x�0)=x�0
(p1�p0)=p0 , we can

rewrite the de�nition of "U in (15) as

[1 + (2�"U )
1=2] +

�x

x�0
= (1� �p

p
")[1� (2�"U )1=2]

) 1 + [2�"U ]
1=2 +�x=x�0

1� [2�"U ]1=2
= 1� �p

p
"
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For small �, 1
1�[2�"U ]1=2

= 1 + [2�"U ]
1=2 and hence this equation is approximately

(1 + [2�"U ]
1=2)2 + (1 + [2�"U ]

1=2)�x=x�0 = 1� �p
p
"U

(1 + [2�"U ]
1=2)2(1� �p

p
b") = 1� �p

p
"U

(1 + 2�"+ 2[2�"]1=2)(1� �p
p
b") = 1� �p

p
"U

where the second line follows from the fact that x(p0) = x�0[1+ (2�"U )
1=2] at the upper bound.

For small �, the 2�" term in the third line vanishes relative to 2[2�"]1=2. Hence, this equation

is approximately

(1 + 2[2�"U ]
1=2)(1� �p

p
b") = 1� �p

p
"U

) "2U � (2b"+ 8�"U (1� �pp b")2=(�pp )2 + b"2 = 0

A parallel derivation for "L using the de�nition in (16) yields the same quadratic equation.

Solving this quadratic equation and taking its upper and lower roots yields the values of "L

and "U in (17). Using the remainder terms in the approximation, it is straightforward to

establish that the di¤erence between the exact bounds and the approximate bounds in (17)

vanishes as � ! 0.

Equation (17) maps the price change used for identi�cation (�pp ), the elasticity estimateb", and the degree of model uncertainty (�) to bounds on the fundamental elasticity. Figure

6 plots the bounds ("L; "U ) vs. b" for four combinations of � and �p
p . The top two panels

consider model uncertainty of � = 1%, while the lower two panels consider � = 0:1%. The left

panels have a price change of �pp = 40%, while the right panels have �pp = 20%. With a price

change of 20%, the bounds are very wide. For instance, an observed elasticity of b" = 0:2 is
consistent with fundamental elasticities between "L = 0:01 and "U = 2:3. The bounds become

considerably tighter, particularly for low values of b", when the price change used to estimateb" is larger. With �p
p = 40% and b" = 0:2, "L = 0:05 and "U = 0:85. The reason is that the

movement in the choice sets for a given value of " is larger when �p
p is larger, and thus there

are a narrower set of observed responses b" consistent with any given ". Large price variation
in essential to obtain informative bounds when one is concerned about optimization frictions.

This is because optimization frictions can lead to small responses to small price changes even

if the fundamental elasticity is large.
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Comparing the top and bottom panels of Figure 6, we see that the bounds also becomes

more informative as � is reduced, as one would expect. This con�rms the intuition that

re�ning the model so that there are fewer frictions omitted from the nominal model yields

more precise estimates. This is why the bounds approach proposed here is a complement to

rather than a substitute for the primary approach of re�ning economic models.

Although the numerical calculations in Figure 6 are based on a formula that was derived

from the particular utility speci�cation in (2), these numbers are actually valid more generally.

For a general utility U(x), the elasticity of demand "(x) varies with the level of x: I show in

Appendix 1 that (17) approximately bounds a weighted average of the elasticities "(x) between

x0 and x1 irrespective of the functional form of U(x). Again, the approximation error vanishes

as � ! 0. The source of this invariance result is that the curvature of utility U 00(x) is pinned

down by the elasticity "(x) for any utility according to (14). Coupled with the fact that we

only made use of a quadratic approximation to U(x) rather than its speci�c form to derive

the results in Lemma 1 and Proposition 1, one can see why (17) would be approximately valid

for arbitrary U(x). In this sense, (17) and the calculations in Figure 6 can be interpreted as

general elasticity bounds in frictionless neoclassical models rather than as a numerical example

for a speci�c parameterization of utility. Note, however, that these bounds ignore statistical

uncertainty and thus cannot be directly applied to �nite sample estimates of b".4
Properties of the Bounds. The bounds o¤er some insight into what can be learned from

treatment e¤ect estimators about fundamental elasticities. First, the bounds are asymmetric

around the observed elasticity: "U � b" > b" � "L. This asymmetry arises from the propor-

tional relationship between the width of the choice sets and ", as shown in Lemma 1. Small

fundamental elasticities are inconsistent with large observed values of b", making the lower
bound relatively tight. In contrast, high fundamental elasticities generate very wide choice

sets �because they imply a relatively �at utility function around the optimum �and thus are

consistent with many values of b", making "U large.
Second, Figure 6 shows that the lower bound "L > 0 whenever b" > 0. If " = 0, the choice

sets collapse to a single point x�(p0) = x�(p1) as shown in Lemma 1, and one will therefore

never observe positive values of b". Agents who are intent on maintaining a �xed value of

4One can presumably develop a con�dence interval for r(b"; �) using methods similar to those proposed by
Imbens and Manski (2004).
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x must face very large costs of deviating from the optimum and therefore will never do so.

Hence, any study that detects a positive treatment e¤ect is informative about the elasticity "

irrespective of the degree of optimization frictions. The following corollary of Proposition 1

establishes this result formally.5

Corollary 1. If b" > 0, the hypothesis that " = 0 is rejected for any �: b" > 0) "L(b"; �) > 0.
Proof. Follows directly from the expression for "L in (17), where the second term can be

shown to be strictly less than b" for b" > 0.
Third, it is interesting to consider what can be learned from the converse case of a study

that detects zero observed behavioral response (b" = 0).6 When b" = 0, the bounds take a

particularly simple form. The lower bound is "L = 0. The equation for the upper bound

can be expressed in terms of the utility cost of ignoring the price change. To calculate this

utility cost, suppose the agent is initially at the nominal optimum x�(p0) and ignores the price

increase from p0 to p1. His utility loss from failing to reoptimize is

�U � U(x�1)� U(x�0)

Using a quadratic approximation analogous to that in Lemma 1 yields

�U = �1
2
uxx(x

�
1)(x

�
1 � x�0)2

= �1
2

1

dx�=dp
(
dx�

dp
�p)2

=
1

2
px�0"(

�p

p
)2

The utility loss from failing to reoptimize as a percentage of the original expenditure level is

�u%(") =
�U

px�0
=
1

2
"(
�p

p
)2 (19)

We can relate this result to the equation in Proposition 1 to obtain the following representation

for "U (b" = 0; �), the upper bound on the elasticity that is consistent with zero behavioral

response.

5See Honore and Tamer (2006) for another example of bounds varying with the true parameter. They show
that in panel data models where one is agnostic about the distribution of initial conditions, the bounds on the
estimated degree of persistence collapse to zero when the true degree of persistence is zero.

6Among the feasible responses in a � class of models, a zero response is perhaps the most likely outcome, as
it requires no adjustments or attention.
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Corollary 2. An elasticity " is inconsistent with b" = 0 if the utility cost of ignoring the price
change under that elasticity exceeds 4�. That is, "U (b" = 0; �) satis�es

�u%("U ) = 4� (20)

) "U = 8�=(
�p

p
)2

Proof. When b" = 0, (17) implies "U = 8�=(�pp )
2. Combining this expression with (1) and

solving yields the result.

