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Abstract

We analyze costly information acquisition and information revelation in groups evaluating dif-

ferent decision options in a dynamic setting. Even when group members have perfectly aligned

interests the group may ine¢ ciently delay decisions. When deadlines are absent or far, unin-

formed group members freeride on each others�e¤orts to acquire information. When deadlines

come close, successful group members stop revealing their information in an attempt to incen-

tivize others to continue searching for information. Surprisingly, setting a tighter deadline may

increase the expected decision time and increase the expected accuracy of the decision in the

unique equilibrium. As long as the deadline is set optimally, welfare is higher when information

is only privately observable to the agent who obtained information rather than to the entire

group.
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1 Introduction

Many important decisions are made by committees. This paper studies joint decision-making

in teams in a world where agents must be motivated to acquire information prior to making a

decision. These situations are very common. For example, members of an executive board must

gain information about a project�s pro�tability and likelihood of success in order to evaluate which

corporate strategy to pursue. In trial juries it is important that jurors pay attention to the evidence

in order to make an informed judgement. Parents must investigate the quality of schools before

deciding where to send their o¤spring. Important national policy decisions are made by a council of

ministers who must gather information about the possible courses of action, and, of course, faculty

members must gather and communicate information about potential candidates when deciding to

recruit new colleagues.

While group members search individually for information, information about the alternatives at

hand is a public good in the absence of con�icting preferences. The analysis identi�es the commu-

nication between decision-makers about their �ndings as a key determinant of their willingness to

expend e¤ort to gain information. In their decision-making process committees face two important

challenges in choosing the most valuable option, even in the absence of con�icting interests. First,

team members must be willing to invest time and e¤ort to search for information. This involves

costly decisions such as reading and compiling market forecasts, evaluating judicial evidence or

reading school quality assessment reports. The standard model of collective decisions under un-

certainty does not speak to this issue because it assumes that decision makers are endowed with

(costless) information. Second, team members should share information e¢ ciently and in a timely

manner. When some expert members that previously succeeded in �nding information about the

best possible course of action fail to communicate their information, the committee may unduly

delay its decision or make the wrong choices.

These two considerations are often in con�ict and lead to a complex trade-o¤ between incentives

for private information gathering and intra-committee communication. This trade-o¤ is critical to

the understanding of why groups often fail to make decisions in a timely manner. Management

scholars have long stressed that while group decision-making tends to lead to more information and

knowledge being available when decisions are made, the decision-making process often takes longer

and is costlier. In his popular textbook on management practices Gri¢ n (2006, page 250) notes that

�perhaps the biggest drawback from group and decision making is the additional time and hence the

greater expense entailed. [...] Assuming the group or team decision is better, the additional expense

may be justi�ed.�In particular, the desire to maintain the motivation of other committee members

to search for information can lead experts to keep mum about their own discoveries. Conversely, the

reluctance to share information in a timely manner may undermine the group members�incentives

to search for information. To help promote the e¤ectiveness of group and team decision making

Gri¢ n (2006) advocates the careful use of deadlines: �Time and cost can be managed by setting

a deadline by which the decision must be made �nal.� Our analysis of the complex interaction

between incentives for information acquisition and information sharing shows how standard team
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practices to incentivize group members, like the imposition of deadlines and disclosure rules, while

bene�cial can also back�re when used incorrectly. While deadlines are expected to increase the cost

of freeriding, the resulting increase in search e¤orts reduces the incentives to reveal information

when this information discourages group members to search intensively. This view is in line with

Carrison�s (2003, page 122) case study analysis of how organizations manage to meet critical time

challenges. He argues that �whenever the workplace is charged with the electricity of a race against

time, clear communication can su¤er.� In contrast, disclosure rules which inhibit group members

to conceal their information, reduce the incentives to become informed.

We formally analyze these competing forces in a (continuous-time) model where each team

member of a group of two can choose to gather information and (unilaterally) call a decision before

a �nite time horizon T . More information helps the team members to make better decisions, but

collecting this information is privately costly. Since the group members equally share the bene�ts of

a more accurate decision, the costly acquisition of information becomes a public good and members

of the group will attempt to free-ride on the information acquisition e¤orts of other members. Thus,

one might think that the group will always be underinformed when making its decision. However,

this intuition ignores that team members may withhold information from the group when obtained

information is not readily observable to all partners. Although team members will divulge all the

information they have as soon as a decision is called to ensure that the team takes the best possible

decision, they have strong incentives not to communicate what they know before that. The reason

for such behavior is that with decreasing returns to information, a team member is less willing to

search for information if another team member is already informed. An informed team member

would always like to pretend he is not informed to induce other members to gather information and

then reveal his information when a decision is called. Of course, in equilibrium team members will

anticipate such behavior and accordingly update their belief that their team member is informed.

A higher belief that a team member is informed reduces the incentive to search for additional

information, since this additional piece will contribute less to the decision. A higher belief also

reduces the incentive to delay a decision, as more informed team members search less intensively

for information.

In particular, we provide a characterization of the symmetric equilibrium strategies employed

by the members of the team. Most notably, the behavior of the players is signi�cantly a¤ected

by the length of the time that is still available until the �nal deadline at time T and thus agent

behavior displays a number of interesting characteristics. When T is relatively small, that is to

say there is little time between the start of the game and the deadline to become informed, players

exert maximum e¤ort to become informed and reveal no information when successful. Players have

little time to become informed and thus have strong incentives from the start of the game to exert

e¤ort themselves rather than to count on their partners� e¤ort. In response to this high e¤ort

choice any informed agent prefers not to disclose her information and delay a decision since she

bene�ts from the potential acquisition of an additional signal by a hard-working uninformed agent.

However, as T increases, this equilibrium is no longer sustainable. The belief of uninformed agents
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that the other team member is informed would be too high and an uninformed agent would no

longer be willing to exert such a high level of e¤ort. As a result, uninformed agents choose lower

e¤ort levels to compensate for the fact that the other team member is likely to be informed and just

delaying the decision. The total e¤ort exerted during the game remains unchanged. As T increases

even further, informed agents may no longer prefer to delay their decision since the total cost of

delay �T increases as T increases. As a result, when T is large an informed agent will initially

prefer to forego any delay costs and instead choose to immediately call a decision upon acquiring

a signal. Uninformed agents initially free-ride on each others�e¤orts to acquire this signal. The

unique equilibrium for long games thus has two phases: a �rst phase of low e¤ort intensity and full

information disclosure, a second stage of high e¤ort intensity and no information disclosure.

The unique equilibrium of the game suggest that ine¢ cient delay is due to the lack of information

search far from the deadline and the lack of information revelation close to the deadline. As no

information is revealed close to the deadline, committees are expected to take decisions early on

or to wait until the deadline. Relatedly, our model suggests an explanation for why committees

may delay decisions without its members actually looking for more information. That is to say,

when deadlines are very strict our model provides a formal characterization of �Parkinson�s Law�

(Parkinson 1955) which posits that �work �lls the time available�as all decisions will be delayed

until the �nal deadline.

We also investigate the optimal length of the deadline and show that there is a unique �nite

deadline that maximizes agents�ex ante welfare. This optimal deadline is set in such a way that it

maximizes bene�cial search e¤orts while minimizing unnecessary decision delays. Although tight

deadlines are expected to reduce the decision time, but also the expected decision precision, the

opposite may happen in this setting. The reason is that a longer deadline increases the probabil-

ity that information is still acquired before team members stop revealing information and delay

decisions until the deadline. Hence, this increases the probability of an early decision taken with

potentially less information in expectation.

Our model also highlights the importance of observability of successful information acquisition.

When information is immediately observable to all team members, free-riding on information acqui-

sition will lead to a severe underprovision of search e¤ort, but at least decisions will always be taken

immediately once information has been obtained. In contrast, when information is only privately

observable team members have stronger incentives to search and may even collectively overinvest in

information acquisition in expectation, but decisions will be taken unnecessarily late in an attempt

to bene�t from another team member�s information acquisition. We provide a clean comparison of

the polar cases of private and public information. Surprisingly, we show that as long as the agents

can optimally set the deadline ex ante, welfare is always higher when information is only privately

observable. This is because in the private information case the agents can reap informational rents

from successful information acquisition and thus have stronger incentives to invest in e¤ort that

outweigh any costs resulting from delayed decisions. However, we also show that when the deadline

is set ine¢ ciently short and the returns to additional information are decreasing rapidly, the team
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members may instead bene�t from making information publicly observable.

Finally, we consider a number of extensions of our baseline model such as the use of explicit

contracts for the team members as well as third-party information aggregators such as a committee

chairperson who can call a decision when both team members are informed and are unnecessarily

delaying making a decision until the deadline.

1.1 Related Literature

Our model is related to the large and growing literature on decision-making in groups. Several

previous contributions have focused on the distorted incentives to reveal private information in

the presence of con�icting preferences (Li, Rosen and Suen 2001; Dessein 2007, Gerardi and Yariv

2007)1, of reputation or career concerns (Ottaviani and Sorensen 2001; Levy 2007; Visser and Swank

2007) and of di¤erent voting rules (Feddersen and Pesendorfer 1998). In our model, preferences

are perfectly aligned, conditional on the available information, and individuals strictly prefer to

reveal their private information when a decision is taken. Another strand of the literature analyzes

how incentives for individual information acquisition in committees can be optimally provided by

structuring the decision procedure (Persico 2004) , the size of the committee (Cai 2009), the voting

rules (Li 2001, Gerardi and Yariv 2008), or restricting the action space (Szalay 2005). Gershkov

and Szentes (2009) are one notable exception in this literature as they also focus on in�uencing

the prior information of the members acquiring information. They �nd that a social planner who

accounts for members�e¤orts would leave any member as much in the dark as possible. Blanes-I-

Vidal and Moeller (2010) also study the impact on team members�incentives from communicating

private information, but their focus is on incentives to exert e¤ort on a common project rather. We

study the incentives to acquire and reveal information in a dynamic setting. Agents can not only

choose whether to disclose information or not, but also when to disclose information. In terms of

modeling approach our paper is most closely related to Bonatti and Hörner (2010) who study e¤ort

incentives in teams in a continuous-time framework, but they abstract away from the incentive

problems related to information sharing that are central to our analysis. Finally, delay and optimal

deadlines in group decision-making are also the focus of Damiano, Li and Suen (2009, 2010) who

study repeated voting games between team members with di¤ering interests.

The remainder of the paper is organized as follows. In Section 2 we introduce the model in its

most general form. In order to build information for our continuous-time results, we �rst focus on

a simple two-period case in Section 3 which highlights the main driving forces of our analysis. We

then introduce the more general continuous-time model and characterize the equilibrium strategies

in Section 4. In Section 5, we derive several comparative statics results regarding welfare and

expected decision time and decision precision as a fuction of the length of the game. In Section 6,

we compare the equilibrium strategies and welfare when the acquired information is private and

1Another strand of literature studies how incentives for information acquisition arise if decision-makers have
di¤erent preferences (Aghion and Tirole 1997) or beliefs (Che and Kartik 2009) and thus take di¤erent decisions
conditional on holding the same information.
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public. Finally, in Section 7 we discuss a number of extensions. Section 8 concludes.

2 Setup

A team of two agents choose a decision a to match a state of the world �. Both agents have

identical preferences regarding the decision to be taken for a given state of the world, but the state

of the world is unknown. The decision utility is given by a quadratic loss function � (� � a)2.
Agents can exert costly e¤ort e to acquire information about the state of the world to make a more

informed decision. However, information acquisition costs are borne privately and an agent�s e¤ort

is unobservable to the other agent. This results in a standard moral hazard problem within the

team; both agents would like to freeride on each others�e¤ort to acquire information. In addition,

information about the state of the world is only observable to the agent who acquired it. Hence,

agents may choose whether or not to disclose the information they obtained to induce their team

partner to acquire more information.

By exerting e¤ort an agent increases the probability of acquiring an additional signal about the

state of the world. We call an agent informed if she acquired a signal and uninformed if she did not

obtain a signal before. A better informed decision reduces the expected quadratic utility loss. We

assume that the returns to additional information are decreasing. Denoting the additional value of

the n-th signal by �n, this implies �n � �n+1 for any n. In particular, we assume that each agent
starts with an identical normal prior � � N

�
0; 1"
�
with the precision denoted by ". Agents can

acquire additional signals s. Each signal is independent and normally distributed with precision � ,

s � N
�
�; 1�

�
. The expected loss when taking a decision with n signals simpli�es to 1

"+�n . Hence,

the returns to an additional signal are decreasing and at a faster rate when the signal is more

precise. Notice that as the signal becomes in�nitely precise, the marginal value of the �rst and any

following signal are given by

lim
�!1

�1 =
1

"
and lim

�!1
�n = 0 for n � 2.

By revealing information an agent reduces her partner�s incentives to acquire more information

as the expected value of the additional information is lower. We assume that agents cannot credibly

reveal that they have no information. We also assume that agents may choose whether or not to

call a decision. Calling a decision is irreversible so once it is called by either agent a decision must

be made. Since the decision preferences are aligned, agents reveal any information they have when

a decision is called before deciding on an action. The game ends after an action a is taken. As long

as a decision is not called, agents incur an additive delay cost �.

3 A Simple Model

We �rst consider a simple model to highlight some of the forces that govern the agents�decisions

to exert e¤ort and to disclose information. In this simple two-period model, we assume that each
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agent starts uninformed with probability �. The �rst agent moves in the �rst period, the second

agent moves in the second period.

The �rst agent chooses the probability that a decision is called in the �rst period. We denote

this decision probability by d (�; n) : [0; 1]�f0; 1g ! [0; 1] which depends on the probability � that

the second agent is uninformed and the number of signals n the agent has obtained. If a decision

is called, both agents reveal their information and take the decision a = E [�j
1] given all the
information 
1 known in the �rst period. If no decision is called in the �rst period, both agents

bear a cost � from delaying the decision until the second period. However, delaying the decision to

the second period allows the second agent to acquire more information.

The agent who moves in the second period, chooses e¤ort according to the e¤ort function

e
�
~�; n

�
: [0; 1]� f0; 1g ! [0; emax] given her updated belief ~� that the other agent is uninformed.

When exerting e¤ort at cost ce, this agent obtains a signal with probability �e, where c and �

measure the marginal cost and return to e¤ort. If the �rst agent has not called a decision in the

�rst period, a decision is called in the second period after the e¤ort choice of the second agent.

Both agents reveal their information and take the decision a = E [�j
2] given all the information

2 available in the second period.

Incentives to exert e¤ort When the second agent is uninformed, her marginal gain from ex-

erting additional e¤ort equals

�
h
~��1 + (1� ~�)�2

i
� c,

where ~� is the second agent�s belief that the �rst agent is uninformed given that she has not called

a decision in the �rst period. The marginal return to e¤ort depends on the increase in probability

of obtaining an additional signal and the expected value of that signal. The marginal return is thus

higher the more likely it is that the �rst agent is uninformed as this increases the expected value

of an additional signal. If the marginal gain is positive, the uninformed agent will exert maximum

e¤ort (e
�
~�; 0
�
= emax). If the marginal gain is negative, the uninformed agent will exert no e¤ort

(e
�
~�; 0
�
= 0). De�ne ��e as the belief for which the uninformed agent is indi¤erent about how

much e¤ort to exert,

�
�
��e�1 + (1� ��e)�2

�
= c.

We assume ��1 > c > ��2. Hence, an agent who is informed or knows that the �rst agent is

informed will exert no e¤ort, i.e., e
�
~�; 1
�
= 0 for any ~�. An agent who is uninformed (n = 0) and

knows that the other agent is uninformed (~� = 1) will exert maximal e¤ort, i.e., e (1; 0) = emax.

Incentives to delay a decision When the �rst agent is informed, her gain from delaying a

decision until the second period equals

�e
�
~�; 1
�
��2 � �.
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By incurring a delay cost �, the �rst agent allows the second agent to acquire an additional signal.

The �rst agent anticipates that the second agent will exert e¤ort only if she is uninformed and

does not know that the other agent is informed. The gain from delaying a decision is higher the

higher the expected e¤ort level exerted by the second agent. This depends on the probability � that

the other agent is uninformed and the e¤ort level e
�
~�; 0
�
exerted by the agent when uninformed.

De�ne �e (�) as the e¤ort cut-o¤ level for which the informed agent is indi¤erent between delaying

and calling a decision,

��e (�)��2 = �.

Note that the expected return to delaying a decision in the �rst period is at least as high for an

uninformed agent as it is for an informed agent, since �1 > �2. If the informed agent is indi¤erent

and calls a decision with probability d (�; 1) � 0, the uninformed agent strictly prefers to delay a
decision d (�; 0) = 0. We assume that � is su¢ ciently small for an uniformed agent not to call a

decision, i.e., d (�; 0) = 0 for any � > 0. As a result, the second agent revises his belief that the

�rst agent is uninformed upward such that the posterior is

~� =
�

�+ (1� �) (1� d (1; �)) � �.

3.1 Equilibrium

If the cost of delay is too high, the �rst player never chooses to conceal her information when

informed and immediately calls a decision, regardless of the e¤ort an uninformed player would

exert in the second period. However, if the cost of delay is su¢ ciently low, the e¤ort level that the

second player is expected to exert determines whether the �rst player �nds it worthwile to delay a

decision. The incentives for the second player to exert e¤ort depend on her updated belief ~� that

the �rst player is uninformed. If the incentives for exerting e¤ort are large, the unique equilibrium

involves uninformed players exerting maximum e¤ort and informed players delaying a decision.

If the incentives for exerting e¤ort are small, the informed agent will call a decision with positive

probability. This increases the incentives of the second agent who now believes that it is more likely

that the �rst agent is uninformed when she did not call a decision. The second agent will exert the

lower e¤ort level �e (�) such that the �rst player is indi¤erent between call a decision immediately

and delaying when informed.

Proposition 1 For � > �emax��2, an informed �rst player calls a decision, while an uninformed
second player exerts e (1; 0) = emax. Otherwise, the unique equilibrium strategies and beliefs are as

follows:

(i) if � � ��e, an informed �rst player does not call a decision, d (�; 1) = 0. An uninformed second
player chooses to exert maximum e¤ort e

�
~�; 0
�
= emax. Her belief remains unchanged ~� = �.

(ii) if � < ��e, an informed �rst player calls a decision with positive probability, d (�; 1) =
��e��
��e(1��)

.

An uninformed second player chooses to exert e¤ort e
�
~�; 0
�
= �e (�). Her belief increases to ~� = ��e.

8



Proof. If � > �emax��2, the informed player calls a decision for any e 2 [0; emax]. If no decision is
called, the second player updates her prior belief to ~� = 1. She exerts maximal e¤ort e (1; 0) = emax,

since ��1 > c. This equilibrium is unique.

If � � �emax��2, the informed player is willing to delay a decision only if e � �e (�). The second

player exerts maximum e¤ort only if ~� � ��e. If the �rst player never calls a decision, the second

player�s belief remains unchanged ~� = �. We distinguish between two cases.

In the �rst case with � > ��e, the equilibrium strategies are as described in (i). The uninformed

second player exerts maximum e¤ort as ~� = � > ��e. The informed �rst player delays as emax �
�e (�). Moreover, the equilibrium is unique. If the informed player calls a decision with d (�; 1) > 0,

the second player would update his belief to ~� > �
�
� ��e

�
and exert maximum e¤ort emax � �e (�).

Hence, the informed player is not willing to call a decision. This constitutes a contradiction. The

strategy is thus unique except when �e (�) = emax. In this case, the �rst agent is also willing to call

a decision, despite the maximum e¤ort of the second agent.

In the second case with � � ��e, the equilibrium strategies are as described in (ii). The uninformed

second player is willing to exert e¤ort e
�
~�; 0
�
= �e (�) as his updated belief equals ~� = ��e when

d (�; 1) =
��e��
��e(1��)

� 0. The informed �rst player is willing to call a decision with positive probability

as e
�
~�; 1
�
= �e (�). Also this equilibrium is unique. If the second player would exert a lower e¤ort,

the informed �rst player would call a decision. Hence, the second player would update his belief

to ~� = 1, and thus be unwilling to exert low e¤ort. If the �rst player would exert a higher e¤ort

level, the informed �rst player would delay a decision. Hence, the second player would keep the

same belief ~� = � < ��e, and thus be unwilling to exert high e¤ort.

The proposition shows that the private nature of the acquired information is essential. First,

a player may use the option to conceal her information and thus delay a decision in equilibrium

even though he is informed. Second, under private information the gains from being informed are

higher. We formalize these claims in the following two corollaries.