Corollary 2 provides a simple method of determining the range of elasticities for which one

can be sure to detect a behavioral response, analogous to a statistical power calculation. The

utility cost of ignoring the tax change given an elasticity of " must exceed 4� in order for "

to be inconsistent with an observed response of b" = 0. The intuition for the 4� condition

is illustrated in Figure 7. Let d = x�(p0) �min(X(p0; �)) denote the di¤erence between the

optimal demand and the lowest demand in the initial choice set. Panel A of Figure 7 shows

that at the upper bound "U , the di¤erence between the optimal demands at the two prices

is x�(p0) � x�(p1) = 2d. By de�nition, the percentage utility cost of choosing min(X(p0; �))

instead of x�(p0) at a price of p0 is �. Since the utility cost of deviating by d units is �,

the utility cost of deviating by 2d units is 4�, as illustrated in Panel B of Figure 7. The

4� condition is obtained because the costs of deviating from the optimum rise at a quadratic

rate. Although the 4� threshold relies on the quadratic approximation to utility, the result in

Corollary 2 points to a more general lesson. A simple way to gauge whether an experiment is

informative about " is to compute the utility costs of ignoring the price change for an agent

who is initially at the optimum. Under any utility speci�cation, a minimal requirement to

detect a non-zero response given an elasticity of " is that the utility cost of ignoring the price

change exceed the optimization friction threshold �.

Equation (20) shows that the upper bound "U shrinks with the square of the price change

when b" = 0. Accordingly, Figure 6 shows that at an observed elasticity of b" = 0, one can only
rule out elasticities " > 2 when �p

p = 20%, whereas one can rule out " > 0:5 with �p
p = 40%.

Intuitively, the utility costs of failing to react to a price change rise with the square of the

price change because of the second-order costs of deviating from interior optima. As a result,

large price changes are more likely to induce a reaction for any given elasticity ". Conversely,

the set of " consistent with zero response falls rapidly as the size of the price change rises.
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Corollary 2 also shows that "U falls at a linear rate with �. Although re�ning the model is

always valuable, examining large price changes should take priority over seeking environments

with fewer frictions if one wishes to obtain a tight upper bound on ". More informative bounds

are obtained when one studies a price change that is twice as large even if the environment

has twice as much model uncertainty due to optimization frictions, as seen by comparing the

bounds in Panels B and C of Figure 6.

4 Application: Labor Supply and Taxation

The elasticity of labor supply (or taxable income) with respect to the net-of-tax rate is a

parameter of central interest for tax policy analysis and macroeconomic models. A large

empirical literature in labor economics, macroeconomics, and public �nance estimates this

elasticity using historical variation in tax rates in the United States and other developed

countries. This section evaluates the bounds on the taxable income elasticity implied by these

studies when one permits optimization frictions.

The analysis has two parts. First, I calibrate the utility costs of ignoring the various

tax changes in the U.S. used for identi�cation in the existing literature. Using Corollary 2,

I evaluate the range of elasticities that could be rejected by each study if a zero behavioral

response were observed. These calibrations indicate that a broad range of seemingly disparate

�ndings in the literature can be reconciled with optimization frictions of � = 1%, even if the

elasticity " is restricted to be constant across all taxpayers. Second, I calculate the bounds

implied by several studies using Proposition 1 and pool them obtain informative bounds on

the taxable income elasticity. I then discuss the types of studies that would be most useful

to make the bounds tighter.

4.1 Nominal Labor Supply Model

I begin by adapting the analysis above to a labor-leisure choice problem to derive bounds on

the taxable income elasticity. Consider an economy of agents choosing consumption (c) and

labor supply (l) who have quasilinear utility functions of the following form:

ui(c; l) = c� �i
l1+1="

1 + 1="
(21)
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Agent i�s budget constraint is c = (1� t)wil, where t denotes the income tax rate. Following

Feldstein (1995), I refer to wil as agent i�s �taxable income.� The optimal labor supply is

l�(t) =
�
(1��)wi
�i

�"
, or equivalently,

log l�(t) = �i + " log(1� t)w. (22)

In the nominal model, the structural preference parameter " is point identi�ed by the labor

supply (or taxable income) response to a tax change from t0 to t1:

" =
logwl�(t1)� logwl�(t0)
log(1� t1)� log(1� t0)

That is, " equals the elasticity of taxable income with respect to the net of tax rate.

Existing studies have documented a large set of frictions that may make actual responses

to tax changes di¤er from the pure e¤ect of the fundamental elasticity, including costs of

switching jobs (e.g. Altonji and Paxson 1992), costs of switching consumption plans (Del Boca

and Lusardi 2003), inertia (Jones 2008), and inattention (Chetty and Saez 2009). However,

virtually none of the existing studies that estimate " in the taxable income literature explicitly

account for frictions. It is therefore natural to evaluate the bounds on the elasticities implied

by these studies using the methods proposed above.

Applying Lemma 1, the labor supply choice set in a � class of models around this nominal

model is approximately

L(t;�) = fl : l � l
�(t)

l�(t)
< [2"

�

c�(t)
]1=2g

Let � = �=c�(t) denote the utility loss that is permitted as a percentage of the optimal level

of consumption. The labor supply choice set in a � class of models is

L(t; �) = fl : l � l
�(t)

l�(t)
< [2"�]1=2g

With "l�;w = 0:5, the width of this choice is 2�1=2. If we consider a class of models that

generate choices within 1% of utility-maximizing level (� = 1%), the width of the choice set

is 20%. The set of labor supply choices that generate utility within 1% of the maximum

extends +/-10% around optimum predicted under nominal model, illustrating the substantial

uncertainty about behavior generated by small optimization frictions.
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To characterize the bounds on the labor supply elasticity, let the observed response to the

tax change be denoted by b" = logwl(t1)� logwl(t0)
log(1� t1)� log(1� t0)

.

Proposition 1 can be directly applied to obtain bounds on the taxable income elasticity ",

replacing �p
p = �t

1�t0 , which is the relevant measure of the price change in this application.

Corollary 2 can be used to determine the range of elasticities inconsistent with zero behavioral

response by computing the utility costs of ignoring tax changes. With a linear tax system,

one can approximate the utility cost of ignoring a tax change as

�u%(") =
1

2
(
�t

1� t)
2". (23)

However, in a non-linear tax system, the utility costs of ignoring changes in the tax structure

cannot be computed analytically. I therefore numerically calculate �u%(") and evaluate the

range of elasticities for which (20) holds for existing studies in the literature.

4.2 Calibration Methodology

I calculate the utility costs of ignoring changes in the tax code using the utility speci�cation in

(21) with a fundamental elasticity of " = 1. Since " = 1 is widely viewed as an upper bound

on the plausible range of elasticities (see e.g., Goolsbee 1999), a study that is unable to reject

" = 1 when b" = 0 is e¤ectively uninformative about the structural elasticity.
Let Ty(wl) denote the agent�s tax liability as a function of his taxable income in year

y. The function T will in general be non-linear and non-di¤erentiable given the progressive

bracket structure of the tax system in the U.S. In the nominal model, the agent chooses l to

maximize

Ui(l;Ty) = wil � Ty (wil)� wi
l1+1="

1 + 1="
(24)

Let l�i;y denote the optimal labor supply for individual i given the tax system in year y. Now

suppose there is a change in the tax system in year y + 1. The goal of the calibration is

to compute the utility loss from ignoring this tax reform. Following the convention in the

literature (e.g., Gruber and Saez 2002), I consider a three-year interval between the pre-reform

and post-reform years, and de�ne the utility loss from ignoring the tax changes that occurred

between years y and y + 3 as

�U = Ui(l
�
i;y+3;Ty+3)� Ui(l�i;y;Ty+3) (25)
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This expression can be interpreted in dollar terms because the utility function is quasilinear.

Throughout, I consider a single tax �ler with two children who has only labor income and no

deductions other than those for children. I include both employer and employee payroll taxes

and ignore state taxes. I calculate �U for various wage rates wi and various years y using

the following steps: (1) Calculate the income tax schedule in a �base year�y using the NBER

TAXSIM calculator. Using a vector of wage rates, solve for the optimal labor supply l�i;y and

compute taxable income in the base year. Note that some taxable incomes are optimal for

no one due to non-convexities in the tax schedule. (2) For each wage rate wi, in�ate by the

CPI to obtain a comparable wage rate in year y+3. Calculate the optimal labor supply l�i;y+3

using the tax schedule in year y+ 3. (3) Calculate the dollar gain from reoptimizing for each

wage rate wi according to (25), using the in�ated (y+3) wage rate to compute taxable income

in both cases.

The stata program TAXCOST.ado that calculates the utility cost of ignoring a tax reform

has been made available on the NBER server. TAXCOST takes exactly the same inputs

as TAXSIM. By running TAXCOST instead of TAXSIM on their datasets, researchers can

calculate the utility costs of ignoring the tax changes that they use for identi�cation in empirical

studies. The program can be used to calculate utility costs for any given choice of elasticities,

tax �ler characteristics, and years.

4.3 Calibration Results: Synthesis of Existing Evidence

Tax Reform Act of 1986: Low vs. High Incomes. Figure 8 considers the Tax Reform Act of

1986, one of the largest reforms in the tax code in the U.S. and the focus of many empirical

studies in the taxable income literature. Panel A shows the marginal tax rate schedules

in 1985 (red, solid thick line) and 1988 (grey, solid blue line) for a single tax �ler with two

children. The tax reform cut marginal tax rates signi�cantly across the board, especially

for high income individuals. The dashed blue line in Figure 8a shows the change in the

marginal net-of-tax rate �t
1�t , which is the variable that corresponds to the �price change� in

our analysis. The percentage change in the NTR is approximately 15-20% for those with

incomes below $100,000 and approaches 40% for those with incomes close to $200,000. This

percentage change in NTR schedule is replicated in light blue in Panels B-D for reference.

Panel B plots the dollar gain from reoptimizing, calculated according to the procedure
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described above, vs. base year taxable income. Each point on the red curve is for an individual

with a wage rate wi such that his base-year taxable income (expressed in real 1988 dollars)

equals the x axis value.7 For instance, an individual whose wage rate placed him at an optimal

taxable income of $100,000 prior to TRA86 would gain $2,000 by reoptimizing in response to

the change in the tax code if his fundamental elasticity of taxable income were " = 1. To help

in evaluating magnitudes, Panel C plots the percentage bene�t of reoptimization, de�ned as the

dollar gain divided by consumption in year y+3 (post-tax earnings) if one does not reoptimize.

This percentage bene�t measure corresponds to the �u% measure used in Corollary 2. Most

taxpayers earning less than $100,000 gain less than 2% of consumption by reoptimizing labor

supply in response to TRA86.

Finally, Panel D plots the change in taxable income (wil�i;y+3 � wil�i;y) required to fully

reoptimize relative to TRA86 by income level with. A taxpayer earning $100,000 prior to

the reform would have to increase his pre-tax earnings by $30,000 in order to reach his new

optimum with an elasticity of " = 1. This substantial change would still give him a utility

gain (net of the disutility of added labor ) of only $2,000, because of the local �atness of utility

functions that have " = 1. Given that the search costs of �nding a new job or additional work

that pays an extra $30,000 could well exceed $2,000, it is plausible that this individual would

not respond to TRA86 given plausible frictions.

The main lesson to be taken from Figure 8 is that the gains from reoptimization in response

to TRA86 are very small for taxpayers with incomes below $100,000 even for a fundamental

elasticity as large as " = 1. The gain are, however, considerably larger for high income

earners. An individual with base year income of $200,000 would gain nearly $10,000 (8.5%

of consumption) from reoptimizing in response to the tax reform. The dollar gains from

reoptimization rise rapidly with income for two reasons: (1) the absolute level of the dollars at

stake rise with income and (2) the change in the tax rates in larger for high incomes, as shown

by the dashed blue line. The percentage gain also rises with income, showing that higher

income individuals have greater reason to reoptimize even if frictions scale up proportionally

with income.

The small gains from reoptimization for lower earners and large gains from reoptimization

7We �ll in values at non-convex kinks in the base year by interpolating in order to obtain a smooth curve.
Since no individual would optimally locate at these points in the base year, the value of reoptimization would
be unde�ned.
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for high earners are consistent with the �ndings of empirical studies of TRA86. These studies

generally �nd substantial responses for high incomes but little or no response for lower incomes

(see e.g., Feldstein 1995, Saez 2004). For individuals with incomes below $100,000, Corollary

2 implies that one would not be able to rule out fundamental elasticities in excess of " = 1

with optimization frictions of � = 1% even if one were to observe zero response to the tax

reform. In contrast, high income earners would be leaving nearly 10% of consumption on the

table by failing to reoptimize if " = 1. This would make them more likely to respond even if

they have the same fundamental elasticity " as lower income households.

Note that high income individuals may also be more responsive because of di¤erences

in their ability to adjust income (lower optimization frictions) or because of heterogeneity

in fundamental elasticities. The analysis here does not rule out these other channels. It

merely shows that the simple model in (21) with a constant elasticity " across individuals can

explain the available data when one permits small optimization frictions. Hence, one does

not necessarily need sophisticated alternative models to explain the data, a �nding that recurs

throughout the analysis below.

EITC Expansions: Intensive vs. Extensive Margin. Figure 9 considers another important

episode in U.S. tax policy �the expansion of the Earned Income Tax Credit under the Clinton

administration. Panel A shows that between 1993 and 1996, net-of-tax wage rates e¤ectively

rose by 20% for single tax �lers with two or more children earning below $10,000. This is

because of the increase in the phase-in subsidy rate of the EITC to 40% during this period.

For households with incomes between roughly $15,000 and $30,000, net-of-tax wages fell by

roughly 15% because of the increase in the phase-out tax of the EITC.