Corollary 1 No equilibrium exists in which informed players always disclose their information

when the cost of delay is small.

Proof. When � � �emax��2, the equilibrium described in the Proposition involves the informed

agent delaying the decision and thus not disclosing information with positive probability d.

Consider an equilibrium in which informed players always disclose their information immedi-

ately. As long as no decision has been called, uninformed players will exert maximum e¤ort when

given the last chance to obtain the valuable �rst signal. As a result, players who are informed,

will delay calling a decision as they know with certainty that the other player is still uninformed

and thus exerts maximum e¤ort. Hence, an equilibrium with no delay cannot exist. This intuition

generalizes for multiple rounds of information acquisition and disclosure.2

2Notice that in a model where all players start with the same information as in the next section, no player will ever
conceal information up to the point that the other player becomes discouraged to exert e¤ort. Hence, in equilibrium,
� never drops below ��e.
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Second, the option to conceal information a¤ects the e¢ ciency of the equilibrium. The private

nature of information leads to ine¢ cient delay, but also increases the value of becoming informed.

The reason is that a player is not willing to search for information if she knows that her partner is

already informed. Hence, if information is observable, an informed player cannot gain from delaying

a decision. If information is unobservable, an informed player can gain from delaying a decision

if that induces the second player to acquire more information. However, the option to conceal

information makes it more valuable to become informed as one can still induce the other player to

acquire information.

Corollary 2 The �rst player�s gain from being informed is higher if her information is private

rather than public.

Proof. When information is public, the values of being informed and uninformed are

V I;Pub (�) = �1
"
+ �1 + (1� �)�2

V U;Pub (�) = �1
"
� � + �emax��1 + (1� �)�1.

When information is private and � > ��e, the value of being informed increases to

V I;Priv (�) = �1
"
+ �1 + (1� �)�2 + �emax��2 � �,

while the value of being uinformed remains unchanged. Hence, V I;Pub (�)�V U;Pub (�) � V I;Priv (�)�
V U;Priv (�) for � > ��e, since �emax��2� � � 0. When information is private and � � ��e, the value
of being informed remains unchanged, but the value of being uninformed decreases to

V U;Priv = �1
"
� � + ��e (�)��1 + (1� �)�1.

Hence, V I;Pub (�)�V U;Pub (�) � V I;Priv (�)�V U;Priv (�) for � � ��e, since � [emax � �e (�)]��1 � 0.

The corollary implies that private information increases the incentives of the �rst player to

become informed. If the �rst player could exert e¤ort, this would mitigate the ine¢ ciency due to

the moral hazard in teams problem. Note, however, that it may be socially e¢ cient not to search

for a second signal. In this case, the private nature of information will lead to overacquisition of

information.

4 A Continuous-Time Model

We now consider a continuous-time setup where t denotes the time of the game. The game ends

at a (possibly in)�nite horizon at time T or before if a decision has been called by an agent. Both

agents start the game uninformed.
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As long as a decision has not been called, each agent chooses how much e¤ort to exert. E¤ort is

denoted by the function e (t; n) : [0; T ]�N ! [0; emax] where n is the number of signals the agent

has acquired up to time t. The e¤ort function is piecewise continuous over time. An agent�s e¤ort

level e determines the exponential rate �e at which an additional signal is acquired. The exponential

arrival of signals is independent for both players, conditional on their respective e¤orts. The agent

incurs a linear e¤ort cost ce.

At each point in time, an agent chooses to call a decision or not, denoted by �d (t; n) : [0; T ]�N !
fnot call; callg. Each agent incurs an additive delay cost � as long as no decision has been called.
When one agent calls a decision at time t, the two agents agree to take the decision a = E [�j
t]
given all the information 
t known at time t. At that point the quadratic loss � (� � a)2 is realized
and the game ends. When no decision has been called before the deadline is reached at time T , a

decision is called with certainty.

The analysis in this paper focuses on equilibria in which uninformed agents search for informa-

tion and informed agents call decisions. As in our analysis of the simple model, we assume that

c > ��2: Hence, the number of signals acquired by one agent will only ever be 0 or 1 in equilib-

rium.3 We therefore drop the second argument of the e¤ort function and write e (t) for the e¤ort

strategy of the uninformed agent. We also assume that [��1 � c] emax > � such that an uninformed
agent acting alone would be prepared to search for information in order to make a decision. In

Section 4.2 we also show that no symmetric equilibria involve uninformed agents calling a decision

in equilibrium unless the equilibrium is one in which both types of agents call a decision with

certainty at a point in time, which is in e¤ect a deadline supported by o¤-equilibrium beliefs. To

provide a concise description of the important elements of our model we will proceed by imposing
�d (t; 0) = not call for all t. We therefore drop the second argument of the decision function and

write d (t) for the decision strategy of the informed agent.

At this point it is important to note that while making speci�c assumptions about the decision-

making process our analysis is su¢ ciently general to incorporate voluntary veri�able disclosure

of signals, communication between agents as well as di¤erent decision protocols. Notice that the

veri�able disclosure of a signal implies that a decision is called immediately, since agents always

stop searching when they know that a signal was acquired. Hence, giving the agents the option to

veri�ably disclose their information would not change the equilibrium. Similarly, allowing them to

communicate through cheap talk would not a¤ect our analysis since an informed agent would never

want to report that he has obtained a signal. Second, since only informed agents call a decision,

any player would agree to call a decision once it is called by her partner. Hence, the assumption

that a decision is called unilaterally is without loss of generality. We refer any interested reader to

a more general treatment of the model in the appendix.

The probability that an agent does not acquire a signal by time t provided a decision has not

3 In a more general setup one could assume that ��n > c > ��n+1 such that it is optimal to search for n signals
if one�s partner is uninformed. Here, for the sake of simplicity and tractability, we have chosen n = 1.
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yet been called by the other agent, equals

� (t) = exp

�
�
Z t

0
�e (s) ds

�
We allow for mixing strategies regarding the decision to call at any given instance. From an agent�s

perspective the probability that the other agent will call a decision by time t may be written as

a weakly increasing function of time ~� (t). Since agents may decide not to call a decision after

acquiring a signal, an agent holds a belief that her partner is still uninformed when no decision has

been called. We denote this belief by

� (t) =
1� ~� (t)
1� ~� (t) .

In Section 4.2 we show that in all symmetric equilibria, subject to the earlier caveat, the equilibrium

decision strategy is described by a continuous ~� (t). In the interest of clarity we will restrict our

attention to mixing strategies which result in a continuous ~� (t) in the main body of the paper

and refer the reader to the appendix for the general speci�cation. We describe an agent�s mixed

strategy at di¤erent points in time by d (t) : [0; T ]! fcallg�[0;1). If d (t) = call and � (t) = 1, the
hazard rate at which decisions are being made is the rate at which uniformed agents are becoming

informed. Hence,
d~�(t)
dt

(1� ~� (t)) = �e (t) if d (t) = call and � (t) = 1.

Otherwise, for � (t) < 1; the hazard rate at which decisions are being made is described by d (t) 2
[0;1) and � (t) in the following way,

d~�(t)
dt

(1� ~� (t)) = d (t) (1� � (t)) .

Bayesian updating implies that an agent�s belief evolves in the following way,

d� (t)

dt
=

(
0 if d (t) = call and � (t) = 1,

[d (t) (1� � (t))� �e (t)]� (t) otherwise.
(1)

Hence, if d (t) (1� � (t)) = �e (t) and � (t) < 1 or d (t) = call and � (t) = 1 the belief � (t) remains
constant over time.

Sequential Equilibrium We consider symmetric sequential equilibria of the continuous game

with deadline T . The equilibrium strategy is the same for any continuation game starting at t

and denoted by fe� (t) ; d� (t) jt 2 [0; T ]g. Any o¤-equilibrium strategy either ends the game or is

without consequence for the optimal strategy. The posterior belief �� (t) is formed according to

Bayesian updating for a given strategy pro�le as in (1).

To characterize the equilibrium strategies, we use the continuation value of the game at time t
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for the informed and uninformed player, denoted by V I (t) and V U (t) respectively. The su¢ cient

conditions for e� (t) ; d� (t) and �� (t) to constitute a sequential equilibrium are as follows. For any

t, the continuation value for the informed player of the sequential equilibrium equals

V I (t) = max
t̂2[t;T ]

� 1

"+ �
+

Z t̂

t
[�2 � � (s� t)]

~��0 (s)

1� ~�� (t)ds+
1� ~��

�
t̂
�

1� ~�� (t)
��
1� ��

�
t̂
��
�2 � �

�
t̂� t

�	
.

(2)

where ~�� (t) ; �� (t) are consistent with d� (t) and e� (t) as de�ned earlier. De�ning t̂ (t) as the set

of maximizers t̂ � [t; T ] of the maximization in (2), the calling decisions satisfy

d� (t) = call if t̂ (t) = ftg ,
d� (t) = 0 if min t̂ (t) > t,

d� (t) 2 fcallg � [0;1) otherwise:

(3)

For any t, the continuation value for the uninformed player of the sequential equilibrium equals

V U (t) = �1
"
+

Z T

t

�
�1 � � (s� t)� c

Z s

t
e� (r) dr

�
�� (s) ~��0 (s)

�� (t) (1� ~�� (t))ds

+

Z T

t

��
V I (s)�

�
�1
"

��
� � (s� t)� c

Z s

t
e� (r) dr

�
�0� (s) (1� ~�� (s))
�� (t) (1� ~�� (t)) ds

+
�� (T ) (1� ~�� (T ))
�� (t) (1� ~�� (t))

�
(1� �� (T ))�1 � � (T � t)� c

Z T

t
e� (s) ds

�
.

The e¤ort decisions satisfy

e� (t) = arg max
e2[0;1]

�e
�
V I (t)� V U (t)

�
� ce. (4)

To ensure that uninformed agents do not have a strict incentive to call a decision in the sequential

equilibrium, we have

V U (t) � �1
"
+ (1� �� (t))�1.

Incentives to exert e¤ort An uninformed agent is more willing to exert e¤ort the more valuable

it is to become informed. The return to e¤ort does depend on the di¤erence in the continuation

values when informed and uninformed as in (4). When an agent is uninformed at time t, her

marginal gain from exerting additional e¤ort equals

�
�
V I (t)� V U (t)

�
� c.

Before the deadline, the value of becoming informed also depends on the foregone expected cost

of e¤ort and delay when the agent were still uninformed. At the deadline, the value of becoming

informed only depends on the gained accuracy of the decision. Clearly, an informed agent can make

a more accurate decision, but the value of having acquired a signal is lower when the partner has
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acquired a signal as well. Evaluated at the deadline T , the marginal gain of e¤ort equals

� [� (T )�1 + (1� � (T ))�2]� c.

This mirrors the expression in the simple model of the previous section. Close to the deadline, an

uninformed player is unwilling to exert any e¤ort if the probability that her partner is uninformed

� (T ) < ��e, where the threshold ��e is de�ned by the equation

�
�
��e�1 +

�
1� ��e

�
�2
�
= c:

Incentives to delay a decision An informed agent is willing to delay a decision to give the

opportunity to her partner to become informed as well. When deciding how long to delay a decision,

the agent trades o¤ the potential increase in the accuracy of the decision if an uninformed partner

becomes informed with the expected cost from delaying the decision. The agent takes into account

that her partner may or may not call a decision when becoming informed or may be informed

already as is clear from the maximization in (2). However, close to the deadline, the incentive to

delay a decision is approximately equal to

�e (T )� (T )�2 � �.

The return to delaying only depends on the expected increase in accuracy, which happens with

the probability that a still uninformed partner acquires a signal. This mirrors the expression in

the simple model. We de�ne ��d as the belief for which an informed agent is unwilling to delay a

decision at the deadline when the other agent exerts maximum e¤ort, i.e.,

�emax��d�2 = �.

4.1 Equilibrium

We now characterize the symmetric equilibrium strategies of the continuous game with deadline

T . Equilibrium strategies change as the agents approach the deadline at T , but they also depend

on how large T is, that is to say how tight the deadline is set at the start of the game. When

the deadline is su¢ ciently tight (T is su¢ ciently small), the unique equilibrium involves delay

coupled with maximum e¤ort throughout the game. When the deadline is su¢ ciently loose (T

is su¢ ciently large), any equilibrium involves no delay coupled with low e¤ort at the start of the

game and full delay coupled with high e¤ort close to the deadline. We �rst assume that at the

deadline the incentives to search are small relative to the incentives to delay, i.e. ��e > ��d, implying

that uninformed agents would stop exerting e¤ort, before informed agents stop delaying as the

equilibrium belief � (T ) decreases. In this case, there will be at most two di¤erent equilibrium

regions: no delay coupled with low e¤ort, followed by delay and high e¤ort. We then consider the

opposite case, i.e. ��e � ��d, in which case there will be at most three di¤erent regions: no delay
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and low e¤ort, followed by delay and high e¤ort, and �nally, mixing delay coupled with maximum

e¤ort.

4.1.1 Small Incentives for Search (��e > ��d)

The equilibrium strategies are characterized in Proposition 2. There are three distinct cases to

consider depending on the length of the game denoted by T . We de�ne the thresholds Xe and Ye.

The �rst threshold Xe equals the amount of time after which the belief � (t) reaches ��e when an

uninformed partner equals maximum e¤ort but discloses no information upon becoming informed,

exp (��emaxXe) = ��e.

This threshold thus determines the maximum amount of time that uninformed players can be

induced to exert maximum e¤ort while no informed player is disclosing information. The second

threshold Ye equals the amount of time for which the total delay cost equals the expected value for

an informed player of having a partner who is informed with probability 1� ��e,

�Ye =
�
1� ��e

�
�2:

This threshold thus determines the maximum amount of time for which an informed player is willing

to delay a decision if the probability � that her partner is uninformed falls from 1 to ��e. Note that

Xe < Ye as ��e > ��d.
4

Proposition 2 If ��e > ��d, then the equilibrium strategies and beliefs are as follows:

i) If T < Xe, any informed player chooses not to call a decision, d (t) = 0, for all t, while any un-

informed player chooses to exert maximum e¤ort, e (t) = emax. The agents�beliefs evolve according

to � (t) = exp (��emaxt).
ii) If Xe < T < Ye, any informed player chooses not to call a decision, d (t) = 0, for all t, while

any uninformed player chooses e (t) which is not uniquely determined, but the e¤ort choice must

satisfy the conditions

exp

�
��
Z t

0
e (s) ds

�
� 1� [t� t0]

�

�2
for all t 2 [t0; T ] (5)

and

exp

�
��
Z T

t0

e (s) ds

�
= ��e, (6)

4Since ��e > ��d, an informed partner is willing to delay locally when � (t) � ��e and an uninformed partner exerts
e = emax. That is, for T = Xe;

� < �emax� (t)�2 for all t � T .
Hence,

�Xe <

Z Xe

0

�emax� (t) dt�2 =
�
1� ��e

�
�2.
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for t0 = 0. The agents�beliefs evolve according to � (t) = exp
�
��
R t
0 e (s) ds

�
for all t.

iii) If T > Ye, the informed agent calls an immediate decision for t < te � T � Ye and no decision
d (t) = 0 for t � te while the uninformed agent chooses e (t) = �

c for t < te and chooses e (t) for

t � te which is not uniquely determined but the e¤ort choice must satisfy the conditions (5) and (6)
for t0 = te The agents�beliefs evolve according to � (t) = 1 for t < te, � (t) = exp

�
��
R t
te
e (s) ds

�
for t � te and � (T ) = ��e.

Proof. See appendix.
The theoretical results in the preceding proposition have an intuitive interpretation which builds

on the features of our simple model of the previous section. The results illustrate the dynamics

that emerge from the trade-o¤ between the con�icting objectives of information acquisition and

information sharing. Consider the �rst case where T is relatively small, that is to say there is

little time between the start of the game and the deadline to become informed. In particular, the

incentives to provide e¤ort originate from the marginal value of information when a decision is

taken. Since informed individuals always delay until the deadline, this is entirely determined by

the marginal value of an extra signal at the deadline, that is

� (T )�1 + (1� � (T ))�2:

As long as the pursued signal is likely to be the �rst signal, the incentives for e¤ort are su¢ ciently

high to support maximal e¤ort. Since T is smaller than Xe, the belief � cannot fall below the

threshold ��e and the agent thus chooses to exert maximum e¤ort emax. In response to this high

e¤ort choice any informed agent prefers not to call a decision and to delay since she bene�ts from

the potential acquisition of an additional signal by a hard-working uninformed agent. Note that

since e (t) = emax and d (t) = 0, any agent correctly believes that as time passes it is more and

more likely that the other agent is informed, but that she shies away from calling a decision.

As T increases above Xe, the equilibrium outlined in the previous case is no longer sustainable.

As the belief � falls below the threshold ��e, uninformed agents would no longer be willing to exert

such a high level of e¤ort. In equilibrium, uninformed agents now choose lower e¤ort levels in a way

that ensures that at time T the belief � is exactly at the threshold ��e, i.e., exp
�
��
R T
0 e (s) ds

�
= ��e.

This belief at the deadline makes uninformed agents indi¤erent with respect to the level of e¤ort

they choose throughout the game. By becoming informed at t, an agent avoids the expected cost of

exerting additional e¤ort to become informed and the risk of ending up uninformed at the deadline.

Hence,

V I (t)� V U (t) = f1� exp [��e (T � t)]g c
�
+ exp [��e (T � t)]

�
V I (T )� V U (T )

�
The incentives to exert e¤ort �reverberate back�from the incentives to exert e¤ort at the deadline.

The marginal net gain (loss) of e¤ort at time t is a share of the marginal net gain (loss) at the

deadline at T , which is smaller when t is further away from the deadline at T . To see this, rewrite
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the previous equation to obtain

V I (t)� V U (t) =
c

�
+ exp [��e (T � t)]

�
V I (T )� V U (T )� c

�

�
(7)

=
c

�
+ exp [��e (T � t)]

h
� (T )�1 + (1� � (T ))�2 �

c

�

i
.

Incentives to exert e¤ort exist at t, that is V I (t)� V U (t) � c
� , provided that they exist at time T ,

that is V I (T )� V U (T ) � c
� . As a result, when an uninformed agent is indi¤erent with regards to

her e¤ort choice at the deadline � (T ) = ��e, she is also indi¤erent at any time t before.

The equilibrium path of e¤ort is not unique, but to ensure that informed agents are willing

to defer a decision until the deadline at any point during the game, uninformed agents need to

backload their e¤ort su¢ ciently. One possible equilibrium is that uninformed agents choose e¤ort

levels e (t) = 0 for t < T �Xe and e (t) = emax for t � T �Xe. Notice also that as T increases, the
aggregate e¤ort exerted by uninformed agents remains the same, but their average e¤ort intensity

decreases.

As T increases further, informed agents may no longer prefer to delay their decision. While

the aggregate bene�t of delaying a decision through the potential information acquisition by the

uninformed partner remains constant at
�
1� ��e

�
�2, the aggregate cost of delay �T increases as T

increases. As a result, when T exceeds Ye, an informed agent will initially, that is as long as t < te,

prefer to forego any delay costs and instead choose to immediately call a decision upon acquiring a

signal. Hence, in contrast to the two previous cases the incentives for e¤ort are now composed of

the incentive to bring forward the time at which a decision is taken, thereby avoiding delay costs,

and of the incentive to free ride on the e¤ort of the other agent, thereby avoiding e¤ort costs. In

equilibrium, these two e¤ects exactly balance each other when the other agent exerts e¤ort e�i = �
c .

To see this, note that if an agent i shift e¤ort by �ei to the next instant, this allows her to avoid

the expected e¤ort costs �e�ic�ei, since the rate at which the other agent acquires information is

�e�i. On the other hand, the shift of e¤ort in time increases delay costs � at the rate ��ei, hence

the additional delay cost is ���ei. These two e¤ects exactly o¤set one another when

�e�ic�ei = ���ei , e�i =
�

c
:

Hence, an uninformed agent is indi¤erent with regards to her e¤ort choice. The e¤ort level exerted

during this phase of full disclosure is lower than the average e¤ort level in the phase of no disclosure,
�
c <

Xe
Ye
emax, re�ecting that a close deadline overcomes the temptation to free-ride.5 Note also that

when e�i = �
c , an informed agent is not willing to delay a decision since �

�
c�2 < �, since ��2 < c.

If no decision has been called up to te = T � Ye, the equilibrium is identical to case ii) from te

onwards.
5This follows as � �

c
�2Ye < �Ye =

�
1� ��e

�
�2 =

R Xe

0
�emax� (t) dt�2 <

R Xe

0
�emaxdt�2 = �emaxXe�2.
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Figure 1.A: � and e for T < Xe. Figure 1.B: � and e for Ye > T > Xe.