Panel B plots the percentage gains of reoptimization, computed in the same way as in

Figure 8c. Again, most of the percentage gains from reoptimizing in response to the EITC

expansion are less than 2%. There are a small set of tax �lers for whom the gains from

reoptimization are around 4%; these are individuals who fall into the phase-out range only

after the EITC expansion and thus experience a large increase in marginal tax rates. Given

the substantial volatility of income across years for low income households (Chetty and Saez

2009), the expected gains from reoptimization are likely to be close to 2% for most households

a¤ected by this expansion. Again, the low gains from reoptimization can explain the empirical
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�ndings. Most studies �nd virtually no changes in earnings in response to EITC expansions

for individuals on the intensive margin (see Hotz and Scholz 2003, Eissa and Hoynes 2006).

Using the result in Corollary 2, optimization frictions in excess of 1% would be consistent with

these �ndings even if the fundamental elasticity were " = 1.

Empirical studies of the EITC do �nd a substantial response on the extensive margin in

response to the Clinton EITC expansion: labor force participation rates for single women with

children surged during this period (Meyer and Rosenbaum 2002). The analysis thus far in this

paper has focused solely on intensive margin reoptimization, where agents choose smoothly

over earnings. To model extensive margin responses, suppose that individual i must pay a

�xed cost ki to enter the labor force (e.g. child care costs) and again consider the linear tax

model in (21). Letting l�i denote the optimal labor supply choice conditional on working,

individuals with �xed costs

ki > (1� t)wil�i (t)� �i
(l�i (t))

1+1="

1 + 1="

will choose not to work. Consider an agent for whom this condition holds with equality at

tax rate t0, and suppose this marginal individual is initially not working. Now suppose that

the tax rate is reduced to t1 < t0 (e.g. through an EITC expansion). The agent�s optimal

response to this tax cut is to start working, as the utility from doing so is now strictly positive.

The utility loss from failing to enter the labor force and work l�i (t0) hours is

�uext = (1� t1)wil�i (t0)� �i
(l�i (t0))

1+1="

1 + 1="
� ki = ��twil�i (t0). (26)

Finally, to convert this measure into percentage units, it is convenient to normalize �uext by

the marginal agent�s consumption level if he were to work, which is (1� t0)wil�i (t0):

�uext,% �
�uext

(1� t0)wil�i (t0)
= � �t

1� t0
. (27)

The critical di¤erence between (26) and its intensive-margin counterpart in (23) is that the

extensive margin utility loss is linear in �t whereas the intensive-margin utility loss is a

quadratic function of �t.8 There is a �rst-order gain from reoptimizing for agents at the

extensive margin. The percentage utility cost of ignoring a 10% increase in the net-of-tax

8Equation (26) understates the utility gain from reoptimization because it does not account for the fact that
the optimal level of labor supply conditional on working will now be higher as well, given a reduction in the
tax rate. This additional e¤ect adds a second-order term analogous to that in (25).
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wage is thus 10% on the extensive margin, compared with 0.5% on the intensive margin.

Mathematically, the reason is that agents on the extensive margin are not near their post-

reform optimum to begin with, unlike agents on the intensive margin. Intuitively, the �rst-

order gains from a tax cut (higher consumption) are obtained on the intensive margin even if

one does not change his behavior. On the extensive margin, non-workers get the �rst-order

bene�ts of the tax cut (e.g. a larger EITC refund) only by changing their behavior and starting

to work.

Figure 10 plots the extensive margin gains from reoptimizing relative to the Clinton EITC

expansion shown in Figure 9. The x axis of these �gures is the taxable income that the

individual would optimally earn (wil�i;1993) were he to pay his �xed cost and work prior to the

EITC expansion. On the extensive margin, the relevant tax rates are average rather than

marginal tax rates. Panel A therefore plots the average tax rate vs. income prior to the EITC

expansion and after the EITC expansion. The blue curve shows that individuals earning less

than $10,000 experienced a 20% increase in their net-of-tax earnings as a result of this reform.

Panel B plots the percentage utility gain from reoptimizing labor supply in response to this

reform for individuals who are on the margin of entering the labor force. The denominator

used to calculate the percentage bene�t is the post-year consumption level, as in (27). The

calibration follows the same procedure as that described in the previous section, except that at

each income level, I assign the agent a �xed cost so that he would be just indi¤erent between

working and not under the base year tax regime. I then compute the di¤erence in utility

between choosing labor supply optimally under the new tax regime in year y + 3 and not

working in year y + 3 (and obtaining utility of 0).

As expected, the utility gains from reoptimization on the extensive margin are an order

of magnitude larger than the corresponding values for the intensive margin. For a marginal

individual who would earn $10,000 when working in 1993, the gain from entering the labor

force in response to the Clinton EITC expansion exceeds 20% of consumption ($2,000). The

intuition is straightforward: this individual would not have gotten the additional $2,000 in the

EITC refund if he had stayed out of the labor force. The utility gain exceeds the change in

the average tax rate everywhere because it incorporates both the extensive margin gain in (27)

and the gains from choosing a better level of hours on the intensive margin.

Because the utility gains of reoptimizing on the extensive margin are so large, even small
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fundamental elasticities on the extensive margin will induce behavioral responses. In this

sense, it is not surprising that empirical studies have found much clearer e¤ects of the EITC

expansion on the extensive rather than the intensive margin.

Tax Reforms from 1970-2006. The analysis above has focused on two tax major policy

experiments that have received considerable attention in the empirical literature. In Figure

11, I extend this analysis to cover all tax changes from 1970-2006. I compute the percentage

gain (�u%) from reoptimizing relative to tax reforms on the intensive and extensive margin at

the 20th, 50th, and 99.5th percentile of the income distribution. The value that is plotted for

year y is the percentage utility cost of choosing the same level of labor supply as the optimal

choice in year y�3.9 The data plotted in this �gure, along with the corresponding percentage

changes in the net-of-tax rate in each year for each of the three percentiles, are listed in Table

1.

Figure 11a shows that on the intensive margin, there is no tax change since 1970 for

which the utility loss from a failure to reoptimize exceeds 1.5% of consumption for the median

individual in the U.S. The utility costs of ignoring tax reforms are substantial only for the

top 1% of income earners. The costs of ignoring TRA86 are an outlier for top income earners,

and correspondingly TRA86 is the reform that generates the largest behavioral responses (Saez

2004). Figure 11b shows that in contrast, there are several tax changes that would generate

substantial utility losses if ignored on the extensive margin even at the lower percentiles of the

income distribution.10 The utility costs are particularly large for low income individuals, as

changes in tax and transfer policies have induced large changes in average tax rates for low

income earners. These results are consistent with �ndings of substantial extensive margin

responses in the labor supply literature (even excluding the EITC reforms), particularly for

individuals who earn low incomes when working.

The examination of the history of the tax code suggests that tax reforms in the U.S. are

not a very powerful source of identi�cation for learning about intensive margin labor supply

behavior in the presence of small optimization frictions (except for very high incomes). Hence,
9For the extensive margin calculations, I assume that the marginal worker is in the labor force in cases where

the average tax rates rises over the next three years and out of the labor force for cases where it falls. This
is the relevant calculation to determine the utility gains of reoptimization for marginal agents who were not
already making the optimal extensive margin choice.
10 I exclude the 99.5 percentile from this �gure because it is unlikely that a worker on the extensive margin

would come in at the 99.5 percentile of the income distribution.
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it is not surprising that studies of tax reforms have failed to detect intensive margin behavioral

responses for most individuals (see e.g., Saez 2004). With 1% optimization frictions, one

cannot rule out the possibility that " > 1 based on such evidence.

Bunching at Kinks and Non-Linear Budget Set Models. Another common approach to

estimating labor supply elasticities is to exploit the variation in tax rates across brackets

within a cross section rather than focusing on reforms across years. This is the approach

taken by the non-linear budget set (NLBS) literature (see e.g., Hausman 1983). A central

challenge in �tting non-linear budget set models to the data is that optimizing models predict

substantial bunching around kink points, but empirical income distributions for wage earners

exhibit no such bunching (Saez 2002). The lack of bunching generally leads to rejection of

NLBS models, or estimates inconsistent with economic theory (such as negative compensated

wage elasticities). This problem has led to various ad hoc approaches to �removing� the

variation at the kinks, such as smoothing the budget set (MaCurdy et al. 1990) or restricting

the compensated elasticity to be positive.

Allowing for optimization frictions may provide a simple and disciplined method of im-

proving the �t of NLBS models by providing an explanation for why individuals do not bunch

at most kinks in the tax code. In particular, the utility losses from failing to locate at the kink

are very small for most taxpayers. This is illustrated in Figure 12, which plots the income

tax schedule in 2006 in the U.S. for a single �ler with two children. The number next to

each convex kink in the schedule shows the percentage utility gain (�u%(" = 1)) from locating

at that kink point relative to optimizing under (incorrect) assumption that the rate in the

previous bracket continues into the next bracket. There are many wage rates that can induce

individuals to locate at each kink. The numbers listed on the �gure are the (unweighted)

mean percentage gain across all individuals who would optimally locate at the kink. The

calculations in Figure 12 show that the utility losses from ignoring the kinks are generally

quite small in magnitude. Coupled with volatility in income and the movement of the kinks

over time, it is not surprising that individuals who face small optimization frictions would not

bother to target the kinks.

Saez (2002) documents that the one kink at which there is some evidence of bunching is the

�rst kink in the tax schedule, generated by the end of the phase-in region of the EITC. The
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bunching at this kink is driven entirely by individuals who report self-employment income,

which audit studies indicate is frequently misreported on income tax returns because of the

lack of double reporting. Unlike �real� labor supply responses, misreporting can generate a

�rst-order gain in welfare because it creates a pure transfer of resources from the government

to the taxpayer. Hence, the gains from paying attention to the tax schedule are large for

taxpayers who are able to manipulate their reported income, potentially explaining why one

observes bunching precisely for this group. Interestingly, Saez (2002) �nds that there is no

bunching at the second kink of the EITC schedule (where the phase-out region begins) even for

the self-employed. This is consistent with the view that the bunching at the �rst kink is driven

by the �rst-order gains from misreporting. If one were able to pick reported taxable income

without constraints, the best point to pick is the �rst kink in the EITC schedule, because this

point maximizes the size of the EITC refund while minimizing payroll tax liabilities. There is

therefore no reason to locate at the second kink if bunching is driven by income manipulation.

In contrast, in a frictionless model where individuals change their behavior to seek second-

order gains from locating at kinks, one would predict bunching at both the �rst and second

EITC kinks.

This analysis suggests that introducing optimization errors as in (8) could provide a dis-

ciplined method of estimating non-linear budget set models. When �tting such models with

maximum likelihood, one could e¤ectively permit agents to choose any point that yields utility

within � units of the maximal utility they can attain. This would reduce the predicted excess

mass at kink points and potentially permit identi�cation of the model using other moments

of the data. Exploiting cross-sectional variation in tax rates in this manner may yield tighter

bounds on intensive margin elasticities than natural experiments given the lack of large reforms

in the U.S.

Optimizing Relative to Tax System. One potential reaction to the analysis above is that

individuals might never optimize relative to the tax system, because the utility gains from

doing so are always negligible. In this case, the �fundamental elasticity� " would never be

relevant for actually predicting behavioral responses to a tax system. Figure 13 shows that

this is actually not the case: the utility costs of completely ignoring taxes in steady state

are substantial. The �gure plots the percentage utility gain (�u%) from optimizing on the
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intensive margin relative to 2006 tax code relative to optimizing under assumption that there

are no taxes at all. Even for middle income taxpayers, the value of optimizing relative to the

tax system is on the order of 10% of consumption per year. Especially when the bene�ts are

aggregated over several years, it is unlikely that optimization frictions would be large enough

to prevent individuals from responding to the tax code in steady state. Hence, behavioral

responses to the tax system are likely to be close to what one would predict based on the

fundamental elasticity ", even though observed behavioral responses to tax reforms may be

quite di¤erent because of optimization frictions.

A Synthesis of Stylized Facts. In addition to the results described above � (1) larger

responses for the rich, (2) larger extensive margin responses, (3) rejection of NLBS models

and no bunching at kinks for wage earners in the U.S. tax code, and (4) bunching at kinks

for the self-employed �allowing for small optimization frictions may also explain the following

�ndings:

(5) Studies identi�ed using macroeconomic (cross-country/long-run) variation �nd larger

elasticities than microeconometric studies that focus on short run changes (Prescott 2004,

Davis and Henrekson 2005). The variation in net-of-tax rates used in these macroeconomic

studies is much larger than in most microeconometric studies, and accordingly these studies

generate much tighter bounds, as shown in the next subsection.

(6) Eligibility cuto¤s for transfer programs such as Medicaid generate signi�cant behavioral

responses �individuals appear to actively keep their incomes below such cuto¤s (e.g., Yelowitz

1995). The utility costs of ignoring such eligibility cuto¤s are �rst-order, making it optimal

to respond to them even in the presence of substantial optimization frictions.

(7) Elasticities are historically larger for secondary earners than primary earners, but have

converged over time (Eissa and Hoynes 2004, Blau and Kahn 2005). The di¤erence in observed

elasticities need not re�ect fundamental variation in preferences. It could instead be explained

by di¤erences in optimization frictions �for instance, primary earners may be more likely to

hold manufacturing jobs with rigidities while secondary earners may be more likely to hold

�exible jobs such as teaching or nursing. As secondary earners� jobs become more likely

primary earners, the observed elasticities converge, even though the fundamental elasticity "

may have been constant throughout.
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(8) Responses to information: Chetty, Looney, and Kroft (2008) and Chetty and Saez

(2009) conduct �eld experiments which show that providing information about the tax code

signi�cantly a¤ects behavioral responses to taxation. If information and salience reduce

optimization frictions, they may lead to larger observed behavioral responses given a �xed

fundamental elasticity ".

(9) Small vs. large tax changes: Chetty et al. (2009) document that larger tax changes

induce much larger behavioral responses using Danish data. The analysis here shows that

larger tax therefore yield much sharper bounds on " than small tax changes, and accordingly

should be more likely to generate behavioral responses.

4.4 Bounds on the Taxable Income Elasticity

In this section, I calculate the bounds on the intensive-margin taxable income elasticity implied

by �fteen studies in the existing literature using the formula in (17). For each study, I use

the elasticity estimate reported from the authors�preferred speci�cation. To calculate �t
1�t , I

either use the reported percentage change in the net of tax rate used for identi�cation (taking

means in cases with several reforms), or calculate the value of �t
1�t using data on marginal tax

rates over the authors�sample period.