Figure 1.C: � and e for T > Ye. Figure 1.D: � and e for T > Yd when ��e < ��d.

The three �rst panels of Figure 1 illustrate the evolution over time t of the belief � and the

equilibrium e¤ort and decision choice for di¤erent lengths of the deadline T . In Panel 1.A, the

deadline T is relatively tight, that is to say, T < Xe. As a result, uninformed agents exert maximum

e¤ort emax over the entire course of the game and informed agents delay making a decision. As

a result, the belief � declines from the complete certainty that the other agent is uninformed at

t = 0 to �e by the end of the game at T . Next, in Panel 1.B the length of the deadline T is

longer, speci�cally Ye > T > Xe, and hence in response to the delay decision of informed team

members, uninformed agents no longer exert maximum e¤ort during the entire game. Instead,

they choose to exert lower e¤ort in such a way that the belief � is equal to �e at the end of the

game. Note that since e¤ort is not fully tied down in equlibrium, there are several ways in which

uninformed agents can spread their e¤ort. The solid and the dotted red lines depict two di¤erent
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equilibrium paths for e¤ort e and the evolutions of the belief � that are associated with the di¤erent

equilibrium e¤ort paths. Finally, in Panel 1.C we depict the equilibrium paths for loose deadlines

where T > Ye. As discussed before, at the beginning of the game uninformed agents exert e¤ort

e = �
c and informed agents call a decision immediately. Thus, during this initial decision phase the

belief � remains constant at 1. However, once enough time has elapsed the delay phase begins and

the game proceeds as in Panel 1.B.

4.1.2 Large Incentives for Search (��d � ��e)

We now brie�y consider the case where the incentives to exert e¤ort for the uninformed agent

exceed the incentives to delay for the informed agent at the deadline. In equilibrium, the belief

� (t) cannot drop below ��d, since informed player woulds strictly prefer to call a decision as it is

too likely that her partner is already informed. As before, we will proceed by considering deadlines

of di¤erent length T . There are four distinct cases to consider. We de�ne two thresholds Xd and

Yd, similar to Xe and Ye, and an additional threshold Z. The threshold Xd solves

exp (��emaxXd) = ��d.

The threshold Yd solves �
1� ��d

�
�2 = �Yd.

The characterization of the equilibrium is very similar as before, with the exception of a �nal stage

which lasts up to Z for games with length exceeding Xd. Once the length of the game exceeds

Xd and uninformed agents have exerted maximum e¤ort until t = Xd, informed players will call

decisions at a rate d (t) such that
�
1� ��d

�
d (t) = �emax keeping the belief constant at ��d. The

threshold Z is the maximum length of this mixing stage which maintains maximum incentives to

exert e¤ort throughout the game,

Z =
1

2�
ln

�
2���1 + (1� ��)�2 � c+�

�

�
(1� ��)�2 + ��c

�

.

Proposition 3 If ��d � ��e, then the equilibrium strategies and beliefs are as follows:

i) If T < Xd, any informed player chooses not to call a decision, d (t) = 0, for all t while any

uninformed player chooses to exert maximum e¤ort, e (t) = emax, for all t. The agents� beliefs

evolve according to � (t) = exp (��t).
ii) If Xd < T < Xd+Z, any informed player chooses not to call a decision up for t < Xd and to call

for a decision at the mixing rate d (t) = �2�2
��2�� for t � Xd. Any uninformed player chooses to exert

maximum e¤ort, e (t) = emax, for all t. The agents� beliefs evolve according to � (t) = exp (��t)
for t � Xd and � (t) = ��d for t > Xd:
iii) If Xd+Z < T < Yd+Z, any informed agent chooses not to call a decision for t < td � T �Z,
and to call for a decision at the mixing rate d (t) = �2�2

��2�� for t � td. Any uninformed player

chooses to exert e¤ort e (t) for 0 � t < td which is not uniquely determined, but the e¤ort choice
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must satisfy the following conditions:

� (t) = exp

�
��
Z t

0
e (s) ds

�
� �

�2
[t� t0] for t 2 [t0; td] (8)

and

� (td) = exp

�
��
Z td

t0

e (s) ds

�
=

�

��2
, (9)

for t0 = 0. For t � td the uninformed agent exerts maximal e¤ort e (t) = emax. The agents�beliefs
evolve according to � (t) = exp

�
��
R t
0 e (s) ds

�
for 0 � t � td and � (t) = ��d for t > td.

iv) If T > Yd + Z, any informed player chooses to call for an immediate decision for t < td � Yd,
not to call a decision, d (t) = 0 for td � Yd � t < td, and to call for a decision at the mixing rate
d (t) = �2�2

��2�� for t � td. Any uninformed agent chooses to exert e¤ort e (t) = �
c for t < td � Yd,

and to exert e¤ort e (t) for td � Yd � t < td which is not uniquely determined but must satisfy

the following conditions (8) and (6) for t0 = td � Yd, and to exert maximal e¤ort e (t) = emax for
t � td.

Proof. See appendix.
For T < Xd, the equilibrium strategies are exactly like before. For T � Xd, the marginal value

of information at and close to the deadline is strictly greater than c
� , unlike in the small incentives

case. This also continues to be the case for all longer deadlines. As the length of the game T

increases, however, the incentives for e¤ort at a given time decrease. To see this, consider the

incentives for e¤ort at t = 0 which are given by

V I (0)� V U (0) = c

�
+ ��d

�
V I (Xd)� V U (Xd)�

c

�

�
:

The only part of the expression which changes with T , is V U (Xd) since all the other terms above

are constants and

V I (Xd) = V
I (T ) = � 1

"+ �
+
�
1� ��d

�
�2:

V U (Xd) can be rewritten as

V U (Xd) =

�
� 1

"+ �
+
(1� ��)�2

2
� (ce+ �) 1

2�e

�
��

1� e�2�(T�Xd)
�
+ e�2�(T�Xd)V UN (T ) :

This is a weighted sum of the expected payo¤ conditional on either �nding information or the

other agent calling a decision prior to the deadline and the payo¤ from being uninformed at the

deadline. Both of these payo¤s are independent of T and it is only the relative likelihood of each

which is a¤ected by T . The likelihood of being uninformed at the deadline e�2�(T�Xd) decreases

in T . Hence, the continuation value of being uninformed at Xd is increasing in T . There exists a

deadline T = Xd+Z where V I (Xd)�V U (Xd) = c
� and an agent is indi¤erent about exerting e¤ort
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at t = 0, so V I (0)� V U (0) = c
� : For T larger than Xd + Z, that is case iii) above, maximal e¤ort

by uninformed agents can no longer be sustained throughout the entire game. In equilibrium, an

uninformed agent reduces her average e¤ort intensity before td = T �Z such that � (td) = ��d, while
the informed agent fully delays. For T larger than Yd+Z, informed agents will no longer prefer to

delay their decision at the beginning of the game, exactly as in the case with small incentives.

Figure 1.D graphically illustrates the evolution of � and e over the course of the game for the

case of large incentives. As discussed before, equilibrium behavior of informed agents is divided into

three distinct phases. At the beginning of the game during the decision phase, agents immediately

call a decision upon becoming informed. Thus, agents know for sure that their partner must be

uninformed whenever no decision has been called in the past. However, once enough time has

elapsed for the decision phase to be over, informed agents prefer to delay calling a decision and

thus the equlibrium belief � falls until it reaches �d. At that point, informed agents are indi¤erent

between calling and delaying the decision and thus probabilistically choose one or the other until

the conclusion of the game in such a way that � remains constant at �d. Note again, that the

dotted red lines for � illustrate di¤erent equilibrium paths associated with di¤erent equilibrium

paths for e. The evolution of e¤ort in Figure 1.D is similar to the evolution of e¤ort in Figure 1.C.

Uninformed agents choose e = �
c during the initial decision phase and then start increasing their

e¤ort until they exert e¤ort emax at the end of the game.

4.1.3 Discussion

Our propositions formally establish that even when committee members have perfectly aligned

interests decisions may be signi�cantly delayed. This is due to two factors. First, team members

do not search very intensely when the deadline is very far away and hence without the adequate

information available to the group no decision can be taken by the group. Second, when the

deadline is close delay occurs due to a lack of information sharing. Although uninformed agents

search intensely for information and hence the group is likely to have valuable information at its

disposal, no decision will be taken until the deadline since an informed agent will prefer not to

divulge their information in order to keep any uniformed team member highly motivated to search

for additional information.

As we showed above the timing of delay crucially depends on how far in the future the �nal

deadline. When the deadline is very close, the team will always delay decisions until the �nal

deadline. This delay is strongly reminiscient of a widely accepted behavioral law called Parkinson�s

Law. This law, as stated in its original source (Parkinson 1957), posits that �work expands so

as to �ll the time available for its completion.� In our context, this means that the amount of

time in which the team has to make a decision is exactly the amount of time it will take to make

said decision. In our model this occurs for any deadline length T < Ye when decisions are only

made exactly at the deadline. The relationship between delay, performance and deadlines has been

extensively studied both in laboratory and �eld settings (Locke 1966, 1967; Bryan and Locke 1967;

Locke et al. 1981; Schonberger 1981; Latham et al. 1982; Peters et al. 1984; Gutierrez and Guvelis
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1991). A loose deadline then leads to a decline of the workers�performance and to a delay of the

activity. For example, Brian and Locke (1967) presented individual and groups of college students

with a �xed number of simple arithmetic tasks and varied the amount of time allowed to work on

them. Their results indicated that subjects who were given twice the amount of time to complete

the tasks worked signi�cantly longer than subjects who were given just enough time to complete

them. In light of our �ndings on decision delay, one important implication of our model is that

a tight deadline choice may not always lead to faster decision-making. More speci�cally, while

increasing the deadline initially leads to better performance, extending the length of the deadline

above Xe will only bring about delay. Team members will only search just as hard in aggregate

as if they had a shorter deadline Xe and will incur costly delay to �ll the time before a decision is

�nally made at the deadline. We study the relationship between performance, delay and deadline

choice in detail when we investigate the choice of the optimal length of a deadline in Section 5.

As is apparent from the above propositions, a team does not always delay its decisions once it

has obtained some information. When the deadline is far away, the group will make a decision as

soon as one team member has successfully gathered information. When decisions are taken early

on in this manner, the agents e¤ectively avoid the delay costs that result from a lack of information

sharing and low information acquisition e¤ort. This is a pattern commonly found in investment

committees in private equity partnerships or on executive boards that face a deadline by which

funds have to be invested or returned to investors or corporate headquarters. Although we are not

aware of any particular study that examines the timing of corporate investment decisions, our model

predicts that committees should either take a decision relatively early on in the process or right at

the deadline. However, our prediction that the e¤ort exerted by uninformed committee members

rises as the deadline draws nearer, chimes well with both anecdotal and empirical evidence.

4.2 Uniqueness

In this subsection we discuss the uniqueness of the equilibrium described in Propositions 2 and 3

among the set of symmetric equilibria. We �nd that subject to excluding equilibria which involve

strategies whereby both uninformed and informed agents call a decision at the same instant of

time with probability 1 conditional on reaching that time, the unique set of symmetric equilibria

are those described in the proposition. We argue that our exclusion is justi�ed as equilibria where

individuals are calling a decision with certainty at a point in time are in e¤ect deadlines which are

enforced by appropriately speci�ed o¤-equilibrium beliefs.

We proceed by �rst increasing the action space for agents compared to that considered in

Section.4.2. We allow uninformed agents to call decisions which we will denote by a function � (t).

We still refer to the probability that an informed calls a decision by � (t). We also allow agents to

adopt piecewise continuous decision functions for � (t) and � (t). To this end de�ne

D� (t) = lim
s!t+

� (s)� � (t)

22



and

D� (t) = lim
s!t+

� (s)� � (t)

to describe the probability mass of decisions at any points of discontinuity.

Otherwise the model is the same as earlier. We give a full speci�cation of the model in the

appendix for the interested reader. As before, we denote equilibrium strategies by a superscript �.

A symmetric perfect bayesian equilibrium may be described by a tuple (e� (t) ; �� (t) ; �� (t) ; �� (t))

if �� (t) + �� (t) < 1 for all t < T , where �� (t) is the bayesian belief an agent has at time t

that the other agent is uninformed conditional on no decision being called prior to that time.

If 9t0 < T : �� (t0) + �� (t0) = 1 then it must also include o¤-equilibrium strategies and beliefs

(e� (rjt) ; �� (rjt) ; �� (rjt) ; �� (rjt)) f or all times t where �� (t) + �� (t) = 1 which themselves are

sequential equilibria of those subgames, where �� (rjt) is the bayesian belief an agent has at time
r that the other agent is uninformed conditional on no decision being called prior to that time in

a subgame starting at time t. We now rule out some types of decision strategies at on-equilibrium

times by the uninformed agent. The following lemma rules out a continuously increasing �� (t).

Lemma 1 @�� (t) ; r > 0; " > 0 : d�
�(t)
dt > 0 for t 2 [r � "; r] :

Proof. See appendix.
Lemma 1 shows that in the set of symmetric equilibria there is no mixing in the decision strategy

by an uninformed player during on-equilibrium times. The following lemma rules out a jump in

the decision function � (t) at on-equilibrium times if that jump does not occur when both types

informed and uninformed call a decision with certainty at that instant.

Lemma 2 @�� (t) ; 0 < s < T : D�� (s) > 0 and �� (s) + �� (s) < 1:

Proof. See appendix.
Hence, the only equilibria involving D�� (s) > 0 also have �� (s) + �� (s) = 1 whereby beliefs at

times later than s are o¤-equilbrium. In this case it may be possible to support uninformed agents

calling a decision with appropriately speci�ed o¤-equilibrium beliefs. However we will exclude this

type of equilibrium as we feel for all intents and purposes it is equivalent to imposing a deadline

at that time. We thus continue the analysis under the assumption that �� (t) = 0 for all t. This

implies that all t � T are reached with some non-zero probability in equilibrium thus there are

no o¤-equilibrium times at which strategies and beliefs must be speci�ed. An individual may

�nd himself at an on-equilibrium time but where his own decision history is inconsistent with

equilibrium. All costs are sunk and so the subgame is identical to the on-equilibrium subgame so

in these instances the o¤-equilibrium actions are the on-equilibrium actions at the corresponding

time. The following proposition shows that the unique set of symmetric perfect Bayesian equilibria

are those speci�ed in Propositions 2 and 3.

Proposition 4 Suppose �� (t) = 0 then the set of equilibria described in Propositions 2 and 3 are
the unique sets of symmetric perfect Bayesian equilibria under small and large incentives respec-

tively.
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Proof. See appendix.
The above proposition establishes that the information withholding through delay in the lead-up

to the deadline which we discussed in the previous subsections, is a characteristic of all symmetric

equilibria. It also adds weight to the consideration of the welfare implications of the equilibria,

optimal deadlines to maximize welfare and comparative statics with equilibria with observable

signals and alternative decision making structures. We take up these questions in the next section.

5 Setting Deadlines

In this section, we analyze the trade-o¤s committees face when setting deadlines. With a tight

deadline a committee risks making a decision without the desirable information. However, such a

tight deadline incentivizes the members to work hard to acquire the desirable information in time.

With a loose deadline the committee members procrastinate and only begin gathering information

in earnest when the deadline is close. The expected decision time and the expected accuracy of

the decision jointly determine the expected welfare for the committee members at the start of the

process. Altering the deadline changes the expected decision time and the expected accuracy of the

decision in di¤erent directions. The private nature of information, however, a¤ects this trade-o¤ in

two signi�cant ways. First, as a tight deadline increases the incentives to acquire information, it

also increases the incentives to conceal information and thus to delay a decision. As a consequence,

the expected decision time may actually be larger when a closer deadline is set. Second, when

informed team members are concealing their information in the hope that other team members

may acquire more information, a tighter deadline will reduce this ine¢ cient delay.

5.1 Decision Time

In this subsection we examine the e¤ect of the deadline on the expected time until a decision is

made. The natural intuition is that tighter deadlines lead to shorter decision times. We show that

this need not be the case and that instead the expected decision time may be non-monotonic in the

length of the deadline. For loose deadlines, T > Ye, the equilibrium is characterized by two phases:

a phase of low e¤ort and immediate decisions followed by a phase of pure delay and higher e¤ort. In

this case increasing the deadline T decreases the probability that agents reach the later period where

decisions are delayed until the deadline. The overall e¤ect of increasing the deadline is ambiguous

as the combination of immediate decisions despite slow information acquisition may be a slower or

faster process than incurring the �xed delay of Ye upon reaching the later period. In contrast, for

tight deadlines, T � Ye, there is no initial period of low e¤ort and immediate decisions, but instead
informed partners never disclose their information and the team always delays its decision until

the deadline. The expected decision time equals T . Hence, a closer deadline will always reduce the

expected decision time. The following proposition formalizes these ideas.

Proposition 5 For T � Ye, the expected decision time is increasing in T . For T > Ye, the expected
decision time is decreasing in T if and only if �2�1 >

��e
1���e

and increasing otherwise.
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Proof. For T � Ye, Etc = T . Hence, dEtcdT > 0. For T > Ye,

Etc =

Z T�Ye

0
t2�

�

c
exp

�
�2��

c
t

�
dt+ exp

�
�2��

c
Tnd

�
T

= � (T � Ye) exp [�2�e (T � Ye)] +
1

2� �c

�
1� exp

�
�2��

c
(T � Ye)

��
+ exp

�
�2��

c
(T � Ye)

�
T

=
1

2� �c

�
1� exp

�
�2��

c
(T � Ye)

��
+ exp

�
�2��

c
(T � Ye)

�
Ye

Hence,

dEtc
dT

= 2�
�

c
exp

�
�2��

c
(T � Ye)

� 
1

2� �c
� Ye

!

= 2�
�

c
exp

�
�2��

c
Tnd

�"
c

2��
�
�
1� ��e

�
�2

�

#

= 2�
�

c
exp

�
�2��

c
Tnd

�
1

�

"
c

2�
�
�
�1 � c

�

�
�2

�1 � �2

#
.

It follows that dEtcdT < 0 if and only if

c

2�
<

�
�1 � c

�

�
�2

�1 � �2

,
�1 �

c

�
>
�1
�2

� c
�
� �2

�
Since, �1 > c

� > �2 by de�nition, both sides of the inequality are positive and the relationship is

satis�ed for c
� close to �2 and violated for

c
�
close to �1. Finally, note that

��e�1 +
�
1� ��e

�
�2 =

c

�

and hence dEtc
dT < 0 if and only if

�2
�1
>

��e
1� ��e

:

The intuition for the case of tight deadlines where T � Ye is straightforward. Closer deadlines
always reduce delay by shortening the amount of time during which the agents would only wait

until the deadline to make a decision. In contrast, for loose deadlines, T > Ye, shortening the

deadline can reduce or increase the expected decision time. To see this, note that the expected

decision time equals

Etc =

Z T�Ye

0
tcf (tc) dtc + [1� F (T � Ye)]T ,
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where f (tc) = 2� �c exp
�
�2� �c tc

�
is the probability that a signal is acquired at time tc, when the

two agents are exerting the low equilibrium e¤ort level e� (tc) = �
c . The derivative of the expected

decision time with respect to the deadline is then given by

dEtc
dT

= f (T � Ye)
 
1

2� �c
� Ye

!
.

Hence, the expected decision time Etc is decreasing in the length of the deadline T , dEtcdT < 0, if
1
2� �

c

< Ye. In other words, if the �xed delay Ye that agents are willing to incur once the deadline

begins to a¤ect their behavior, is greater than the expected decision time without a deadline 1
2�e�(T )

then lenghtening the deadline will have adverse e¤ects on the expected decision time. The necessary

and su¢ cient condition for this to be the case is c� ��2 <
�2
�1

�
�1 � c

�

�
. This particular relationship

is satis�ed when the di¤erence between the marginal bene�t of a second signal �2 and the adjusted

marginal cost of e¤ort c
� is small relative to the di¤erence between the marginal bene�t of the

�rst signal �1 and the adjusted marginal cost of e¤ort. The intuition for this result is that a

large di¤erence between �1 and c
� provides uninformed workers with strong incentives to become

informed. As a result, they are willing to exert maximum e¤ort for a long period of time (Ye
is large) during which no decision will be taken by the team. If this delay phase is su¢ ciently

large, increasing the deadline and avoiding the delay phase altogether can actually lead to a faster

decision on average. Conversely, when �1 � c
� , and consequently Ye, is not very large, increasing

the deadline will only lead to more delay until a decision is made.