Table 2 shows the list of studies used for the analysis. The studies include evaluations of the

major tax reforms in the U.S., cross-country comparisons from the macroeconomics literature,

and studies of reforms and bunching in European countries. The table lists the point estimate

of the elasticity in each study, the change in the net of tax rate used for identi�cation, and

the implied values of the bounds on the taxable income elasticity ("L; "U ) for each study with

� = 1% optimization frictions. For example, Feldstein�s (1995) pioneering analysis of TRA86

�nds an elasticity estimate of 1.04 and implies bounds of (0:37; 2:89).

The width of the bounds varies tremendously with the size of the variation used for iden-

ti�cation. The two studies that pool tax reforms over the 1980s for the full population �

Gruber and Saez (2002) and Kopczuk (2005) � use variation on average of roughly 6% in

the net-of-tax-wage to identify the elasticities. These two studies imply an upper bound of

"U > 24. With 1% optimization frictions, the responses detected by these studies would be

consistent with enormous elasticities of taxable income, simply because the price variation

used is not big enough to overcome small frictions. Chetty et al.�s (2009) study of bunching
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at small kinks in Denmark also has essentially uninformative bounds, with "L = 0 and "U = 8.

These results show that pooling several small reforms or using very large datasets is useful

for achieving statistical precision, but is not informative about magnitudes in an environment

where one is uncertain about the optimization frictions that agents face.

Figure 14 gives a visual representation of the bounds implied by each of the studies. For

scaling purposes, I exclude studies that use variation in net-of-tax rates below 20% for identi�-

cation, eliminating the three studies just discussed from the �gure. The �gure has two lessons.

First, none of the intervals plotted in the �gure are disjoint �that is, the lower bound of every

study falls below the upper bound of every other study. Even though there is substantial

dispersion in the estimates of the observed elasticities, all the estimates in the literature can

be reconciled with a single fundamental elasticity " in the simplest labor-leisure choice model

given 1% optimization frictions. One perspective on this result is that it just indicates how

uninformative existing studies are in the presence of optimization frictions. This view has

some validity, in that some of the studies with very small or large elasticity estimates are

consistent with the rest largely because they imply very wide bounds.

However, when pooled together, the �fteen studies in Table 2 actually yield very informative

bounds on the taxable income elasticity. The uni�ed bounds can be computed by taking the

largest of the lower bounds and the smallest of the upper bounds. The uni�ed lower bound

across the �fteen studies is "L = 0:47, obtained from Goolsbee�s (1999) analysis of TRA86.

The uni�ed upper bound is "U = 0:54, obtained from Gelber�s (2008) analysis of the Swedish

tax reform of 1991. This points to the second broad lesson from Figure 14: combining several

studies can yield informative bounds even though any one study considered in isolation implies

fairly wide bounds.

The tight bounds of " 2 (0:47; 0:54) are achieved because of the substantial variation in

the point estimates across studies. Some of this variation presumably arises from di¤erences

in optimization frictions and bene�ts of reoptimization in the environments studied. But

part of the variation in the point estimates is known to be driven by �aws in some of the

statistical estimators. For instance, the highest elasticity estimates from TRA86 have been

shown to be biased upward by violations of the common trends assumption in di¤erence-in-

di¤erence estimators and because of intertemporal shifting (Saez et al. 2009). In addition, the

macroeconomic studies may be biased upward because they do not fully control for variations
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in labor market institutions across country.

In view of these statistical issues, I construct a second set of uni�ed bounds that exclude

studies of top income earners around TRA86 (studies 1, 2, and 3) and the macro studies that

make cross-country comparisons (studies 7 and 11). The remaining studies imply a lower

bound of "L = 0:30, obtained from Goolsbee�s study of a large tax reform in the 1920s and

"U = 0:54, again from Gelber�s (2008) study. Hence, even without the macro and TRA86

studies, one still obtains reasonably informative bounds on the taxable income elasticity. If

one further excludes the Goolsbee study of the 1920s on the grounds that the fundamental

parameter it estimates may di¤er given the very di¤erent structure of the tax system in the

modern era (Kopczuk 2005), then the uni�ed bounds are (0:12; 0:54). In this case, the lower

bound of 0:12 is driven by Saez�s (2004) estimates for top income earner�s reactions to tax

changes using historical time series variation.

In addition to the statistical identi�cation concerns, one must be very cautious in inter-

preting the bounds obtained from this simple exercise for a number of other reasons. First, I

have assumed a common fundamental elasticity across all the studies. This strong assump-

tion ignores variation in preferences across income levels or countries. Second, the static

nominal model in (21) abstracts from many considerations in labor supply decisions, the most

important of which are perhaps lifecycle e¤ects (MaCurdy 1981). Finally, I have ignored

the statistical imprecision of the point estimates, which is substantial in many of the �fteen

studies. Incorporating these standard errors would yield wider bounds on ".

What types of studies would be most useful in achieving more informative bounds on the

taxable income elasticity? Ideally, one should study a tax reform that is both large and

involves minimal optimization frictions � e.g. a large, salient tax change that applies to a

group of workers who can adjust labor supply easily such as cab drivers. Lacking this ideal,

the upper bound "U can be credibly tightened by microeconometric studies of very large tax

reforms or cross-sectional variation, even in environments where optimization frictions are not

minimal. Such studies would be of interest even if they yield zero or small elasticity estimates.

The lower bound "L can be increased by obtaining positive elasticity estimates from moderate-

sized experiments in low friction environments �e.g. well publicized experiments on subgroups

that can adjust labor supply easily.
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5 Conclusion

There are many frictions which prevent agents from making the optimal choices predicted by

standard economic models. This paper has shown that even if a researcher is uncertain about

how these frictions a¤ect behavior, he can obtain bounds on price elasticities. The bounds

are derived by requiring that agents�choices yield utility near the unconstrained maximum

that can be achieved under a given nominal model. Abstractly, I exchange the standard

orthogonality condition on the error term for a bounded support condition based on the utility

costs of errors. The bounded support on the error term yields bounds on the price elasticity.

The bounds have an approximate analytical representation that is robust to functional form

speci�cations of utility for small degrees of optimization frictions.

Applying this method to the existing literature on taxation and labor supply o¤ers a

critique and synthesis of this literature. The critique is that many existing studies of labor

supply are essentially uninformative about the taxable income elasticity because they cannot

reject very large values of the elasticity if one permits optimization frictions equal to 1% of

consumption. The synthesis is that several patterns in this literature can be reconciled if one

permits a small degree of optimization frictions. By pooling estimates from several studies,

one can achieve fairly informative bounds on the taxable income elasticity.

This paper has focused on a very simple static neoclassical model. From a methodolog-

ical perspective, it would be interesting to build on the approach proposed here to derive

bounds with optimization frictions in richer environments, including dynamic models and dis-

crete choice settings. From an applied perspective, it could be useful to apply the bounds

derived here to other literatures where the values of key parameters are debated, such as the

elasticity of intertemporal substitution in macroeconomics or the e¤ects of the minimum wage

on employment in labor economics. Such analyses would shed light on which disagreements

require fundamentally di¤erent models and which can be reconciled simply by allowing for

small frictions.
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TABLE 1

Year %∆U %∆NTR %∆U %∆NTR %∆U %∆NTR %∆U %∆NTR %∆U %∆NTR %∆U %∆NTR
1970 0.01 -1.49 1.2 -16.61 1.2 -16.61 2.52 -2.49 2.59 -2.56 2.59 -2.56
1971 0 -0.72 1.1 12.73 0.02 2.76 0.3 0.29 1.1 -0.47 4.09 4.46
1972 0 0.8 0.04 4.55 2.14 26.58 3.57 3.71 2.24 2.25 11.1 10.17
1973 0.02 -2.3 0.79 -14.65 0.71 14.6 1.26 1.28 2.14 -2.12 4.06 3.57
1974 0.01 -1.72 0.05 -3.21 0.44 11.11 2.22 -2.23 2.47 -2.47 3.84 -3.84
1975 0.36 -14.95 1.51 -17.73 0 0 6.1 6.31 3.68 -3.65 5.88 -5.8
1976 0.53 -16.15 0 -0.9 0 0 6.9 7.18 0.25 -0.26 4.72 -4.7
1977 0.29 -13.46 0.1 -4.74 0 0 7.58 8.24 0.87 0.79 3.66 -3.65
1978 0.02 -3.73 0.19 -7.05 0 0 4.31 -4.28 1.21 -1.23 4.18 -4.13
1979 0.05 -4.76 0.29 -8.06 0 0 0.99 -1.04 1.99 -2.02 4.49 -4.45
1980 0.07 -4.76 0.06 -3.86 0 0 4.39 -4.57 4.13 -4.14 5.08 -5.02
1981 0.11 -5.65 0.15 -5.96 0 0 5.74 -6 5.12 -5.11 5.47 -5.36
1982 0.01 -1.86 0 -0.22 0 0 9.03 -8.95 3.63 -3.64 3 -3
1983 0 -0.23 0.04 2.92 0 0 5.74 -5.73 0.45 -0.46 1.38 1.43
1984 0.1 5.31 0.08 8.14 0 0 3.34 -3.34 1.73 1.7 4.78 5.13
1985 0.02 2.63 0.04 3.62 0 0 1.26 -1.28 0.86 0.83 3.73 3.94
1986 0 0.62 0 0.15 0 0 1.13 -1.13 0.58 -0.58 1.36 1.4
1987 0.09 5.2 0.79 14.03 2.03 23 7.59 8.35 3.99 3.33 13.69 13.27
1988 0.01 -2.76 0.69 13.05 7.04 44 10.08 11.43 3.94 3.39 24.39 20.96
1989 0.02 -2.44 0.72 13.42 6.99 44 9.86 11.27 4.06 3.49 27.67 25.92
1990 0.21 -7.73 0.01 -1.41 1.31 17.07 2.44 2.38 0.86 -0.87 7.77 6.86
1991 0.06 -4.4 0 -0.4 0.1 -4.17 0.9 0.87 0.6 -0.6 2.45 -2.39
1992 0.1 -5.7 0 -0.4 0.1 -4.17 2.7 2.77 0.23 -0.24 2.29 -2.24
1993 0.13 -6.58 0 0 0.91 -16.11 4.06 4.24 0.28 0.28 6.21 -5.88
1994 0.12 -9.28 0 0 0.76 -11.94 7.21 7.91 0.3 0.3 5.88 -5.58
1995 0.07 -12.52 0 0 1.13 -16.67 8.74 9.83 0.03 0.03 6.74 -6.36
1996 0.13 -12.78 0.11 0 0.08 -3.77 10.06 11.47 0.11 -0.01 2.44 -2.4
1997 0.06 -6.5 0 0 0 0 5.33 5.79 0.01 -0.01 0.02 0.02
1998 1.88 28.62 0 0 0 0 5.57 3.96 2.91 3.02 0.02 0.02
1999 2.15 30.84 0 0 0 0 3.66 1.57 3.49 3.64 0.19 -0.2
2000 2.17 30.84 0 0 0 0 3.09 0.95 3.14 3.26 0.39 -0.39
2001 0.48 15.71 0 0 0 0.87 3.76 3.49 2.35 2.44 0.46 0.46
2002 0.27 15.71 0 0 0.01 1.74 4.51 4.53 1.83 1.88 1.41 1.42
2003 0.73 15.71 0 0 0.28 8 5.35 4.95 4.03 4.24 5.52 5.55
2004 0.15 6.79 0 0 0.22 7.07 2.31 2.24 1.93 1.98 4.34 4.31
2005 0.15 6.79 0 0 0.17 6.15 1.48 1.39 1.66 1.71 3.34 3.29
2006 0.15 6.79 0 0 0 0 1.84 1.76 0.49 -0.49 0.31 0.32

99.5
Extensive Margin

Percentage Benefit of Re-Optimizing Relative to Tax Changes by Year By Income Percentile

Note: Assumes that taxpayer last optimized three years before year listed in each row, and that income has changed 
at the rate of inflation.  For single head of household with two children and no state taxes.

Intensive Margin
20 50 99.5 20 50



FIGURE 1
Identification of Elasticity in Nominal Model
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NOTE–This figure illustrates how measuring the demand response to a price increase from p0 to p1 identifies the
structural parameter  in the nominal model. Each curve depicts a demand function with a different price elasticity.



FIGURE 2
Construction of Choice Set
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NOTE–This figure illustrates the construction of the choice set, Xip,Δ, predicted by a Δ class of models. The blue
curve plots the utility Ux. The agent is permitted to deviate from the nominal model only to the extent that the utility loss
from doing so – as calculated under the nominal model – falls below the exogenously specified threshold Δ. The set of
demand levels that yield utility within Δ units of the maximum is shown by the red interval on the x axis.



FIGURE 3
Identification with Optimization Frictions
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NOTE–This figure illustrates the choice sets at two price levels, Xp0,Δ and Xp1,Δ. The fundamental elasticity 
 1controls the movement of the choice sets with the price p, as illustrated by the dashed blue line in the figure. The black
lines illustrate that various responses xp1 − xp0 may be observed when   1, including large reductions, zero
response, or even small increases.



FIGURE 4
Effect of Fundamental Elasticities on Choice Sets
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NOTE–This figure illustrates the result in Lemma 1, showing the effect of fundamental elasticities on choice sets at two
price levels. When the elasticity is 0 (panel A), the choice set collapses to a single point. The choice sets are wider when
  1.



FIGURE 5
Bounding the Fundamental Elasticity with Optimization Frictions
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NOTE–This figure illustrates the general approach to bounding elasticities with optimization frictions. The solid black line
in each panel depicts the observed treatment effect (

) for a price increase from p0 to p1 . Panel A shows the highest
fundamental elasticity  (blue dashed line) that could have generated this observed treatment effect. Panel B shows the
lowest fundamental elasticity  (blue dashed line) that could have generated the same observed treatment effect.