5.2 Decision Precision

In addition to in�uencing how long it will take a group to make a decision, the choice of deadline also

a¤ects the expected precision that is available to the agents when a decision is made. When more

signals are acquired, the agents have a more precise posterior distribution and thus incur a lower

expected loss when making a decision. One would expect that a longer deadline would always allow

for more information to be accumulated by the agents and hence lead to a more precise decision-

making process. However, as we will show below, this intuition is only partly correct. It misses

an important feature of our analysis, namely that agents may choose to call a decision before the

deadline.

Proposition 6 The expected precision is increasing in T for T � Xe and it is constant for Xe <
T � Ye. For T > Ye, it is decreasing in T if and only if �2�1 >

�
�e
1��e

�2
and increasing otherwise.

Proof. If T � Xe, agents only call a decision at the deadline and uninformed agents are exerting
maximum e¤ort until the deadline. Hence, the expected number of acquired signals is strictly

increasing in T . If Xe < T � Ye, agents still only call a decision at the deadline and uninformed
agents are exerting the same aggregate amount of e¤ort until the deadline. Thus, the expected

number of acquired signals is the same for any T in this range. Finally, if T > Ye agents may call
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a decision before the deadline. They exert e¤ort �c and immediately call a decision when informed.

Thus, for large T the expected number of acquired signals when a decision is made is approximately

equal to 1 and the expected utility loss when a decision is called is equal to � 1
"+� . In contrast for

Xe < T � Ye the expected utility loss when a decision is called is equal to

(1� �e)2
�
� 1

"+ 2�

�
+ 2 (1� �e)�e

�
� 1

"+ �

�
+ �2e

�
�1
"

�
Thus, whether the expected precision is increasing (or decreasing) in T for T > Ye depends on

whether the following condition holds

� 1

"+ �
< (1� �e)2

�
� 1

"+ 2�

�
+ 2 (1� �e)�e

�
� 1

"+ �

�
+ �2e

�
�1
"

�
< � 1

"+ �

,
�2
�1
<

�
�e

1� �e

�2
Let �1 = 2c

� and �2 =
c
2� , hence

�2
�1
= 1

4 and

�e =
c
� � �2
�1 � �2

=
1

3

and so
�2e

(1� �e)2
=
1

4

Finally, note that �d =
�

�e�2
= �

ec and hence let � be small such that �d < �e is satis�ed. Thus, for

slightly smaller or larger values of �1 the expected value of information when a decision is made

may be increasing or decreasing for T > Ye.

The previous proposition showed that the length of the deadline T has unambiguously positive

e¤ects on the expected precision of the eventual decision made by the agents. However, as T

increases agents may call a decision before the deadline is reached because they prefer to forego the

delay that comes with waiting in the hope that the other agent may �nd a signal. As T grows large

it becomes more likely that a decision is immediately called by an informed agent who can rely only

on one piece of information. The key comparison is therefore whether the expected precision for

T � Ye is greater or smaller than the expected precision of a single signal. For T � Ye, both agents
may be informed, either one of the agents is informed or neither of the agents is informed. The

�rst and the third case are absent when T is very large (and greater that Ye). Thus, when �2 is

small compared to �1 the second signal is of relatively little informational value and for T � Ye the
agents run the risk of ending up with no signal at all. Thus, the expected precision is increasing in

T . Conversely, when the second signal is quite valuable, the expected precision is higher for T � Ye
and hence the expected precision is decreasing in T for T > Ye.

Interestingly, when �2
�1
> �2e

(1��e)2
and Xe < T � Ye the expected precision of the decision can be

ine¢ ciently high. That is to say, agents may acquire too many signals than is e¢ cient even from
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an ex-ante point of view. In particular, if it is socially e¢ cient for both agents to acquire only a

single signal, the agents will overacquire information in expectation. While it is not too surprising

that agents may end up acquiring too much information ex-post given our assumption of private

information acquisition, it is quite surprising that despite the free-riding problem with respect to

e¤ort provision that the agents face even ex-ante overacquisition of information can occur in our

model. As we shall show in the next section, ex-ante overacquisition of information may occur even

when the deadline T is set optimally.

5.3 Welfare

In the previous subsections we analyzed how the length of the deadline may increase or decrease

the expected decision time and the expected precision of the decision taken by the agents. In

this subsection we turn our attention to the e¤ect of the deadline on the welfare of the agents.

We characterize the welfare of each agent as a function of the deadline and �nd that there exists

a �nite and unique welfare maximizing deadline for the group of agents. In the case of small

incentives the optimal deadline is set such that agents always delay their decision until the deadline,

but still engage in welfare-improving information acquisition. The following proposition formally

characterizes the e¤ect of the deadline on welfare.

Proposition 7 The expected utility of the game is maximized for T � = Xe. The expected utility

is strictly increasing in the length of the deadline T for 0 � T � Xe, stricly decreasing in T for

Xe < T � Ye and independent of T for T � Ye.
Proof. Notice that the expected utility at the start t = 0 of the game with a deadline at T equals

V UT (0) =

8>>>><>>>>:
� 1
"+� �

c
� for T � Ye

� 1
"+� +

�
1� ��e

�
�2 � �T � c

� for Ye � T > Xe
� 1
"+� + �1 (1� 2� (T ))� (�1 � �2) (1� � (T ))

2 + c
�� (T )� �T �

c
� for 0 � T � Xe

where � (T ) = exp (��emaxT ) and ��e = exp (��emaxXe)

The change in welfare when changing T for Xe < T � Ye is immediate since the aggregate e¤ort
and hence expected precision of the decision are independent of the deadline, but the delay increases

with the length of the deadline. For T � Ye, welfare is 1
"+� �

c
� which is independent of T hence

the result is immediate. Now, for 0 � T � Xe consider
dV UT (0)
dT :

dV UT (0)

dT
= �2�1�0 (T ) + 2 (�1 � �2) (1� � (T ))�0 (T ) +

c

�
�0 (T )� �

=
h
2 (�1 � �2) (1� � (T ))� 2�1 +

c

�

i
�0 (T )� �

= 2�emax

h
�1� (T ) + �2 (1� � (T ))�

c

2�

i
exp (��emaxT )� �
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At T = Xe, we have � (T ) = ��e. Hence,

dV UT (0)

dT
= 2�emax

� c
2�

�
��e � �

= emaxc��e � �

In the case of small incentives, we have ��e > ��d and

emax��d�2 >
�

�
>
�

c
�2:

Hence, we have

emaxc��e > �

which in turn implies
dV UT (0)

dT
> 0:

Note further that

@

@T

�
dV UT (0)

dT

�
= 2�emaxn
��emax� (T )

h
�1� (T ) + �2 (1� � (T ))�

c

2�

i
� (�emax� (T ))2 (�1 � �2)

o
< 0

As the proposition shows, there is a unique �nite welfare-maximizing deadline which is to set

T = Xe. The intuition for this result is as follows. For very tight deadlines, T � Xe, agents

exert maximum e¤ort and make a decision only when the deadline arrives. Thus, increasing the

deadline improves welfare because even though it increases the time until a decision is made, it

also allows the agents more time to intensely search for and acquire valuable information prior to

the deadline. However, once T is larger than Xe the aggregate e¤ort exerted and the expected

information acquired prior to the deadline is the same for all Xe < T � Ye. That is to say, over the
course of the game the team members simply choose their e¤ort in such a way that they are equally

well-informed at the deadline, no matter whether the deadline occurs at Xe or Ye or at anytime in

between. Consequently, any increase in the deadline over and above Xe only introduces additional

costly delay before a decision is made at the deadline. Finally, for loose deadlines, T � Ye, the

welfare of the agents is independent of the deadline. The reason for this is that both agents are

indi¤erent with respect to the e¤ort level they exert during the delay phase of the equilibrium, that

is,

�
�
V IT (0)� V UT (0)

�
= c for any T > Y e.

To see this note that since a decision is immediately called when one agent is informed, the value

of being informed, V IT (0) = � 1
"+� , does not depend on the deadline in this stage. Furthermore, the

value of being uninformed, V UT (0) = V
I
T (0) � c

� , does not depend on the deadline either. In fact,
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the e¤ort level chosen during the phase of no delay is such that the lost opportunity to acquire

a signal for free, �e� (0)
�
V IT (0)� V UT (0)

�
, is exactly o¤set by the foregone delay �. Thus, the

welfare-maximizing deadline is to set T = Xe. Extending the deadline any further does not a¤ect

the expected amount of information acquired by the deadline and only introduces costly delay.

Figure 3 graphically illustrates how expected welfare at the start of the game varies with the

choice of the deadline T . For T < Xe welfare is increasing in T since agents exert maximum e¤ort

and are given more time to acquire valuable information. However, once T is extended beyond

Xe welfare declines since aggregate e¤ort remains constant and only unnecessary delay costs are

incurred. Welfare is constant for T > Ye.

Figure 2: Expected Welfare at t = 0 for di¤erent lengths of the deadline T

The optimal deadline thus has a length Xe and is a¤ected by changes in the underlying model

parameters. Remember that the threshold Xe solves

exp (��emaxXe) = ��e =
c
� � �2
�1 � �2

:

Corollary 3 The optimal length of the deadline T � = Xe is decreasing in emax, c and increasing
in �1, �2 and ambiguous with respect to �.

The interpretation for many of these comparative statics is intuitive. When the maximal e¤ort

emax increases, agents exert a higher level of e¤ort as the deadline approaches. Thus, the belief �

falls faster towards ��e and hence maximal e¤ort can only be sustained for a shorter period of time.

In other words, with a higher emax it takes less time to reach the critical level of aggregate e¤ort

30



above which agents begin to shade e¤ort and thus the optimal deadline is shorter. An increase

in the marginal bene�t of e¤ort for �nding a signal � has a similar e¤ect on the optimal deadline

in that it reduces the time needed for � to reach ��e when maximum e¤ort is exerted. However,

an increase in � also has a second countervailing e¤ect because it reduces ��e by making it more

bene�cial to exert e¤ort. The aggregate e¤ect on the optimal deadline of a change in � is therefore

ambiguous. In contrast, an increase in the marginal cost c unambiguously shortens the optimal

deadline by increasing ��e. When it is more costly to exert e¤ort, an uninformed agent will be

indi¤erent between exerting and not exerting e¤ort even when it is less likely that the other agent

is informed and hence maximal e¤ort can be sustained for a shorter period of time. Conversely,

increases in the value of the �rst �1 and the second signal �2 both raise the marginal bene�t of

e¤ort and thus decrease ��e with the eventual e¤ect of lengthening the optimal deadline. Finally,

note that the optimal deadline is independent of �. This independence result is due to our initial

assumption that � is su¢ ciently small for informed agents to be willing to delay. The maximum

level of e¤ort exerted by uninformed agents is always su¢ cient to outweigh any costs resulting from

delay.

For the large incentives case, ��d � ��e, most of the results generalize immediately with one

notable di¤erence. There are now large incentives for e¤ort such that uninformed agents will exert

maximum e¤ort even when informed agents are mixing between calling and not calling a decision.

There is still a unique �nite deadline T � that maximizes the agents�welfare, but it is T � = Xd+Z.

As in the case of small incentives it is again optimal to set the deadline exactly at the greatest

length of time during which uninformed agents will exert maximum e¤ort at any point in time.

In this section we have characterized the welfare of agents as a function of the deadline and

shown that there is a unique �nite deadline which maximizes agents�welfare. In the next section

we contrast this result with a setting where the information acquired by an agent is observable to

the other agent. This allows us to highlight the importance of the private nature of information

acquisition in the above result.

6 Private Information: Incentives vs. Delay

In this section, we analyze how the private nature of acquired information a¤ects welfare. When

information is public, the acquisition of information discourages all partners from searching and

thus leads to an immediate decision. When information is private, informed players can hide

their information and delay calling a decision. The option to keep information private increases

the returns to becoming informed relative to the case when information is public, which in turn

increases a partner�s incentives to search. We show that when the acquired information is private

and the deadline is set optimally - trading o¤ search incentives and ine¢ cient delay - the expected

welfare at the start of the game is higher than when the acquired information is public.
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6.1 Public Information

We �rst characterize the equilibrium of the game when the information obtained by individual

group members is immediately visible to the entire group. The equilibrium behavior of agents

turns out to be much less complex than when information is private. First, whenever an agent

succeeds in �nding a signal, a decision is called immediately. The reason is simply that no player

would �nd it privately optimal to search for a second signal. Second, both agents choose low e¤ort

when the deadline is still far away and they switch to exerting maximal e¤ort when the deadline is

close. We formally characterize equilibrium behavior in the following proposition.

Proposition 8 When information is public, the equilibrium strategies are as follows:

i) If T < �, any uninformed player chooses to exert maximum e¤ort, e (t) = emax, for all t.

ii) If T � �, any informed player chooses to exert e (t) = �
c for t < T �� and chooses e (t) = emax

for t � T ��, where
exp (�2�emax�) =

c� �
emax

2��1�
�
c+ �

emax

� .

Proof. Since ��2 � c < 0, no player would �nd it privately optimal to search for a second signal
and hence the game ends as soon as one player becomes informed. At time t, the value of being

informed equals

V I (t) = � 1

"+ �

The value of being uninformed at t, when all agents exert maximum e¤ort until the deadline, equals

V U (t) = �1
"
+

�
�1 �

�
c

2�
+

�

2�emax

��
f1� exp [�2�emax (T � t)]g .

Since �1 >
�
c
2� +

�
2�emax

�
, this value is decreasing over time,dV

U (t)
dt < 0. Agents thus are exert

maximum e¤ort for any t > T ��, where � is de�ned by

V I (T ��)� V U (T ��) = c

�
.

At any time t before this threshold T ��, each agents exerts e (t) = �
c , which makes every agent

indi¤erent about how much e¤ort to exert. This equilibrium strategy corresponds to the �rst stage

in the private information case for long deadlines.

The public nature of information a¤ects the agents�incentives to search for information. The

value of being informed is constant throughout the course of the game, since agents can be sure that

a decision is called as soon as one signal is obtained. For tight deadlines, T < �, the value of being

uninformed decreases over time because the likelihood of having to take an uninformed decision at

the deadline increases. As a result, the incentive to exert e¤ort increases as the deadline approaches.

When the time left until the deadline is exactly �, a player is indi¤erent about how much e¤ort

to exert if his partner exerts maximum e¤ort until the deadline. Now, consider increasing the
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deadline T above the threshold �. At any time t before T �� is reached, a player is indi¤erent

about how much e¤ort to exert only if his partner exerts e (t) = �
c and the value of being uninformed

is independent of the remaining time until the deadline. Not surprisingly, this corresponds to the

initial phase of low e¤ort and full disclosure for long deadlines in the case of private information.

6.2 Welfare Comparison

As long as the deadline is set su¢ ciently far away at the beginning of the game, welfare does not

depend on the deadline, nor does it depend on whether the acquired information is public or private.

However, in contrast to the private information case, a decrease in the deadline can only decrease

the expected welfare in the public information case. This has the important implication that a

higher welfare level can be attained by making the acquired information private. In particular, for

intermediate deadlines the welfare with private information strictly exceeds the welfare with public

information.

Proposition 9 The highest welfare achieved by optimally setting the deadline when information is
private exceeds the highest welfare when information is public.

Proof. For the case of public information the continuation values at the beginning of the game are
given by

V U;pubT (0) =

(
� 1
"+� �

c
� for T � �

�1
" +

�
�1 �

�
c
2� +

�
2�e

��
[1� exp (�2�emaxT )] for T < �

Together with our previous welfare results this implies the following relations for any T 0 > max fYe;�g:

max
T
V U;privT (0) > V U;privT 0 (0) = V U;pubT 0 (0) = max

T
V U;pubT (0)

Hence,

max
T
V U;privT (0) > max

T
V U;pubT (0) .

The incentives to acquire information are di¤erent when information is public so that players

do not have the option to conceal information after becoming informed. A priori, it may seem that

the change in the observability of information can increase or decrease the search incentives. The

private nature of information provides more incentives for uninformed players by allowing informed

players to �rest on their laurels�. However, the fact that other players may be already informed,

decreases the value of additional information and thus the incentives to search. The �rst e¤ect

dominates the second e¤ect in equilibrium. When information is private, maximum incentives

for search can be sustained throughout for games with longer deadlines than when information is

public, i.e., Xe > �. This also implies that for games with long deadlines, the initial stage of low
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e¤ort e (t) = �
c lasts longer when information is public, since Ye > Xe.

6

Corollary 4 Incentives for maximal search can be sustained for longer when information is private
than when it is public.

Proof. For T > Xe, an equilibrium with private information exists in which e (t) = 0 for t < T�Xe
and e (t) = emax for t � T �Xe. In the unique equilibrium with public information e (t) = emax i¤

t � T ��. We show that Xe > � by contradiction. We derive a necessary condition for Xe < �

which is also su¢ cient for Xe > �. By de�nition, Xe is the deadline T solving

V I;privT (0)� V U;privT (0) = c
�

, �1 exp (��emaxT ) + �2 [1� exp (��emaxT )] = c
�

, �1� (T ) + �2 (1� � (T )) = c
� ,

where � (T ) = exp (��emaxT ). Also by de�nition, � is the deadline T solving

V I;pubT (0)� V U;pubT (0) = c
�

, �1 exp (�2�emaxT ) +
�
c
2� +

�
2�emax

�
f1� exp [�2�emaxT ]g = c

�

, �1� (T )
2 +

�
c
2� +

�
2�emax

� h
1� � (T )2

i
= c

� ,

where we use exp (�2�emaxT ) = � (T )2. Since � (T )2 � � (T ), a necessary condition for Xe < T is

�2 <
c

2�
+

�

2�emax
, (10)

implying that searching for a second signal is socially ine¢ cient. We now show that when this

inequality holds, welfare under public information exceeds the welfare under private information for

small deadlines,

V U;pubT (0)� V U;privT (0) > 0 for T � min fXe;�g . (11)

However, from Proposition 9, we have

V U;privXe
(0) � V U;pub� (0) = max

T
V U;pubT (0) � V U;pubXe

(0) .

Hence, this implies that Xe > �. We found a contradiction. To establish the inequality (11), we

use that for T � �,

V U;pubT (0) = �1
"
+ �1

�
1� � (T )2

�
� c

2�

�
1� � (T )2

�
� �

2�emax

�
1� � (T )2

�
,

and for T < Xe,

V U;privT (0) = �1
"
+ �1 (1� � (T ))�

c

�
(1� � (T )) + [�1� (T ) + �2 (1� � (T ))] (1� � (T ))� �T .

6Notice that equilibria exist for which epriv (t) � epub (t) for any t. However, epriv (t) = 0 ( < epub (t)) for some t
may well be part of an equilibrium strategy for an uninformed player.
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Hence, to achieve higher welfare in the private information case, we need

�1

h
(1� � (T ))�

�
1� � (T )2

�i
�
h c
�
(1� � (T ))� c

2�

�
1� � (T )2

�i
+ [�1� (T ) + �2 (1� � (T ))] (1� � (T ))�

�
�T � �

2�emax

�
1� � (T )2

��
> 0.

,

� �1 [1� � (T )]� (T )�
c

2�
(1� � (T ))2

+ �1� (T ) (1� � (T )) + �2 (1� � (T ))2 �
�
�T � �

2�emax

�
1� � (T )2

��
> 0.

, h c
2�
� �2

i
(1� � (T ))2 > ��T + �

2�emax

�
1� � (T )2

�
Using ��T + �

2�emax

�
1� � (T )2

�
+ �

2�emax
(1� � (T ))2

= ��T + �

�emax
(1� � (T ))

= �
(1� exp (��emaxT ))� �emaxT

�emax
< 0,

we see that this is implied byh c
2�
� �2

i
(1� � (T ))2 > � �

2�emax
(1� � (T ))2 ,

which follows from inequality (10):

Clearly, the increased search incentives due to the private nature of information increase the

team partners�welfare by mitigating the ine¢ ciency due to free-riding. However, for short deadlines,

T < �, incentives are su¢ ciently strong for players to exert maximum e¤ort, regardless of whether

information is public or private.

The option to hold back information also a¤ects welfare through the delay of decisions. Informed

players stop searching and may delay a decision in the hope that their partner becomes informed.

Hence, both players may have stopped searching, but still delay a decision not knowing that their

partner is already informed. This is clearly ine¢ cient ex post. However, as any uninformed player

would stop searching if the information were disclosed, any opportunity to acquire a second signal

is lost when information is public. This opportunity can only be valuable if it is socially e¢ cient

for one player to search for a second signal, (2��2 � c) emax > �. Hence, when the deadline is short
and it is socially ine¢ cient to acquire a second signal, the team partners�welfare is increased by

committing to disclose any information they acquire.

Corollary 5 Welfare under public information exceeds welfare under private information if T � �
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and �2 < c
2� +

�
2� .

Proof. See the proof of the previous Corollary.

The Proposition shows that keeping information private is always preferrable for the team when

the deadline can be set optimally. That is, the stronger search incentives due to the private nature

information can be exploited at a relatively low cost of ine¢ cient delay by setting the appropriate

deadline. In Figure 4, we compare the expected welfare at t = 0 for di¤erent lengths of the deadline

T under public and private information. When the deadline is set ine¢ ciently short, welfare under

public information can be higher than under private information as shown by the dotted red line.

Figure 3: Expected Welfare at t = 0 for di¤erent lengths of the deadline T under

private and public information

7 Extensions (preliminary)

In this section we consider extensions such as modi�cations in the signal structure, expanding

the number of players, di¤erent decision protocols that require both players to agree on calling a

decision as well as the introduction of explicit contracts. We also consider the role of a third party

intermediary such as a committee chairperson who aggregates information by the di¤erent group

members. We discuss how these extensions qualitatively a¤ect the predictions of our model.

7.1 Signal structure

We �rst extend our model to consider a setting where more than one signal in total is needed

for it to be individually worthwhile to stop searching and take a decision. From a modelling

36



standpoint it would be necessary to introduce an additional cheap talk action so that agents can

reveal information to one another without this implying a decision is called. In the model above

this distinction was unnecessary as common knowledge of an agent holding a signal was su¢ cient

for both agents to prefer to call a decision.

This extension has the potentially appealing characteristic that an agent with insu¢ cient infor-

mation to call a decision alone may nevertheless induce a team decision if her information combined

with the information of the other agent is enough to induce an agent to call a decision. We conjec-

ture that in this setting the equilibrium can be analyzed in a similar fashion to the earlier model.

The basic intuition here is that if there is a number of signals at which an individual �nds it at least

weakly optimal to exert zero e¤ort and delay, then an individual with fewer signals must strictly

prefer to delay. If this is the case then there is a number of signals n such that the behavior is

analogous to an informed individual in the earlier model and individuals with fewer signals continue

to exert e¤ort and delay the decision. The analysis of this extension becomes more complicated as

we extend the deadline and there is a region where individuals reduce their e¤ort in order to free

ride at the start of the game.

The simplest model to capture this type of interaction would be a similar setup to the original

model where we attach a greater value to obtaining a second signal. In particular, let �2 > c
�+

�
�emax

whereby an agent with one signal will prefer to continue searching provided his belief that the other

agent remains uninformed is high enough and �3 < c
� such that an agent with two signals will not

exert e¤ort. In the earlier model we considered two cases. In one equilibrium beliefs evolve such that

an informed individual exerts zero e¤ort and strictly prefers to delay a decision until the deadline.

In the other beliefs are such that an informed individual is mixing between delay and calling a

decision as the deadline is approached and is thus indi¤erent. In a setting where individuals can

have zero, one or two signals one potentially feasible equilibrium, similar to that case of small

incentives, may involve individuals with two signals strictly preferring to delay a decision until the

deadline in which case an individual with 1 or 0 signals ought to also strictly prefer to delay. In

the other equilibrium, analogous to the large incentives case, an individual with two signals may

begin mixing between delay and calling a decision. Again in this setting individuals who are better

informed have a greater incentive to call a decision, thus agents with no or only one signal will not

call a decision.

7.2 More than two players

One can think of the e¤ects of adding more players as a¤ecting Xe, the longest deadline which can

sustain maximum e¤ort by all players as an equilibrium, and Ye the maximum deadline whereby no

decision is taken until the deadline. For a given length of deadline T both the value of Xe and Ye
become shorter as a third player is added. In the two person case incentives are driven by the belief

a player holds about the other player obtaining a signal prior to the deadline. The relationship
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which determines Xe is given by

� [exp (��emaxXe)�1 + (1� exp (��emaxXe))�2] = c:

With an additional player the relevant threshold X
0
e is de�ned by the following equation

�
n�
exp

�
��emaxX 0

e

��2
�1 + 2 exp

�
��emaxX 0

e

� �
1� exp

�
��emaxX 0

e

��
�2 +

�
1� exp

�
��emaxX 0

e

��2
�3

o
= c:

It is now relatively straightforward to show that X 0
e < Xe. The relationship for Ye and Y

0
e are

Ye =
(1� exp (��emaxXe))�2

�

and

Y 0e =
2 exp (��emaxX 0

e) (1� exp (��emaxX 0
e))�2 + (1� exp (��emaxX 0

e))
2 �3

�
:

Using the equality of the terms inside the brackets we have

�
exp

�
��emaxX 0

e

��2
�1+2 exp

�
��emaxX 0

e

� �
1� exp

�
��emaxX 0

e

��
�2+

�
1� exp

�
��emaxX 0

e

��2
�3

= exp (��emaxXe)�1 + (1� exp (��emaxXe))�2

thus we can conclude that

2 exp
�
��emaxX 0

e

� �
1� exp

�
��emaxX 0

e

��
�2 +

�
1� exp

�
��emaxX 0

e

��2
�3

< (1� exp (��emaxXe))�2

and hence Y 0e < Ye:

7.3 Alternative mechanisms

The incentives for an agent to reveal information in our model are determined by the trade-o¤

between search bene�t of waiting and the associated costs of delay, or more formally

�ee (t)� (t)�2 ? �
This equation reveals the tension between e¤ort provision and incentives for revealing information

that we investigate in the model. All else equal the higher equilibrium e¤ort ee (t) of an uninformed
agent, the greater are the incentives to withhold information for an informed agent. A lesson we

draw from our analysis is that providing incentives for e¤ort does not necessarily result in faster

decisions, but that it may simply shift the source of ine¢ ciency from one of limited e¤ort provision

to limited information sharing. A second lesson is that when a second signal is socially e¢ cient the

ability of agents to delay may be bene�cial for welfare.

We consider our setting to be one in which there are severe restrictions on the types of mechan-
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sims and contracts that are feasible. One type of contract or mechanism that may be reasonable

in our setting is a payment that depends on time. An example is a decreasing payment (increasing

punishment) to the agents depending on when the decision is taken. Essentially, this type of scheme

would simply increase the delay cost �. If we take the case of a long deadline then the free-riding

e¤ort level is �c : A relatively simple way to obtain maximum e¤ort and immediate information reve-

lation would be to set the rate of decrease (increase) of a reward (punishment) for making a decision

at a particular time equal to cemax � �. The e¤ective discount rate an agent then faces is cemax.
Hence, this contract �xes the free-riding e¤ort at emax and information is revealed immediately as

cemax > �emax�2. However, in implementing this type of scheme one must also check that agents

still have an incentive to search for information at all. This is satis�ed in our original model by

the assumption that �1 > c
� +

�
�emax

. In adjusting the e¤ective delay cost this constraint may no

longer hold and agents will simply call an immediate decision. If �1 > 2c
� , this will not occur.

There is a broad range of assumptions one can make about what can be contracted on which can

help in full or part �x the incentive issues of our model. Other types of mechanisms may augment

the decision making protocol to limit the ability of agents to include their information that they

hold if they are not calling the decision themselves. These mechanisms require commitment at

the decision making stage not to include potentially valuable information in the decision-making

process. We also note that to the extent that these changes simply a¤ect the incentive for an agent

to reveal information immediately, the analysis is identical to the public information case analyzed

earlier. As we showed before this is not necessarily welfare-improving and with an optimally set

deadline is is welfare-decreasing.

7.4 Mediator

We previously showed that there is a unique optimal deadline which maximizes the ex-ante welfare

of the players. In this case there are clear ine¢ ciencies when both players acquire a signal prior

to the deadline, but the decision is nonetheless delayed as neither player shares their information.

Thus, there are potential gains from the introduction of a mediator who cannot exert e¤ort (or

whose e¤ort decision is una¤ected by any information found by the other agents), but is able to

facilitate communication. The role of the mediator would be to avoid situations in which both

players acquired a signal, but neither is willing to reveal it to the other agent. Thus, the decision

is unnecessarily being delayed without any additional information acquisition.

The presence of a mediator changes the agents�e¤ort incentives in the following important way.

When the deadline is far away the option of an agent to free-ride on the information acquisition

e¤orts of the other agent is e¤ectively eliminated if a mediator is commited not to take a decision

until both agents have each found a piece of information. Hence, agents exert maximum e¤ort and

it is in fact an equilibrium action for the mediator to delay a decision while uninformed agents

exert maximum e¤ort. What is surprising is that as the deadline draws closer the option to exert

little e¤ort and wait until the deadline for a decision is a less costly option and so the deadline

undermines the incentives for e¤ort. Note though that this is only one potential equilibrium in
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this setting. A mediator�s strategy to call a decision after receiving one signal from either agent

results in lower e¤ort from the agents due to free-riding and hence makes the strategy to call a

decision after one signal also an equilibrium. In this case an approaching deadline will increase the

incentives for e¤ort.

8 Conclusion

In private and public organizations, teams are often allocated the dual task of �nding and taking

a decision. In this paper we have investigated the link between the incentive to search and the

incentive to share decision-relevant information in this type of team setting. One clear lesson that

emerges is that team members are reluctant to disclose information that undermines the incentives

of fellow team members to search for further information. As a result, although a strict deadline

provides strong incentives for agents to gather information, it also mutes the incentives to reveal

information and to make a fast decision. In this light, it may therefore not be too surprising that

strict deadlines may sometimes be counterproductive when immediate decisions are required, in

particular in settings where �Parkison�s Law�applies. Furthermore, we have shown that mutual

monitoring in teams is not a panacea to solving incentive problems. In fact, in most cases the

non-observability of information is precisely what allows agents to circumvent the moral hazard in

teams problem. However, the interested reader may ask how di¤ering opinions or preferences in

addition to con�icts about e¤ort provision and information sharing among the team members may

in�uence our �ndings. We leave these interesting questions to future research.
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A Omitted Proofs

A.1 Proofs for Equilibrium Properties

Proof of Proposition 2. The proof proceeds in several steps to establish the result for the

relevant regions.

i) Case 1: T < Xe
Informed strategy

d (t) = 0 for all t:

Uninformed strategy

d (t) = 0 for all t:

e (t) = 1 for all t.

Beliefs

Beliefs evolve according to � (t) = exp
�
��
R t
0 e (s) ds

�
for all t.

We proceed with the proof by writing out the implied continuation values of informed and

uninformed agents. At the deadline the continuation values are simply the expected value of a

decision at that time.

V I (T ) = � 1

"+ �
+ (1� exp (��T ))�2

and

V U (T ) = �1
"
+ (1� exp (��T ))�1
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also

V I (T )� V U (T ) = exp (��T )�1 + (1� exp (��T ))�2

For general 0 � t � T the continuation values are

V I (t) = V I (T )� � (T � t)

and

V U (t) = (1� exp (�� (T � t)))V I (T ) + exp (�� (T � t))V U (T )

� c

�
(1� exp (�� (T � t)))� � (T � t)

Informed strategy

Check the informed individual�s decision strategy d (t) = 0 is optimal by noting:

V I (t) > � 1

"+ �
+ (1� exp (��t))�2 for all t < Xe:

Where the right hand side is the value of a decision at a time t: Hence it is optimal to wait for the

informed agent.

Uninformed strategy

Checking an uninformed agent�s choice of e¤ort

V I (t)� V U (t) = c

�
+ exp (�� [T � t])

h
V I (T )� V U (T )� c

�

i
As � (T ) > ��e, the uninformed player wants to exert maximum e¤ort for all 0 � t � T , since

V I (t)� V U (t)� c

�
= exp (�� [T � t])

h
V I (T )� V U (T )� c

�

i
= exp (�� [T � t])

h
exp (��T )�1 + (1� exp (��T ))�2 �

c

�

i
> 0 if � (T ) > ��e

Finally, we check that the uninformed individual will not call a decision by noting that

V U (t) = (1� exp (�� (T � t)))V I (T ) + exp (�� (T � t))V U (T )

� c

�
(1� exp (�� (T � t)))� � (T � t)

V U (t) > �1
"
+ (1� exp (��t))�1 provided t <

1

�
ln
1
��e

ii) Case 2: Xe < T < Ye
Informed strategy

d (t) = 0 for all t:
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Uninformed strategy

d (t) = 0 for all t:

e (t) satis�es

exp

�
��
Z t

0
e (s) ds

�
� �e + (T � t)

�

�2

and

exp

�
��
Z T

0
e (s) ds

�
= ��e.

Beliefs

Beliefs evolve according to � (t) = exp
�
��
R t
0 e (s) ds

�
for all t.

At the deadline the continuation values are simply the expected value of a decision at that time.

V I (T ) = � 1

"+ �
+
�
1� ��e

�
�2

and

V U (T ) = �1
"
+
�
1� ��e

�
�1

also

V I (T )� V U (T ) = ��e�1 +
�
1� ��e

�
�2

For general 0 � t � T the continuation values are

V I (t) = V I (T )� � (T � t)

and

V U (t) =

�
1� exp

�
��
Z T

t
e (s) ds

��
V I (T ) + exp

�
��
Z T

t
e (s) ds

�
V U (T )

� c

�

�
1� exp

�
��
Z T

t
e (s) ds

��
� � (T � t)

Informed strategy

Informed individual�s decision strategy

V I (t) � � 1

"+ �
+ (1� � (t))�2

� (t) � �

�2
(T � t) + ��e

exp

�
��
Z t

0
e (s) ds

�
� �

�2
(T � t) + ��e

This is true given the e¤ort strategy speci�ed. Hence it is weakly optimal to wait for the informed

agent.

Uninformed strategy
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Checking an uninformed agent�s choice of e¤ort

V I (t)� V U (t) = c

�
+ exp

�
��
Z T

t
e (s) ds

�h
V I (T )� V U (T )� c

�

i
As � (T ) = ��e, the uninformed player is indi¤erent about the level of e¤ort she exerts for all

0 � t � T since

V I (t)� V U (t)� c

�
= exp

�
��
Z T

t
e (t) dt

�h
V I (T )� V U (T )� c

�

i
= exp

�
��
Z T

t
e (t) dt

�h
��e�1 +

�
1� ��e

�
�2 �

c

�

i
= 0 if � (T ) = ��e

Finally, we check that the uninformed individual will not call a decision by noting that

V U (t) =

�
1� exp

�
��
Z T

t
e (s) ds

��
V I (T ) + exp

�
��
Z T

t
e (s) ds

�
V U (T )

� c

�

�
1� exp

�
��
Z T

t
e (s) ds

��
� � (T � t)

V U (t) > �1
"
+

�
1� exp

�
��
Z T

t
e (t) dt

��
�1

iii) Case 3: T > 1
� (1� ��e)�2

Informed strategy

d (t) =

(
call for t < T � Ye
0 for t � T � Ye

Uninformed strategy

d (t) = 0 for all t:

e (t) = �
c for t < T � Ye

e (t) satis�es

exp

�
��
Z t

T�Ye
e (s) ds

�
� �e + (T � t)

�

�2

and

exp

�
��
Z T

T�Ye
e (s) ds

�
= ��e.

for t � T � Ye
Beliefs

� (t) = 1 for t < T � Ye:
� (t) = exp

�
��
R t
0 e (s) ds

�
for t � T � Ye:

For 0 � t < T � 1
� (1� ��e)�2 immediate decisions are called then the belief is � (t) = 0 for the

subgame from t = T� 1
� (1���e)�2 hence the proof for the strategies being equilibria of that subgame
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are encompassed in case 2. It remains to show that the strategies speci�ed for t < T � 1
� (1� ��e)�2

also constitute an equilibrium. The continuation values for an informed individual is given by

V IN (t) = � 1

"+ �
for t < T � 1

�
(1� ��e)�2

= � 1

"+ �
+ �

�
t� T + 1

�
(1� ��e)�2

�
for t < T � 1

�
(1� ��e)�2

and for an uninformed individual

V UN (t) =

Z T� 1
�
(1���e)�2

t

�
V IN (t)� c

Z s

t
e (r) dr � � (s� t)

�
2�e (s) e�2�

R s
t e(r)drds

+e�2�
R T� 1

�
(1���e)�2

t e(r)dr

 
V UN

�
T � 1

�
(1� ��e)�2

�
� c

Z T� 1
�
(1���e)�2

t
e (r) dr � �

�
T � 1

�
(1� ��e)�2 � t

�!

V UN (t) =

Z T� 1
�
(1���e)�2

t

�
V IN (t)� c

Z s

t

�

c
dr � � (s� t)

�
2�
�

c
e�2�

R s
t
�
c
drds

+ e�2�
R T� 1

�
(1���e)�2

t
�
c
dr

 
V UN

�
t0
�
� c

Z T� 1
�
(1���e)�2

t

�

c
dr � �

�
T � 1

�
(1� ��e)�2 � t

�!

V UN (t) =

Z T� 1
�
(1���e)�2

t

�
V IN (t)� (2�) (s� t)

�
2�
�

c
e�2�

R s
t
�
c
drds

+e�2�
�
c
(t0�t)

�
V UN

�
T � 1

�
(1� ��e)�2

�
� c�

c

�
T � 1

�
(1� ��e)�2 � t

�
� �

�
T � 1

�
(1� ��e)�2 � t

��

V UN (t) =

 
V IN (t)� 2�

2� �c

!�
1� e�2�

�
c (T�

1
�
(1���e)�2�t)

�
+ e�2�

�
c (T�

1
�
(1���e)�2�t)V UN

�
T � 1

�
(1� ��e)�2

�
where V UN (T � Ye) is V UN (0) from case 2 for T = Ye hence it is:

V UN (T � Ye) = �
1

"+ �
� c

�

and we can further simplify the above to

V UN (t) = V IN (t)� c

�

Hence this holds for all t.

Informed strategy
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The payo¤ from waiting until bt < T � 1
� (1� ��e)�2 upon becoming informed at time t which we

denote V I
�btjt� is:

V I
�btjt� = Z bt

t

�
� 1

"+ �
+ �2 � � (s� t)

�
�
�

c
exp

�
���
c
(s� t)

�
ds

+ exp

�
���
c

�bt� t���� 1

"+ �
� �

�bt� t��
this can be simpli�ed to

V I
�btjt� = �� 1

"+ �
+ �2 �

c

�

��
1� exp

�
���
c

�bt� t���+ exp����
c

�bt� t���� 1

"+ �

�
where we have used

Z bt
t
�
�

c
(s� t) exp

�
���
c
(s� t)

�
ds = �

�
(s� t) exp

�
���
c
(s� t)

��bt
t

+

Z bt
t
exp

�
���
c
(s� t)

�
ds

Z bt
t
�
�

c
(s� t) exp

�
���
c
(s� t)

�
ds = �

�bt� t� exp����
c

�bt� t��
+
c

��

�
1� exp

�
���
c

�bt� t���
The optimal decision time is therefore

argmaxbt�0 V I
�btjt� = 0

since c
� > �2 and given the results in case 2 the agent will not prefer to wait beyond T�

1
� (1���e)�2:

Hence an informed agent optimally makes an immediate decision for t < T � 1
� (1� ��e)�2:

Uninformed strategy

We immediately �nd that the uninformed agent is indi¤erent about putting in e¤ort at all

times t because V UN (t) = V IN (t) � c
� so her e¤ort strategy is an equilibrium. Furthermore

V IN (t)� c
� > �

1
" so it is never optimal for the uninformed agent to call a decision.

Proof of Proposition 3. This is the proof for the case T > (1���)�2
� + &.

i) Case 1: T < 1
� ln

1
��d
= Xd

Informed strategy

d (t) = 0 for all t:

Uninformed strategy
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d (t) = 0 for all t:

e (t) = 1 for all t.

Beliefs

Beliefs evolve according to � (t) = exp
�
��
R t
0 e (s) ds

�
for all t.

We proceed with the proof by writing out the implied continuation values of informed and

uninformed agents. At the deadline the continuation values are simply the expected value of a

decision at that time.

V I (T ) = � 1

"+ �
+ (1� exp (��T ))�2

and

V U (T ) = �1
"
+ (1� exp (��T ))�1

also

V I (T )� V U (T ) = exp (��T )�1 + (1� exp (��T ))�2

For general 0 � t � T the continuation values are

V I (t) = V I (T )� � (T � t)

and

V U (t) = (1� exp (�� (T � t)))V I (T ) + exp (�� (T � t))V U (T )

� c

�
(1� exp (�� (T � t)))� � (T � t)

Informed strategy

Checking the informed individual�s decision strategy is optimal by noting:

V I (t) > � 1

"+ �
+ (1� exp (��t))�2 for all t <

1

�
ln
1
��d
:

Here the right hand side is the value of a decision at a time t: Hence it is optimal to wait for the

informed agent.