FIGURE 6
Bounds on Fundamental Elasticities as a Function of Observed Elasticities

a)  = 1%, p/p = 20% 
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c)  = 0.5%, p/p = 20% 
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NOTE–This figure plots the bounds L,U vs.
 for four combinations of  and

Δp
p . The bounds are computed using

the formula in Proposition 1. In the top two panels, the degree of model uncertainty due to optimization frictions is

  1%. The lower two panels consider   0.5%. The left panels have a price change of
Δp
p  40%, while the

right panels have
Δp
p  20%.



FIGURE 7
Upper Bound on Fundamental Elasticity with Zero Observed Response
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NOTE–This figure illustrates the result in Corollary 2. Panel A shows the largest fundamental elasticity (dashed blue line)
consistent with zero observed response (solid black line) to a price increase from p0 to p1. Under a quadratic
approximation to Ux, the difference between the optimal choices under the old and new prices must equal 2d, where d is
the distance from the end of the choice set to the optimal choice. Panel B shows that the utility loss from being 2d units
away from the optimum equals 4. This is why the utility cost of ignoring the price change equals 4 at the upper bound
U(

  0).



FIGURE 8
Tax Reform Act of 1986
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b) Dollar Gain from Reoptimizing
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c) Percentage Gain from Reoptimizing
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d) Change in Taxable Income Required to Reoptimize
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NOTE–These figures are based on the Tax Reform Act of 1986. Panel A shows changes in marginal tax rates by taxable
income levels in 1985. Panel B plots the dollar gain from reoptimizing relative to TRA86 by income level with   1.
Panel C plots the percentage gain (Δu%) from reoptimizing relative to TRA86 with   1, which is defined as the dollar
gain divided by consumption if the agent does not reoptimize.. Panel D depicts the earnings change (z∗t1 − z∗t0)
required to reoptimize relative to the tax change. In Panels B-D, the dashed blue line (right y axis) replicates the change in
the net-of-tax rate (1-MTR) shown in Panel A.



FIGURE 9
Clinton Earned Income Tax Credit Expansion
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NOTE–These figures are based on the Clinton EITC Expansion enacted between 1993 and 1996. Panel A shows the
changes in marginal tax rates by income during this period. Panel B plots the percentage utility gain (Δu%) from
reoptimizing relative to EITC expansion by income level with   1.



FIGURE 10
Clinton EITC Expansion: Extensive Margin

a) Change in Average Tax Rates
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b) Percentage Gain from Reoptimizing
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NOTE–These figures are the extensive margin analogue to Figure 9. Panel A shows changes in average tax rates by
income during the Clinton EITC Expansion. Panel B plots the percentage gain (Δuext,%) from reoptimizing relative to

EITC expansion on the extensive margin. The x axis shows the income that an agent would optimally earn were he to
work in 1993. For each such agent, I assume a fixed cost that would make him indifferent between working and not
working in 1993. I compute the dollar gain from working and choosing the optimal labor supply in 1996 relative to
staying out of the labor force. Finally, I define the percentage gain as the dollar gain from reoptimizing divided by the
agent’s level of consumption when working in 1996.



FIGURE 11
Percentage Gain from Reoptimizing in Response to Tax Changes by Year
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NOTE–These figures plot the percentage utility gain from reoptimizing in response to changes in taxes over three-year
periods from the 1970s to 2000s for selected percentiles of the income distribution. In each year y, the point that is plotted
shows the utility loss from selecting the optimal labor supply according to the tax system in year y − 3 instead of year y.
Panel A depicts the percentage gain for the intensive margin (Δu%) while panel B depicts the percentage gain for the
extensive margin (Δuext,%). The calculations assume   1. See notes to Figures 8 and 10 for definitions of these

percentage gain measures. The raw data underlying these figures are listed in Table 1.



FIGURE 12
Gains from Bunching at Kink Points in 2006 Tax Schedule
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NOTE–This figure plots the 2006 marginal tax rate schedule in the U.S. The numbers near each convex kink shows the
percentage gain (Δu%) from locating at that kink relative to locating at the optimum under the assumption that the tax rate
in the previous bracket continues into next bracket. Each value is a mean of the percentage gains over all individuals
whose wage rates would make it optimal for them to locate at that kink. The calculations assume   1. The first two
kinks (3.7% and 1.5%) correspond to the end of the phase-in and start of the phase-out regions of the EITC.



FIGURE 13
Percentage Gain from Optimizing Relative to 2006 Tax Code: Intensive Margin
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NOTE–This figure plots the percentage gain (Δu%) from optimizing relative to 2006 tax code (versus choosing labor
supply under the assumption that there are no income taxes) on the intensive margin with   1.



FIGURE 14
Bounds on the Taxable Income Elasticity
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Study Source

(1) (6)

1) Feldstein (1995) Table 2 High vs. Medium

2) Auten and Carroll (1997)

3) Goolsbee (1999) 1985-1989, Table 2a,b

1922-1926, Table 4b,c4) Goolsbee (1999)

5) Goolsbee (1999) 1931-1935, Table 5b,c

6) Gruber and Saez (2002)

7) Prescott (2004) Table 2; U.K. and U.S. treated as control groups

8) Saez (2004) Top 10-5%, pg. 56 col. 7; elast from Table 4B

9) Saez (2004) Top 1%, pg. 56 col. 3; elast. From Table 2C, Col. 3

10) Kopczuk (2005) Page 22: taxable income elast. pre TRA86; t/(1-t) as in Gruber-Saez

11) Davis and Henrekson (2005) Figure 1

12) Chetty et al. (2009) 

Figure 4, Figure 20: Middle Kink13) Chetty et al. (2009) 

Figure 4, Figure 20: Top Kink

14) Gelber (2009) Table 1 (highest brackets), Table 3 Col. 2

15) Saez (2009) t/(1-t) from first EITC Kink; 0 response for wage earners

Unified Bounds

TABLE 2

Bounds on the Taxable Income Elasticity

t/(1-t) computed as mean 3-year change in NTR for median taxpayer

Table 2, Col 2. Dt/(1-t) from Feldstein (1995) 

t/(1-t)

(2) (3) (4) (5)

1.04 26.0% 0.37 2.89

0.66 26.0% 0.19 2.32

1.00 36.5% 0.47 2.14

0.58 55.6% 0.30 1.12

0.21 59.0% 0.08 0.57

0.40 5.8% 0.01 24.9

1.18 24.0% 0.42 3.34

0.09 23.1% 0.00 1.67

0.50 26.4% 0.12 2.02

0.25 5.8% 0.00 24.6

0.40 80.0% 0.23 0.69

0.10 30.0% 0.01 1.08

0.00 10.0% 0.00 8.00

0.25 71.4% 0.12 0.54

0.00 34.0% 0.00 0.69

0.47 0.54

^^ L H

NOTE–The figure plots upper and lower bounds (shown in brackets) for selected elasticity estimates from studies in the
taxable income elasticity literature. The bounds assume model uncertainty due to optimization frictions of   1%. The
blue squares show the point estimate of each study. The x axis in the figure is the percent change in the net of tax rate
(Δt/1 − t) used for identification in each study. The numbers shown above each interval correspond to the numbers of
the papers listed in Table 2.