Uninformed strategy

Checking an uninformed agent�s choice of e¤ort

V I (t)� V U (t) = c

�
+ exp (��emax [T � t])

h
V I (T )� V U (T )� c

�

i
As � (T ) > ��d, the uninformed player wants to exert maximum e¤ort for all 0 � t � T , since

V I (t)� V U (t)� c

�
= exp (��emax [T � t])

h
V I (T )� V U (T )� c

�

i
= exp (��emax [T � t])

h
exp (��T )�1 + (1� exp (��T ))�2 �

c

�

i
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V I (t)� V U (t)� c

�
> 0 for � (T ) > ��d > ��e

Finally, we check that the uninformed individual will not call a decision by noting that

V U (t) = (1� exp (�� (T � t)))V I (T ) + exp (�� (T � t))V U (T )

� c

�
(1� exp (�� (T � t)))� � (T � t)

V U (t) > �1
"
+ (1� exp (��t))�1 provided t <

1

�
ln
1
��e

ii) Case 2 Xd � T < Xd + Z
Informed strategy

d (t) = 0 for t < Xd:

d (t) = �2�2
��2�� for t > Xd:

Uninformed strategy

d (t) = 0 for all t:

e (t) = 1 for all t.

Beliefs

� (t) = exp
�
��
R t
0 e (s) ds

�
for t < Xd.

� (t) = ��d for t � Xd:
The continuation value at the deadline at time T for an informed agents is:

V IN (T ) = � 1

"+ �
+
�
1� ��d

�
�2

and for an uninformed agent is

V UN (T ) = �1
"
+
�
1� ��d

�
�1:

Hence, the di¤erence between being informed and uninformed is

V IN (T )� V UN (T ) = ��d�1 +
�
1� ��d

�
�2:

Working backwards consider the continuation value for an agent at time Xd < t < T . The informed

agent has payo¤

V IN (t) = V IN (T ) = � 1

"+ �
+
�
1� ��d

�
�2

The uninformed agent has a payo¤

V UN (t) =

Z T

t

 
� 1

"+ �
+

�
1� ��d

�
�2

2
� (c+ �) (s� t)

!
2�e�2�(s�t)ds

+ e�2�(T�t)
�
V UN (T )� (c+ �) (T � t)

�
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V UN (t) =

 
� 1

"+ �
+

�
1� ��d

�
�2

2

!�
1� e�2�(T�t)

�
� (c+ �)

�
� (T � t) e�2�(T�t) + 1

2�

�
1� e�2�(T�t)

��
+ e�2�(T�t)

�
V UN (T )� (c+ �) (T � t)

�

V UN (t) =

"
� 1

"+ �
+

�
1� ��d

�
�2

2
� (c+ �) 1

2�

#
� �

1� e�2�(T�t)
�
+ e�2�(T�t)

�
V UN (T )

�

V UN (t) = � 1

"+ �
+

�
1� ��d

�
�2

2
� (c+ �) 1

2�

� e�2�(T�t)
"
��d�1 +

�
1� ��d

�
�2

2
� (c+ �) 1

2�

#

Note that the 2 in the pdf comes from the probability of one of two events occuring, �I �nd infor-

mation�or �other agent calls a decision,�in this time interval the rate of information acquisition is

the same as the rate at which the other agent is calling decisions thus the pdf has a 2. The payo¤

contains the term (1���d)�2
2 because with 50% probability I will �nd information before the other

agent calls a decision in which case the payo¤ is increased by
�
1� ��d

�
�2. The di¤erence between

being informed and uninformed is given by

V IN (t)� V UN (t) =
�
1� ��d

�
�2

2
+ (c+ �)

1

2�

+ e�2�(T�t)

"
��d�1 +

�
1� ��d

�
�2

2
� (c+ �) 1

2�

#

which satis�es V IN (t) � V UN (t) = c
� if T � t = Z by de�nition of Z and

d(V IN (t)�V UN (t))
dt > 0

because dV IN

dt = 0 and dV UN

dt < 0:

For 0 � t < Xd the continuation value for the informed agent is:

V IN (t) = � 1

"+ �
+ (1� ��)�2 � � (Xd � t)

the uninformed agent

V UN (t) =

Z Xd

t

�
V IN (Xd)� c (s� t)

�
�e��(s�t)ds� � (Xd � t)

+ e��(Xd�t)
�
V UN (Xd)� c (Xd � t)

�

50



V UN (t) =
�
V IN (Xd)�

c

�

��
1� e��(Xd�t)

�
+ V UN (Xd) e

��(Xd�t) � �
�bt� t�

and the di¤erence between the two is

V IN (t)� V UN (t) = c

�
+ e��(Xd�t)

�
V IN (Xd)� V UN (Xd)�

c

�

�
Informed strategy

An informed agent delays decisions for t < Xd, in this case the payo¤ from an immediate

decision would be � 1
"+� + (1� � (t))�2. The condition for the informed agent to delay is hence

� 1

"+ �
+
�
1� ��d

�
�2 � � (Xd � t) � �

1

"+ �
+ (1� � (t))�2

rearranging and substituting in for ��d we get

exp (��t)� ��d �
�

�2
(Xd � t)

which holds with equality for t = Xd, furthermore the derivative of the LHS is strictly less than the

RHS �� exp (��t) < � �
�2
for t < Xd hence the relation holds for t < Xd. For t � Xd an informed

individual must be indi¤erent about a decision now versus delaying a decision any amount �t into

the future. Value of a decision at t is

� 1

"+ �
+
�
1� ��d

�
�2

the value of waiting and making a decision at t+�t is V (t+�tjt) and is calculated as

V (t+�tjt) =
Z t+�t

t

�
� 1

"+ �
+ �2 � � (s� t)

�
�2�2
��2 � �

(1� � (s)) exp
�
�
Z s

t

�2�2
��2 � �

(1� � (r)) dr
�
ds

+ exp

�
�
Z t+�t

t

�2�2
��2 � �

(1� � (r)) dr
�

V (t+�tjt) =
Z t+�t

t

�
� 1

"+ �
+ �2 � � (s� t)

�
�2�2
��2 � �

�
1� ��d

�
exp

�
� �2�2
��2 � �

�
1� ��d

�
(s� t)

�
ds

+ exp

�
� �2�2
��2 � �

�
1� ��d

�
�t

��
� 1

"+ �
+
�
1� ��d

�
�2 � ��t

�
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V (t+�tjt) =
 
� 1

"+ �
+ �2 � �

 
��2 � �

�2�2
�
1� ��d

�!!�1� exp�� �2�2
��2 � �

�
1� ��d

�
�t

��
+

�
� 1

"+ �
+
�
1� ��d

�
�2

�
exp

�
� �2�2
��2 � �

�
1� ��d

�
�t

�

V (t+�tjt) = � 1

"+ �
+
�
1� ��d

�
�2

since

�

 
��2 � �

�2�2
�
1� ��d

�! = �� ��2 � �
� (��2 � �)

�
=

�

��2
�2 = ��d�2

hence informed individuals are indi¤erent about calling an immediate decision and delaying the

decision and a mixing strategy is an equilibrium strategy.

Uninformed strategy

An uninformed agent will exert maximum e¤ort because V IN (t)�V UN (t) > c
� for all t provided

T < Xd+Z. An uninformed agent will not call a decision since the payo¤ from calling a decision is

�1
"+(1� � (t))�1 which is increasing in t, equal to the continuation value V

UN (T ) at the deadline

and dV UN (t)
dt < 0 hence V UN (t) > �1

" + (1� � (t))�1 for all t < T .
iii) Case 3 Xd + Z < T < Yd + Z
Informed strategy

d (t) = 0 for t < T � Z:
d (t) = �2�2

��2�� for t � T � Z:
Uninformed strategy

d (t) = 0 for all t:

e (t) satis�es

exp

�
��
Z t

0
e (s) ds

�
� ��d + (T � Z � t)

�

�2

and

exp

�
��
Z T�Z

0
e (s) ds

�
= ��d.

for t < T � Z:
e (t) = 1 for all t � T � Z:
Beliefs

� (t) = exp
�
��
R t
0 e (s) ds

�
for t < T � Z

� (t) = ��d for t � T � Z:
The continuation value at the deadline at time T for an informed agents is:

V IN (T ) = � 1

"+ �
+
�
1� ��d

�
�2
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and for an uninformed agent is

V UN (T ) = �1
"
+
�
1� ��d

�
�1:

Hence, the di¤erence between being informed and uninformed is

V IN (T )� V UN (T ) = ��d�1 +
�
1� ��d

�
�2:

Working backwards consider the continuation value for an agent at time T � Z < t < T . The

informed agent has payo¤

V IN (t) = V IN (T ) = � 1

"+ �
+
�
1� ��d

�
�2

and the uninformed agent has payo¤

V UN (t) = � 1

"+ �
+

�
1� ��d

�
�2

2
� (c+ �) 1

2�

� e�2�(T�t)
"
���1 +

�
1� ��d

�
�2

2
� (c+ �) 1

2�

#

the di¤erence between the two is

V IN (t)� V UN (t) =
�
1� ��d

�
�2

2
+ (c+ �)

1

2�

+ e�2�(T�t)

"
��d�1 +

�
1� ��d

�
�2

2
� (c+ �) 1

2�

#

furthermore at t = T � Z
V IN (t)� V UN (t) = c

�

and for t > T � Z
V IN (t)� V UN (t) > c

�

For 0 � t � T � Z the continuation value for the informed individual is

V IN (t) = � 1

"+ �
+
�
1� ��d

�
�2 � � (T � Z � t)

and the uninformed agent

V U (t) =

�
1� exp

�
��
Z T�Z

t
e (s) ds

��
V I (T � Z) + exp

�
��
Z T�Z

t
e (s) ds

�
V U (T � Z)

� c

�

�
1� exp

�
��
Z T�Z

t
e (s) ds

��
� � (T � Z � t)
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hence

V IN (t)� V UN (t) = c

�
for 0 � t � T � Z

Now considering the equilibrium strategies. The subgames for t � T � Z are identical to those

described above in case 2 for t � Xd and the proof is identical. Turning to t < T � Z:
Informed strategy

The condition for the informed agent to delay is

� 1

"+ �
+
�
1� ��d

�
�2 � � (Xd � t) � �

1

"+ �
+ (1� � (t))�2

rearranging and substituting in for � (t) we get

exp

�
��
Z t

0
e (s) ds

�
� ��d +

�

�2
(Xd � t)

which is the condition on the equilibrium e¤ort strategy of the uninformed agent.

Uninformed strategy

An uninformed agent is indi¤erent about exerting e¤ort for 0 � t � T � Z so any e¤ort level
is a potentially an equilibrium strategy and for t > T � Z the agent has strict incentives to exert
e¤ort up to the maximum e¤ort level. An uninformed agent will not call a decision provided that

�1
"
+ (1� � (t))�1 < V UN (t)

�1
"
+ (1� � (t))�1 < � 1

"+ �
+
�
1� ��d

�
�2 �

c

�
� � (Xd � t)

� 1

"+ �
+ (1� � (t))�2 � (� (t)�1 + (1� � (t))�2) < � 1

"+ �
+
�
1� ��d

�
�2 �

c

�
� � (Xd � t)

we know from above that

� 1

"+ �
+ (1� � (t))�2 � �

1

"+ �
+
�
1� ��d

�
�2 � � (Xd � t)

hence remains to show that

� (t)�1 + (1� � (t))�2 >
c

�

which is true because ��e�1 +
�
1� ��e

�
�2 =

c
� and � (t) >

��d >
��e:

iv) Case 4 T > Yd + Z
Informed strategy

d (t) = call for 0 � t � T � Yd � Z
d (t) = 0 for T � Yd � Z < t < T � Z:
d (t) = �2�2

��2�� for t � T � Z:
Uninformed strategy

d (t) = 0 for all t:

e (t) = �
c for 0 � t � T � Yd � Z
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e (t) satis�es

exp

�
��
Z t

T�Yd�Z
e (s) ds

�
� ��d + (T � Z � t)

�

�2

and

exp

�
��
Z T�Z

T�Yd�Z
e (s) ds

�
= ��d.

for T � Yd � Z < t < T � Z:
e (t) = 1 for t � T � Z:
Beliefs

� (t) = 1 for 0 � t � T � Yd � Z
� (t) = exp

�
��
R t
T�Yd�Z e (s) ds

�
for T � Yd � Z < t < T � Z:

� (t) = ��d for t � T � Z:
Here again we note that all subgames starting from t = T � Yd + Z are encompassed by the

proof of Case 3 above, and the continuation values at t = T � Yd + Z are

V IN (t) = � 1

"+ �

V UN (t) = � 1

"+ �
� c

�

which are exactly the same continuation values as in Case 3 of the small incentives earlier for
t = T � Ye: In this case the strategies and the proof for the subgames t < Yd + Z are identical to
that for Case 3 of the small incentives earlier for t = T � Ye.

A.2 Proofs for Uniqueness

A.2.1 General Model Description

De�ne � (t) as the conditional probability of being uninformed by time t given that the other agent

doesn�t call a decision prior to t. Hence 1 � � (t) is the conditional probability of being informed
by that time. De�ne � (t) conditional as the probability of calling an uninformed decision by time

t given that the other agent doesn�t call a decision prior to t. De�ne � (t) conditional probability

of calling an informed decision by time t given that the other agent doesn�t call a decision prior to

t. � (t) changes over time according to

d�

dt
= ��e (t) (� (t)� � (t))

E¤ort strategy of the uninformed agent in�uences d�
dt . The decision strategy of an uninformed

agent in�uences both d�
dt and � (t). The decision strategy of the informed agent controls � (t). The

following relationships between these functions hold

� (t) + � (t) � 1
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also

� (t) � � (t)

and

� (t) � 1� � (t)

The bayesian belief � (t) at a time t that the other agent is uninformed conditional on no decision

prior to that time is

� (t) =
� (t)� � (t)

1� � (t)� � (t)

A strategy for an agent maps into a path for � (t) ; � (t) ; � (t). We restrict our attention to strategies

which result in piecewise continuously di¤erential functions of � (t) ; � (t) ; � (t). Clearly given the

nature of the model d�dt � 0 agents don�t lose/forget signals, d�dt ;
d�
dt � 0 decisions and calling a

decision are irreversible. The upper bound on e (t) also insures that � (t) is continuous.

We will useeto denote the strategies of the other player. We have assumed that � (t) and � (t)
are continuous and di¤erentiable at all but a �nite number of points. Denote the set of points where

the strategy is discontinuous by �� = ft�1; :::t
�
�g ; �� = ft�1 ; :::t

�
�g ; ~�� =

�
~t�1; :::~t

�
~�

	
; ~�� =

�
~t�1 ; :::~t

�
~�

	
and de�ne � = �� [ �� and ~� = ~�� [ ~��. Also de�ne

D� (t) = lim
s!t+

� (s)� � (t)

and

D� (t) = lim
s!t+

� (s)� � (t)

Clearly these are non-zero only at points in �� and �� respectively and represent the probability

a decision is called at that moment conditional on the other agent not calling a decision prior to
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that time. The objective function of the agent is:

max
e(t);�(t);�(t)

�1
"
+

Z T

0

 
�1 +

 
1� ~� (t)� ~� (t)
1� ~� (t)� ~� (t)

!
�2

!
d�

dt
[1� ~� (t)� ~� (t)] dt

+

Z T

0

 
1� ~� (t)� ~� (t)
1� ~� (t)� ~� (t)

!
�1
d�

dt
[1� ~� (t)� ~� (t)] dt

+

Z T

0

�
�1 +

�
1� � (t)� � (t)
1� � (t)� � (t)

�
�2

�
d~�

dt
[1� � (t)� � (t)] dt

+

Z T

0

�
1� � (t)� � (t)
1� � (t)� � (t)

�
�1
d~�

dt
[1� � (t)� � (t)] dt

+
X
t2�\~�

[1� ~� (t)� ~� (t)]

8<: D� (t)
�
�1 +

�
1�~�(t)�~�(t)
1�~�(t)�~�(t)

�
�2

�
+D� (t)

�
1�~�(t)�~�(t)
1�~�(t)�~�(t)

�
�1

9=;
+
X
t2�\~�

[1� � (t)� � (t)�D� (t)�D� (t)]

8<: D~� (t)
�
�1 +

�
1��(t)��(t)�D�(t)

1��(t)��(t)�D�(t)�D�(t)

�
�2

�
D~� (t)

�
1��(t)��(t)�D�(t)

1��(t)��(t)�D�(t)�D�(t)

�
�1

9=;
+
X
t2�n~�

[1� ~� (t)� ~� (t)]
"
D� (t)

 
�1 +

 
1� ~� (t)� ~� (t)
1� ~� (t)� ~� (t)

!
�2

!
+D� (t)

 
1� ~� (t)� ~� (t)
1� ~� (t)� ~� (t)

!
�1

#

+
X
t2~�n�

[1� � (t)� � (t)]
�
D~� (t)

�
�1 +

�
1� � (t)� � (t)
1� � (t)� � (t)

�
�2

�
+D~� (t)

�
1� � (t)� � (t)
1� � (t)� � (t)

�
�1

�

+(1� � (T )� � (T )) (1� ~� (T )� ~� (T ))
 
�1 +

 
1� ~� (T )� ~� (T )
1� ~� (T )� ~� (T )

!
�2

!
��T (1� � (T )� � (T )) (1� ~� (T )� ~� (T ))

�
Z T

0
� (1� � (t)� � (t)) (1� ~� (t)� ~� (t)) dt

�c (1� ~� (T )� ~� (T )) (� (T )� � (T ))
Z T

0
e (t) dt

�c
Z T

0
e (t) (1� ~� (t)� ~� (t)) (� (t)� � (t)) dt

st

� (t) � 1� � (t)

� (t) � � (t)

� (0) = 1

d�

dt
= ��e (t) (� (t)� � (t))

where ~� (t) ; ~� (t) ; ~� (t) capture the strategy of the other player.

We are interested in Perfect Bayesian Equilibria of the model so strategies must be an equilib-

rium for all subgames starting at each time t. We describe these by writing out the problem in

terms of continuation value functions for the informed V I (t) and uninformed agent V U (t) upon
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reaching a time t. Also write ~� (sjt) ~� (sjt)for the perceived probabilities that an informed and
uninformed agent calls a decision at s � t given the agent is at t. At on-equilibrium times these are
~� (sjt) = ~�(s)�~�(t)

1�~�(t) and ~� (sjt) = ~�(s)�~�(t)
1�~�(t) however if an o¤-equilibrium time is reached then this is

no longer the case. Write bt� (t) = inf fr � tj�� (rjt) > 0g and bt� (t) = inf fr � tj�� (rjt) > 0g as de-
scribing the next time at which an agents calls a decision according to the strategies �� (rjt) ; �� (rjt)
upon reaching a time t. The continuation value from being informed is just the payo¤ from imple-

menting the optimal stopping policy bt from that moment forward:

V I (t) = maxbt2[t;T ]�
1

"+ �
+

Z bt
t
(�2 � � (r � t))

d~� (rjt)
dt

dr +

Z bt
t
(�� (r � t)) d~� (rjt)

dt
dr (12)

+
X
r2~�
t<r<bt

D~� (rjt) (�2 � � (r � t)) +D~� (rjt) (�� (r � t))

+
�
1� ~�

�btjt�� ~� �btjt�� ��1� �� �btjt���2 � � �bt� t��
where bt (t) may be set valued if the optimizer of equation 12 is not unique. The decision strategy
is optimal provided that:

lim
s!r+

�� (sjt) = � (r) if r = t̂� (t)

d�� (rjt)
dt

� 0 or D�� (rjt) � 0 if r 2 t̂� (t)

d�� (rjt)
dt

= 0 if r =2 t̂� (t)

and these conditions insure � satis�es the adding up constraint:Z
t̂�(t)

d�� (t)

dt
dt = �

�
max

�
t̂� (t)

��
� � (t) + (� (T )� � (T ))� 1

�
max

�
t̂� (t)

�
= T

�
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The payo¤ from being uninformed is an e¤ort and stopping problem given by:

V U (t) = maxbt2[t;T ]
e(rjt) for r2[t;bt]

�1
"

+

Z bt
t

�
�1 � � (r � t)� c

Z r

t
e (wjt) dw

�
d~� (rjt)
dt

�
1� exp

�
��
Z r

t
e (wjt) dw

��
dr

+

Z bt
t

�
�� (r � t)� c

Z r

t
e (wjt) dw

�
d~� (r)

dt

�
1� exp

�
��
Z r

t
e (wjt) dw

��
dr

+

Z bt
t

�
V I (t)� � (r � t)� c

Z r

t
e (wjt) dw

�
�e (r) exp

�
��
Z r

t
e (wjt) dw

�
[1� ~� (rjt)� ~� (rjt)] dr

+
X
r2~�n�

t<r<bt�(t)
1� � (r)� � (r)
1� � (t)� � (t)

"
D~� (rjt)

�
�1 � � (r � t)� c

R r
t e (wjt) dw

�
+D~� (rjt)

�
�� (r � t)� c

R r
t e (wjt) dw

� #

+

 
1� exp

 
�
Z bt
t
e (r) dr

!!�
1� ~�

�btjt�� ~� �btjt�� "�1� �� �btjt���1 � � �bt� t�� cZ bt
t
e (rjt) dr

#

In this case the condition for the e¤ort strategy pro�le to be an equilibrium satis�es:

e� (t) = arg max
e2[0;1]

�e
�
V I (t)� V U (t)

�
� ce

the decision strategy is an equilibrium provided that:

lim
s!r+

�� (sjt) = 1� � (r) if r = t̂� (t)

d�� (rjt)
dt

� 0 or D�� (rjt) � 0 if r 2 t̂� (t)

d�� (rjt)
dt

= 0 if r =2 t̂� (t)

where t̂� (t) solves (??) the uninformed agent�s e¤ort and stopping problem. These conditions also
insure it satis�es the adding up constraintZ

t̂�(t)

d�� (t)

dt
dt = 1� �

�
max

�
t̂� (t)

��
� � (t) + (1� � (T )� � (T ))� 1

�
max

�
t̂� (t)

�
= T

�

A perfect bayesian equilibrium may be described by a tuple (e� (t) ; �� (t) ; �� (t) ; �� (t)) if �� (t)+

�� (t) < 1 for all t < T , where �� (t) is the bayesian belief an agent has at time t that the other agent

is uninformed conditional on no decision being called prior to that time. If 9t0 < T : �� (t0)+�� (t0) =
1 then it must also include o¤-equilibrium strategies and beliefs (e� (rjt) ; �� (rjt) ; �� (rjt) ; �� (rjt))
for all times t where �� (t) + �� (t) = 1 which themselves are equilibria of those subgames, where

�� (rjt) is the bayesian belief an agent has at time r that the other agent is uninformed conditional
on no decision being called prior to that time in a subgame starting at time t. We now rule out
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some types of decision strategies at on-equilibrium times by the uninformed agent. The following

lemma rules out a continuously increasing �� (t).

Lemma 3 @�� (t) ; r > 0; " > 0 : d�
�(t)
dt > 0 for t 2 [r � "; r] :

Proof. Suppose not and 9�� (t) : d�
�(t)
dt > 0 for t 2 [r � "; r]. Then

�� (t) = �� (t) for t 2 (r � "; r)

and hence

�� (t) = 1 for t 2 (r � "; r)

if not then 9r0 > t such that

� 1

"+ �
+ (1� �� (t))�2 � � 1

"+ �
+
�
1� �

�
r0jt
�� ��

1� ��
�
r0
�
�2 � �

�
r0 � t

���
��

2664Z r0

t
(y � t) d�

� (yjt)
dt

dy +
X
y2~�

t<y<r0

D~� (yjt) (�� (y � t))

3775
this can be rewritten as

�

2664Z r0

t
(y � t) d�

� (yjt)
dt

dy +
X
y2~�

t<y<r0

D~� (yjt) (�� (y � t)) +
�
r0 � t

� �
1� �

�
r0jt
��3775

� �2

h
(1� � (r0jt)) (1� �� (r0))� (1� �� (t))

i
but if that is the case then an uninformed agent could do strictly better by delaying until r0 since

the comparison of payo¤s would result in the same expression except with �1 replacing �2. The

inequality would then be strict and this would be a contradiction of the uninformed agent mixing

at t. Hence �� (t) = 1. However if �� (t) = 1 then an uniformed agent can do strictly better by

delaying and putting in e¤ort over a period of time since

�emax�1 > cemax + �

by assumption.

The following lemma rules out a jump in the decision function � (t) at on-equilibrium times if

that jump doesn�t occur when both types informed and uninformed call a decision with certainty

at that instant.

Lemma 4 @�� (t) ; 0 < s < T : D�� (s) > 0 and �� (s) + �� (s) < 1

Proof. Suppose not and 9s : D�� (s) > 0 and �� (s) + �� (s) < 1. As above this implies �� (t) = 1
by the same reasoning and hence an uninformed agent can do better than an immediate decision
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by delaying and putting in e¤ort since

�emax�1 > cemax + �

by assumption.

Hence the only equilibria involving D�� (s) > 0 also have �� (s) + �� (s) = 1 whereby beliefs at

times later than s are o¤-equilbrium. In this case it may be possible to suppport uninformed agents

calling a decision with appropriately speci�ed o¤-equilibrium beliefs. However we will exclude this

type of equilibrium as we feel for all intents and purposes it is equivalent to imposing a deadline at

time s. We thus continue the analysis under the assumption that �� (t) = 0 for all t. The following

lemma rules out jumps in the decision function of the informed type � (t).

Lemma 5 @�� (t) ; 0 < t^ < T : D�� (t^) > 0.

Proof. Proceed with a proof by contradiction. Say there is an equilibrium with a mass point at

a time t^ where a mass of D�� (t^) = (1� �)� > 0 decisions are called. For this to be the case

then � < 1. If � = 1 �� (t) = �� (t) informed agents may only call decision at the rate at which

uninformed agents are becoming informed. Consider limt!t^� e (t) and limt!t^+ e (t). For there to

be a mass point the following conditions need to hold for an agent not to call an earlier or later

decision.

lim
t!t^�

e� (t) � �

��2 (1� limt!t^� � (t^))
� " for any " > 0

and

lim
t!t^+

e� (t) � �

��2 (1� limt!t^+ � (t^))
+ " for any " > 0

the �rst of these implies that an uninformed agent will be strictly willing to wait in the neighborhood

of t^� hence will not be prepared to call a decision prior to t^. Also note that limt!t^+ � (t^) >

limt!t^� � (t^) due to the mass point. This implies there is a discontinuous change in the e¤ort

level at t^. We can write the continuation value from being uninformed at time t = t^��t as:

V U (t^��t) =

Z t^�

t^��t

 
d�(sjt^��t)

ds

1� � (sjt^��t)V
I (t) +

�
� 1

"+ �

� d�(sjt^��t)
ds

1� � (sjt^��t) � ce
� (s)� �

!
�

(1� � (sjt^��t)) (1� � (sjt^��t)) ds

+(1� � (t^jt^��t))D� (t^jt^��t)
�
� 1

"+ �
� ��t� c

Z t^

t^��t
e� (s) ds

�
0@ R t^+�t

t^+

�
d�(sjt^��t)

ds
1��(sjt^��t)V

I (t) +
�
� 1
"+�

� d�(sjt^��t)
ds

1��(sjt^��t) � ce
� (s)� �

�
�

(1� � (sjt^��t)) (1� � (sjt^��t)) ds

1A
+(1� � (t^ + �tjt^��t)) (1� � (t^ + �tjt^��t))V U (t^ + �t)

Where �t may always be chosen small enough such that there are no other points of discontinuity

of �� (t) for t 2 [t^��t; t^ + �t] other than at t = t^. Now consider moving a unit of e¤ort from
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t^� " to t^ + " by augmenting the strategy e� (t) as follows:

e�� (t) = e� (t)� " for t 2 [t^��t; t^)

e�� (t) = e� (t) + " for t 2 [t^; t^ + �t]

The strategies are piecewise continuous so we can always �nd a �t such that they are continuous

over the intervals [t��t; t) and (t; t+�t]. Using a Taylor series expansion

lim
�t!0

V U (t^��tje��)� V U (t^��tje�)
�t

= �"
�
�

�
lim
t!t^�

V I (t)

�
� c
�
+ �"D� (t^jt^��t)

�
� 1

"+ �

�
+" (1�D� (t^jt^��t))

�
�

�
lim
t!t^+

V I (t)

�
� c
�
�O (�t)

lim
�t!0

V U (t^��tje��)� V U (t^��tje�)
�t

� �"
�
�

�
� 1

"+ �
+ (1� � (t^))�2

�
� c
�

+ �"D� (t^jt^��t)
�
� 1

"+ �

�
+ " (1�D� (t^jt^��t))

�
�

�
� 1

"+ �
+ (1� � (t^)�D� (t^jt^��t))�2

�
� c
�
�O (�t)

De�ne the right-hand side by R then

R = �D� (t^jt^��t)��2"+D� (t^jt^��t) c"�O (�t)

= "D� (t^jt^��t) (c� ��2)�O (�t)

> 0

Hence, there exists �t > 0 such that this change in strategy is pro�table which is a contradiction

that the original e¤ort e� (t) is optimal and can be part of an equilibrium.

This along with the earlier lemmas that uninformed individuals do not call decisions implies

that � (t) ; � (t) ; � (t) are all continuous

Lemma 6 V I (t) is continuous.

Proof. The continuity of � (t) ; � (t) ; � (t) insure that

f
�
t;bt� = � 1

"+ �
+

Z bt
t
(�2 � � (r � t))

d~� (rjt)
dt

dr

+
�
1� ~�

�btjt�� ��1� �� �btjt���2 � � �bt� t��
is continuous in t̂. Hence

V I (t) = max
t̂2[t;T ]

f (t)
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is continuous in t by Theorem of the Maximum (Berge 1963).

Lemma 7 V U (t) is continuous.

Proof. The continuity of � (t) ; � (t) ; � (t) insure that

f (t; e (rjt)) = �1
"
+

Z T

t

�
�1 � � (r � t)� c

Z r

t
e (wjt) dw

�
d~� (rjt)
dt

�
1� exp

�
��
Z r

t
e (wjt) dw

��
dr

+

Z T

t

�
V I (t)� � (r � t)� c

Z r

t
e (wjt) dw

�
�e (r) exp

�
��
Z r

t
e (wjt) dw

�
[1� ~� (rjt)] dr

+

�
1� exp

�
�
Z T

t
e (r) dr

��
(1� ~� (T jt))

�
(1� �� (T jt))�1 � � (T � t)� c

Z T

t
e (rjt) dr

�
is continuous in e (rjt) : Hence

V I (t) = max
e(rjt)2C1([t;T ];[0;emax])

f (t; e (rjt))

where C1 ([t; T ] ; [0; emax]) are piecewise continuous functions with domain [t; T ] and range [0; emax] ;

is continuous in t by Theorem of the Maximum (Berge 1963).

Lemma 8 Suppose �� (t) and e� (t) constitute equilibrium strategies and 9s;�s > 0 : d�
�(t)
dt > 0

and 0 < e� (t) < emax for t 2 [s; s+�s], then e� (t) = �
��(t)�2

and �e� (t) =
d��(t)
dt

1���(t) for t 2 [s+�s] :

Proof. Proceed using d (t) (1� � (t)) =
d��(t)
dt

1���(t) . The incentives for delaying vs taking a decision

are equal if the agent is mixing

� 1

"+ �
+ (1� �� (t))�2 =

Z t+�t

t
�� (r � t) d (r) (1� � (r)) exp

�
�
Z r

t
d (s) (1� � (s)) ds

�
dr

+

�
� 1

"+ �
+ �2

��
1� exp

�
�
Z t+�t

t
d (s) (1� � (s)) ds

��
+ exp

�
�
Z r

t
d (s) (1� � (s)) ds

��
� 1

"+ �
+ (1� � (t+�t))�2 ��t�

�
this may be rearranged to get

�

Z t+�t

t
(r � t) d (r) (1� � (r)) exp

�
�
Z r

t
d (s) (1� � (s)) ds

�
dr

+��t exp

�
�
Z t+�t

t
d (s) (1� � (s)) ds

�
= �2

�
� (t)� � (t+�t) exp

�
�
Z t+�t

t
d (s) (1� � (s)) ds

��
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Apply a Taylor series expansion to � (t+�t) :

� (t+�t) = � (t)�
Z t+�t

t
(�e (s)� d (s) (1� � (s)))� (s) ds

= � (t) (1��t (�e (t)� (t)� d (t) (1� � (t))))

� d (� (t) (�e (t)� d (t) (1� � (t))))
dt

�
�t2

�
2

+O
�
�t3

�
apply it also to exp

�
�
R t+�t
t d (s) (1� � (s)) ds

�
:

exp

�
�
Z t+�t

t
d (s) (1� � (s)) ds

�
= 1��td (t) (1� � (t))� d (d (t) (1� � (t)))

dt

(�t)2

2

+
(d (t) (1� � (t)))2 (�t)2

2
+O

�
�t3

�
putting these together, the inside of the brackets on the right hand side becomes

� (t)� � (t+�t) exp
�
�
Z t+�t

t
d (s) (1� � (s)) ds

�
= �� (t) (�e (t)� (t)� d (t) (1� � (t)))

+
d (� (t) (�e (t)� d (t) (1� � (t))))

dt

�
�t2

�
2

� � (t)
 
�td (t) (1� � (t))� d(d(t)(1��(t)))

dt
(�t)2

2

+ (d(t)(1��(t)))2(�t)2
2

!
� (�t)2 � (t) (�e (t)� (t)� d (t) (1� � (t))) d (t) (1� � (t)) +O

�
�t3

�
simplifying

� (t)� � (t+�t) exp
�
�
Z t+�t

t
d (s) (1� � (s)) ds

�
= �t�e (t)� (t)

+
(�t)2

2

d (� (t) (�e (t)� d (t) (1� � (t))))
dt

+ � (t)
(�t)2

2

�
d (d (t) (1� � (t)))

dt
� (d (t) (1� � (t)))2

�
� (�t)2 � (t) (�e (t)� (t)� d (t) (1� � (t))) d (t) (1� � (t)) +O

�
�t3

�
and further

� (t)� � (t+�t) exp
�
�
Z t+�t

t
d (s) (1� � (s)) ds

�
= �t�e (t)� (t)

+
(�t)2

2

�
d (�e (t)� (t))

dt
� � (t)�e (t) d (t) (1� � (t))

�
+ (�t)2 � (t) (d (t) (1� � (t))) (d (t) (1� � (t))� �e (t)) +O

�
�t3

�
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Now perform a Taylor series expansion on the left-hand side:

�

Z t+�t

t
(r � t) d (r) (1� � (r)) exp

�
�
Z r

t
d (s) (1� � (s)) ds

�
dr

+ ��t exp

�
�
Z t+�t

t
d (s) (1� � (s)) ds

�
= �

(�t)2

2
d (t) (1� � (t))

+ ��t (1��td (t) (1� � (t))) +O
�
�t3

�
= ��t� � (�t)

2

2
d (t) (1� � (t)) +O

�
�t3

�
Equating the �t terms from the left and right hand sides leads one to conclude � = �e (t)� (t)�2,

substituting this into the remaing terms of the indi¤erence condition and moving all terms to the

left-hand side yields

� � (�t)
2

2
d (t) (1� � (t)) + (�t)

2

2
� (t)�e (t) d (t) (1� � (t))

� (�t)2 � (t) (d (t) (1� � (t))) (d (t) (1� � (t))� �e (t)) +O
�
�t3

�
= � (�t)2 � (t) (d (t) (1� � (t))) (d (t) (1� � (t))� �e (t)) +O

�
�t3

�
= 0

hence if d (t) > 0 and 0 < � (t) < 1 then the indi¤erence condition implies d (t) (1� � (t)) = �e (t)
and hence d�

dt = 0 when d (t) > 0 and
d�
dt � 0 for all t:

Lemma 9 �� (t) � max
�
��d;
��e
	

Proof. Suppose 9t : �� (t) < ��d then 9�t > 0 : �� (s) < ��d for s 2 [t��t; t], however this is a
contradiction as an informed player will strictly prefer to call a decision for all s 2 [t��t; t] and
hence �� (t) > ��d whixh is a contradiction that 9t : �� (t) < ��d. Suppose 9t : �� (t) < ��e then

9�t > 0 : �� (t��t) < ��e, however this implies an upper bound on the value of information is

(1� � (t))�2+� (t)�1 hence for any time s such that �� (s) < ��e ) e� (s) = 0 therefore d�
�(t)
dt � 0

so �� (t) � ��e:

Lemma 10 Suppose there exists an equilibrium fe� (t) ; d� (t) ; �� (t)g and times t00 > t0 such that
(�� (t0)� �� (t00))�2 > � (t00 � t0), then d� (t) = 0 for t 2 (t0; �t00) where �t00 = sup ftj�� (t) = �� (t00)g

Proof. Suppose that there exists [tl; tu] � [t0; t00] where d� (t) > 0 and �� (t) < � (t00) for t 2 [tl; tu] ;
note from lemma 8 we also have d��

dt = 0 over this domain. If there is more than one instance of

this take the last instance. Now at least one of the following two conditions hold

�
�� (tu)� ��

�
t00
��
�2 > �

�
t00 � tu

�
�
�� (tu)� ��

�
t00
��
�2 = �

�
t00 � tu

�
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or �
�� (tu)� ��

�
t00
��
�2 < �

�
t00 � tu

�
If the �rst holds then 9" < 0 such that for t 2 [tu � "; tu] the informed individual strictly prefers
to wait until t00 to call a decision. If the third holds then 9" < 0 : (�� (tu)� �� (t00 + "))�2 <
� (t00 � tu � ") and an informed agent strictly prefers to make an immediate decision at t = tu + "
than wait until tu which contradicts d (t) = 0 for tu < t < t00. If (�� (tu)� �� (t00))�2 = � (t00 � tu)
then the informed agent is indi¤erent between making a decision at tu and t00 however the agent

must also be indi¤erent between making a decision at any t 2 [tl; tu] since d (t) > 0. This is a

contradiction since a decision at tl � t < tu has payo¤

� 1

"+ �
+ (1� �� (t))�2 = � 1

"+ �
+ (1� �� (tu))�2

= � 1

"+ �
+
�
1� ��

�
t00
��
�2 � �

�
t00 � tu

�
> � 1

"+ �
+
�
1� ��

�
t00
��
�2 � �

�
t00 � t

�
for t < tu

Lemma 11 Suppose e� (t) < emax for some t then under large incentives � (T ) = ��d and under

small incentives � (T ) = ��e

Proof. Suppose not � (T ) > max
�
��d;
��e
	
. Let t̂ = inf ftje� (t) < emaxgNow being informed at

time t̂ has continuation value given by

V I
�
t̂
�
= � 1

"+ �
+ (1� � (T ))�2 � �

�
T � t̂

�
since the optimal strategy for an informed individual is to delay until the deadline since e (t) = emax
and � (t) > ��d for t � t̂. Now checking the continuation value for the uninformed individual.

V U
�
t̂
�
=

�
� 1

"+ �
+ (1� � (T ))�2 �

c

�

��
1� exp

�
��emax

�
T � t̂

���
+ exp

�
��emax

�
T � t̂

���
�1
"
+ (1� � (T ))�1

�
� �

�
T � t̂

�
hence incentives for e¤ort are

V I
�
t̂
�
� V U

�
t̂
�
=
c

�
+ exp

�
��emax

�
T � t̂

�� �
(1� � (T ))�2 + � (T )�1 �

c

�

�
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also

(1� � (T ))�2 + � (T )�1 >
��
1� ��d

�
�2 + ��d�1

�
>

��
1� ��e

�
�2 + ��e�1

�
=

c

�

by de�nition of ��d and ��e. Hence V
I
�
t̂
�
� V U

�
t̂
�
> c

� and 9� > 0 : V
I
�
t̂� �

�
� V U

�
t̂� �

�
> c

�

hence e�
�
t̂� �

�
= emax which is a contradiction of t̂ = inf ftje� (t) < emaxg :

The previous lemmas restrict the set of potential equilibria to those where � (t) is continuous,

decreasing and bounded below by max
�
��d;
��e
	
. Furthermore if decisions are taken prior to the

deadline then d�
dt = 0 during those times.

A.2.2 Proof for uniqueness of symmetric equilibria set under large incentives

De�ne V I� (t) and V U� (t)

V I� (t) = � 1

"+ �
+
�
1� ��d

�
�2

V U� (t) = � 1

"+ �
+

�
1� ��d

�
�2

2
�
�
c+

�

emax

�
1

2�

� exp (�2�emax (T � t))
"
��d�1 +

�
1� ��d

�
�2

2
�
�
c+

�

emax

�
1

2�

#

also note that

V I� (t)� V U� (t) =
�
1� ��d

�
�2

2
+

�
c+

�

emax

�
1

2�

+ e�2�(T�t)

"
��d�1 +

�
1� ��d

�
�2

2
�
�
c+

�

emax

�
1

2�

#

and provided T � t < Z we have
V I� (t)� V U� (t) > c

�

Also de�ne ~td (�) ; V I� (t; �) and V U� (t; �) :

~td (�) =
1

�
ln
� (t)
��d
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V I� (t; �) =

(
� 1
"+� + (1� � (t) exp (��emax (T � t)))�2 � � (T � t) for T � ~td (�) < t � T

V I�
�
t+ ~t

�
� �~t for T � ~td (�)� Z � t � T � ~td (�)

V U� (t; �) =

8>>>><>>>>:
(1� exp (��emax (T � t)))

�
� 1
"+� + (1� � (t) exp (��emax (T � t)))�2 �

c
�

�
+exp (��emax (T � t))

�
�1
" + (1� � (t) exp (��emax (T � t)))�1

�
� � (T � t)

for T � ~td (�) < t � T�
1� exp

�
��emax~t

�� �
V I�

�
t+ ~t

�
� c

�

�
+exp

�
��emax~t

�
V U�

�
t+ ~t

�
� �~t

for T � ~td (�)� Z � t � T � ~td (�)

note that

V I� (t; �)�V U� (t; �) =

8><>:
c
� + exp (��emax (T � t))

 
� (t) exp (��emax (T � t))�1

+(1� � (t) exp (��emax (T � t)))�2 � c
�

!
for T � ~td (�) < t � T

c
� + exp

�
��emax~t

� �
V I�

�
t+ ~t

�
� V U�

�
t+ ~t

�
� c

�

�
for T � ~td (�)� Z � t � T � ~td (�)

hence

V I� (t; �)� V U� (t; �) > c

�
for T � ~td (�)� Z < t � T

Lemma 12 The unique equilbrium strategies in any subgame starting at t with beliefs � (t) such

that t � T � Z � ~td (�) is e� (s) = emax for t < s � T d� (s) =
(

0 for t � s � ~td (�)
�2�2
��2�� for

~td (�) < s � T

Proof. Proceed by supposing 9s � t; " > 0 such that e� (r) < emax for r 2 [s� "; s): If this is the
case we can check the continuation values at bs where

bs = sup frje� (r) < 1g :
Given that e� (s) = emax for r � bs then the unique decision strategy is

d� (s) =

(
0 for bs � s � min�T; bs+ ~td (� (bs))	

�2�2
��2�� for bs+ ~td (� (bs)) < s � T if bs+ ~t (� (bs)) < T

since the only belief at which an informed individual will call a decision is � = ��d when the

uninformed agent is exerting maximum e¤ort. Hence we can write the continuation values as

V I� (bs; �), V U� (bs; �). The contradiction now comes from noting that for t > T � Z � ~td (�)
V I� (t; �) � V U� (t; �) > c

� hence 9� : V
I� (r; � (r)) � V U� (r; � (r)) > c

� and e
� (r) < emax for

r 2 [bs� �; bs) which means e� (r) is not an equilibrium strategy.

Lemma 13 Suppose T � Xd + Z then an upper bound on �� (t) is given by

�� (t) �
��d exp (� (T � Z � t)) for T �Xd � Z � t < T � Z

��d for T � Z � t � T
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Proof. Suppose 9t0�� (t0) > ��d exp (� (T � Z � t0)) for T �Xd �Z � t0 < T �Z or �� (t) > ��d for
T � Z � t0 � T then

9 (s; �� (s)) 2

8<: (r (�) ; �) jr (�) = T �Xd � Z + 1
�emax

ln 1�

+

�
t0 �

�
T �Xd � Z + 1

�emax
ln 1�

��
; 
 2 (0; 1) ; � 2 [� (t) ; 1]

9=; :
Now s > T � Z � ~td (�� (s)) hence the unique equilibrium of the subgame starting from (s; �� (s))

is given by Lemma 12. However bayesian beliefs b�� (r) in this subgame reach
b�� (r) = �� �t0� atr = (T �Xd � Z)+ 1

�emax
ln

1

�� (t0)
+
 (s)

�
t0 � (T �Xd � Z) +

1

�emax
ln

1

�� (t0)

�

where 
 (s) =
s�(T�Xd�Z)+ 1

�emax
ln 1

��(s)
t0�(T�Xd�Z)+ 1

�emax
ln 1

��(t0)
< 1 hence r < t and b�� (t0) > �� (t0) hence �� (t) is not

part of a Perfect Bayesian equilibrium.

Together with lemma 9 this uniquely determines � (t) = ��d for t � T � Z if T � Xd + Z

Lemma 14 Suppose T � Xd + Z then a lower bound on �� (t) is given by

�� (t) �
��d for t � T � Z

��d + � (T � Z � t) for T � Yd � Z � t < T � Z
1 for t � T � Yd � Z

Proof. As noted above � (t) = ��d for t � T � Z if T � Xd + Z is uniquely determined. Now

suppose 9s : � (s) < 1 for a s < T �Yd�Z or � (s) < ��d+� (T � Z � s) for T �Yd�Z � t < T �Z.
If d (t) = 0 for s � t < T � Z there is an immediate contradiction as informed individuals would
strictly prefer to call an immediate decision. Hence the only way this could be part of an equilibrium

is if d (t) 6= 0 for a subset of the interval [s; T � Z]. Suppose that there exists [tl; tu] � [s; T � Z]
where d� (t) > 0 and �� (t) < ��d for t 2 [tl; tu] ; note from lemma 8 we also have d��

dt = 0 over this

domain. If there is more than one instance of this take the last instance. Given this interval one of

the following two conditions hold

�
�� (tu)� ��d

�
�2 > � (T � Z � tu)�

�� (tu)� ��d
�
�2 = � (T � Z � tu)

or �
�� (tu)� ��d

�
�2 < � (T � Z � tu)

If the �rst holds then 9" < 0 such that for t 2 [tu � "; tu] the informed individual strictly prefers to
wait until T �Z to call a decision. If the third holds then

�
�� (tu)� ��d

�
�2 < � (T � Z � tu) and an

informed agent strictly prefers to make an immediate decision at t = tu than wait until T �Z which
contradicts d (t) = 0 for tu < t < T � Z. If

�
�� (tu)� ��d

�
�2 = � (T � Z � tu) then the informed
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agent is indi¤erent between making a decision at tu and T � Z however the agent must also be

indi¤erent between making a decision at any t 2 [tl; tu] since d (t) > 0, this is a contradiction since
a decision at tl � t < tu has payo¤

� 1

"+ �
+ (1� �� (t))�2

= � 1

"+ �
+ (1� �� (tu))�2

= � 1

"+ �
+
�
1� ��d

�
�2 � � (T � Z � tu)

> � 1

"+ �
+
�
1� ��d

�
�2 � � (T � Z � t) for t < tu

Finally @s < T � Z : �� (s) = ��d as continuation values would be given by V I� (t) ; V U� (t) for the
subgame starting at s which would need to have the unique equilibrium e¤ort strategy e� (t) = 1

however as shown above V I� (t)� V U� (t) < c
� if t < T � Z hence this can not be an equilibrium.

These two lemmas provide an upper and lower bound on the values of �� (t) in equilibrium. The

proof for uniqueness now proceeds by showing that the only equilibrium strategies which support

values of � between these bounds are the ones given in the propositions.

Proof. i) Case 1: T < Xd
Informed strategy

d (t) = 0 for all t:

Uninformed strategy

e (t) = emax for all t.

Beliefs

� (t) = exp (��emaxt) for all t.
ii) Case 2: Xd � T < Xd + Z
Informed strategy

d (t) = 0 for t < Xd:

d (t) = �2�2
��2�� for t � Xd:

Uninformed strategy

e (t) = emax for all t.

Beliefs

� (t) = exp (��emaxt) for t < Xd.
� (t) = ��d for t � Xd:
Lemma 12 covers these �rst two cases.

iii) Case 3 Xd + Z < T < Yd + Z
Informed strategy

d (t) = 0 for t < T � Z:
d (t) = �2�2

��2�� for t � T � Z:
Uninformed strategy
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d (t) = 0 for all t:

e (t) satis�es

exp

�
��
Z t

0
e (s) ds

�
� ��d + (T � Z � t)

�

�2

and

exp

�
��
Z T�Z

0
e (s) ds

�
= ��d.

for t < T � Z:
e (t) = 1 for all t � T � Z:
Beliefs

� (t) = exp
�
��
R t
0 e (s) ds

�
for t < T � Z

� (t) = ��d for t � T � Z:
Lemmas 12, 14 and 13 determine the bounds on � (t) and that �� (t) = ��d; e

� (t) = emax for

t � T � Z: Lemma 10 implies that d (t) = 0 for t < T � Z which su¢ ces along with the earlier

lemmas the equilibrium strategy set.

iv) Case 4 T > Yd + Z
Informed strategy

d (t) = call for 0 � t � T � Yd � Z
d (t) = 0 for T � Yd � Z < t < T � Z:
d (t) = �2�2

��2�� for t � T � Z:
Uninformed strategy

d (t) = 0 for all t:

e (t) = �
c for 0 � t � T � Yd � Z

e (t) satis�es

exp

�
��
Z t

T�Yd�Z
e (s) ds

�
� ��d + (T � Z � t)

�

�2

and

exp

�
��
Z T�Z

T�Yd�Z
e (s) ds

�
= ��d.

for T � Yd � Z < t < T � Z:
e (t) = 1 for t � T � Z:
Beliefs

� (t) = 1 for 0 � t � T � Yd � Z
� (t) = exp

�
��
R t
T�Yd�Z e (s) ds

�
for T � Yd � Z < t < T � Z:

� (t) = ��d for t � T � Z:
Case 3 above covers the subgames for t > T �Z � bT remains to show that the above strategies

are unique for t � T � Z � bT : For t � T � Z � bT we have shown that � (t) = 1. First rule

out that e (t) = 0, if this were the case the continuation payo¤s would be V I (t) = � 1
"+� and

V U (t) = � 1
"+� �

c
� �

�
~t� t

�
� where ~t is the next time e (t) > 0, therefore the strategy e (t) = 0

is not optimal as V I � V U > c
� : Implying that 0 < e (t) � �

��2
and individuals make decision
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immediately V I (t) = � 1
"+� so V

U (t) = � 1
"+� �

c
� for t � T � Z � bT :

V U (t) =

Z t+�t

t

�
� 1

"+ �
� c

Z s

t
e (r) dr � � (s� t)

�
2�e (s) exp

�
�2�

Z s

t
e (r) dr

�
ds

+exp

�
�2�

Z t+�t

t
e (r) dr

��
V U (t+�t)� ��t� c

Z t+�t

t
e (r) dr

�
=

�
� 1

"+ �
� c

2�

��
1� exp

�
�2�

Z t+�t

t
e (r) dr

��
�
Z t+�t

t
� (s� t) 2�e (s) exp

�
�2�

Z s

t
e (r) dr

�
ds

+exp

�
�2�

Z t+�t

t
e (r) dr

��
V U (t+�t)� ��t

�
= � 1

"+ �
� c

�
+
c

2�

�
1� exp

�
�2�

Z t+�t

t
e (r) dr

��
�
Z t+�t

t
� (s� t) 2�e (s) exp

�
�2�

Z s

t
e (r) dr

�
ds

� exp
�
�2�

Z t+�t

t
e (r) dr

�
��t

hence

c

2�

�
1� exp

�
�2�

Z t+�t

t
e (r) dr

��
=

Z t+�t

t
� (s� t) 2�e (s) exp

�
�2�

Z s

t
e (r) dr

�
ds

+exp

�
�2�

Z t+�t

t
e (r) dr

�
��t

c

2�
2�e (t)�t+O

�
�t2

�
= ��t+O

�
�t2

�
hence we require that e (t) = �

c :

A.2.3 Proof for uniqueness of symmetric equilibria set under small incentives

De�ne
~te (�) =

1

�
ln
�
��e

V I�e (t; �) = � 1

"+ �
+ (1� � exp [��emax (T � t)])�2 � �~te (�)

V U�e (t; �) = (1� exp [��emax (T � t)])
�
� 1

"+ �
+ (1� � exp [��emax (T � t)])�2 �

c

�

�
+ exp [��emax (T � t)]

�
�1
"
+ (1� � exp [��emax (T � t)])�1

�
� �~te (�)
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Also

V I�e (t; �)� V U�e (t; �) =
c

�

+ exp [��emax (T � t)]
�
� exp [��emax (T � t)]�1 + (1� � exp [��emax (T � t)])�2 �

c

�

�
V I�e (t; �)� V U�e (t; �) >

c

�

provided

t < ~te (�)

Lemma 15 The unique equilbrium strategies in any subgame starting at t with beliefs � (t) such

that t � T � ~te (�) is e� (s) = emax for t � s � T d� (s) = 0:

Proof. Proceed by supposing 9s � t; " > 0 such that e� (r) < emax for r 2 [s� "; s): If this is the
case we can check the continuation values at bs where

bs = sup frje� (r) < 1g :
Given that e� (r) = emax for r � bs then the unique decision strategy is

d� (r) = 0

since the only belief at which an informed individual will call a decision is ��d < when the uninformed

agent is exerting maximum e¤ort. Hence we can write the continuation values as V I�e (bs; � (bs)),
V U�e (bs; � (bs)). The contradiction now comes from noting that t > T � ~te (�)) bs > T ��~te (� (bs))
hence V I�e (bs; � (bs))�V U�e (bs; � (bs)) > c

� thus 9� : V
I�
e (r; � (r))�V U�e (r; � (r)) > c

� and e
� (r) < emax

for r 2 [bs� �; bs) which means e� (r) is not an equilibrium strategy.

Lemma 16 Suppose T � Xe then an upper bound on �� (t) is given by

�� (t) � 1 for t < T �Xe
��e exp (� (T � t)) for T �Xe � t < T

Proof. Suppose 9t0; �� (t0) > ��e exp (� (T � t)) for T �Xe � t0 < T then

9 (s; �� (s)) 2

8<: (r (�) ; �) jr (�) = T �Xe + 1
�emax

ln 1�

+

�
t0 �

�
T �Xe + 1

�emax
ln 1�

��
; 
 2 (0; 1) ; � 2 [� (t0) ; 1]

9=;
Now s > T � ~te (�� (s)) hence the unique equilibrium of the subgame starting from (s; �� (s)) is

given by Lemma 16. However bayesian beliefs b�� (r) in this subgame reach b�� (r) = �� (t0) at
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r = (T �Xe) + 1
�emax

ln 1
��(t0) + 
 (s)

�
t0 � (T �Xe) + 1

�emax
ln 1

��(t0)

�
where


 (s) =
s� (T �Xe) + 1

�emax
ln 1

��(s)

t0 � (T �Xe) + 1
�emax

ln 1
��(t0)

< 1

hence r < t0 and b�� (t0) > �� (t0) hence �� (t0) is not part of Perfect Bayesian Equilibrium.
This uniquely determines � (T ) = ��e for T � Xe:

Lemma 17 Suppose T � Xe then a lower bound on �� (t) is given by

�� (t) �
��e + � (T � t) for T � Ye � t < T

1 for t � T � Ye

Proof. As noted above � (T ) = ��e if T � Xe. Now suppose 9s : � (s) < 1 for a s < T � Ye
or � (s) < ��e + � (T � s) for T � Ye � t < T . If d (t) = 0 for s � t < T there is an immediate

contradiction as informed individuals would strictly prefer to call an immediate decision than wait

until T . Hence the only way this could be part of an equilibrium is if d (t) 6= 0 for a subset of the
interval [s; T ]. Suppose that there exists [tl; tu] � [s; T ] where d� (t) > 0 and �� (t) < � (T ) for

t 2 [tl; tu] ; note from lemma 8 we also have d��

dt = 0 over this domain. If there is more than one

instance of this take the last instance. Given this interval one of the following two conditions hold

�
�� (tu)� ��e

�
�2 > � (T � tu)�

�� (tu)� ��e
�
�2 = � (T � tu)

or �
�� (tu)� ��e

�
�2 < � (T � tu)

If the �rst holds then 9" < 0 such that for t 2 [tu � "; tu] the informed individual strictly prefers to
wait until T to call a decision. If the third holds then 9"0 < 0 :

�
�� (tu + "0)� ��e

�
�2 < � (T � tu � ")

and an informed agent strictly prefers to make an immediate decision at t = tu+ "0 than wait until

tu which contradicts d (t) = 0 for tu < t < T . If (�� (tu)� �� (T ))�2 = � (T � tu) then the
informed agent is indi¤erent between making a decision at tu and T however the agent is also be

indi¤erent between making a decision at any t 2 [tl; tu] since d (t) > 0, this is a contradiction since
a decision at tl � t < tu has payo¤

� 1

"+ �
+ (1� �� (t))�2

= � 1

"+ �
+ (1� �� (tu))�2

= � 1

"+ �
+ (1� �� (T ))�2 � � (T � tu)

> � 1

"+ �
+ (1� �� (T ))�2 � � (T � t) for t < tu
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Where the �nal line is the payo¤ from waiting at time t until T which is strictly worse than

an immediate decision. Finally we need to check that � (t) < ��e = � (T ) for t < T . If not

9s < T : �� (s) < ��e and
d�
dt = 0 for t � s. This immediately implies that the e¤ort and decision

strategies are e� (t) = �
���e�2

and d� (t) = �

(1���e)��e�2
for t � s. Now calculating the continuation

values at s

V I� (t) = � 1

"+ �
+
�
1� ��e

�
�2

V U� (t) = � 1

"+ �
+

�
1� ��e

�
�2

2
�
�
c+

�

e� (t)

�
1

2�

� exp (�2�e� (t) (T � t))
"
��e�1 +

�
1� ��e

�
�2

2
�
�
c+

�

e� (t)

�
1

2�

#

also note that

V I� (t)� V U� (t) =

�
1� ��e

�
�2

2
+

�
c+

�

e� (t)

�
1

2�

+exp (�2�e� (t) (T � t))
"
��e�1 +

�
1� ��e

�
�2

2
�
�
c+

�

e� (t)

�
1

2�

#

V I� (t)� V U� (t) =
�2 +

c
�

2
+ exp (�2�e� (t) (T � t))

� ��e�1
2

�
��e�2
2

�

lim
t!T

V I� (t)� V U� (t) =
��e�1 +

c
�

2
<
c

�

where the �nal inequality follows from the de�nition of ��e. Hence e
� (s) > 0 is not an equilibrium

strategy and hence @s < T : �� (s) < ��e

Proof. i) Case 1: T < Xe
Informed strategy

d (t) = 0 for all t:

Uninformed strategy

d (t) = 0 for all t:

e (t) = 1 for all t.

Beliefs

Beliefs evolve according to � (t) = exp
�
��
R t
0 e (s) ds

�
for all t.

Follows immediately from Lemma 15.

ii) Case 2: Xe < T < Ye
Informed strategy

d (t) = 0 for all t:

Uninformed strategy

d (t) = 0 for all t:
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e (t) satis�es

exp

�
��
Z t

0
e (s) ds

�
� �e + (T � t)

�

�2

and

exp

�
��
Z T

0
e (s) ds

�
= ��e.

Beliefs

Beliefs evolve according to � (t) = exp
�
��
R t
0 e (s) ds

�
for all t.

Lemma 10 and � (T ) = ��e (as shown above from Lemmas 15 and 16) imply that d (t) = 0 for

all t. The restriction on e� (t) comes from Lemma 17. Beliefs are then given by Bayesian updating.

iii) Case 3: T > 1
� (1� ��e)�2

Informed strategy

d (t) =

(
call for t < T � Ye
0 for t � T � Ye

Uninformed strategy

d (t) = 0 for all t:

e (t) = �
c for t < T � Ye

e (t) satis�es

exp

�
��
Z t

T�Ye
e (s) ds

�
� �e + (T � t)

�

�2

and

exp

�
��
Z T

T�Ye
e (s) ds

�
= ��e.

for t � T � Ye
Beliefs

� (t) = 1 for t < T � Ye:
� (t) = exp

�
��
R t
0 e (s) ds

�
for t � T � Ye:

The proof for Case 2 encompasses the subgames for t � T � Ye. The uniqueness for t < T � Ye
is completely analogous to the proof in case 4 for large incentives of the uniqueness of equilibrium

strategies for t < T � Yd � Z.
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