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Abstract

The paper examines Internet-related changes in the used book market. A model in
which sellers wait for high-value consumers brings out two expected effects: improvements
in the match-quality between buyers and sellers raise welfare (and may lead to higher raise
prices); meanwhile increased competition brings down prices especially at the lower end of
the distribution. The paper examines differences between offline and online prices in 2009
and between online prices in 2009 and 2013 and finds several features consistent with the
model predictions. Most notably, online prices are higher than offline prices, suggesting a
substantial match-quality effect. The paper develops a framework for structural estimation
using the available price and quantity data. Structural estimates suggest that the shift to
Internet sales substantially increased both seller profits and consumer surplus.



The Internet is a nearly perfect market because information is instantaneous

and buyers can compare the offerings of sellers worldwide. The result is fierce

price competition, dwindling product differentiation, and vanishing brand loy-

alty. Robert Kuttner, Business Week, May 11, 1998.

The explosive growth of the Internet promises a new age of perfectly competitive

markets. With perfect information about prices and products at their fingertips,

consumers can quickly and easily find the best deals. In this brave new world,

retailers’ profit margins will be competed away, as they are all forced to price at

cost. The Economist, November 20, 1999

1 Introduction

The empirical literature on Internet pricing has found from the beginning that online prices

did not have the dramatic price-lowering and law-of-one-price-reinforcing effects that some

had forecast. Brynjolfsson and Smith (2000), for example, found that online book and

CD prices were just 9-16% lower than offline prices (and price dispersion was actually

greater online), and Baye, Morgan and Sholten (2004) found an average range of over

$100 for certain consumer electronics products and noted that the more refined law-of-one-

price prediction that at least the two lowest prices in a market should be identical fails

spectacularly in their dataset.1 We note here that the used book market appears to be

an extreme example on this dimension – online prices are in fact typically higher than

offline prices.2 The failure of the Internet to bring about low and homogeneous prices has

often been seen (including in Ellison and Ellison (2009)) as an indication that Internet retail

markets are not working as well as one might have expected. The absence of a price decline,

however, can also have a much more agreeable cause: if the Internet allows consumers to

find goods that are better matched to their tastes, then there is effectively an increase in

demand, which would lead to higher prices in many monopolistic and competitive models.

In this paper, we explore this improvement-in-match-quality idea in the context of the

Internet market for used books. We develop some simple models of how reduced search

costs would affect price distributions in a model with competition and match-quality effects,

note that several predictions of the model seem to be borne out in our data, discuss how a

1We borrowed the quotes at the start of our paper from these two papers.
2The first onlinve vs. offline comparison paper we have found, Bailey (1998), reported that online prices

for CDs were higher than offline prices, but have not seen such a finding in any later papers.
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version of the model can be structurally estimated, and present estimates suggesting that

Internet sales of used books may be providing substantial profit and welfare benefits.

It seems natural that many used book dealers were early adopters of Internet sales in

the early to mid 1990’s. First, many potential purchases of used or out-of-print books were

presumably never consummated due to time cost of finding books in physical bookstores in

the pre-Internet era. The Internet promised a solution to this inefficiency through search

technologies. In addition, books were particularly amenable to these search technologies

and remote sales because they are both easily describable and easy to ship. In the second

half of the 1990’s, web sites such as Bibliofind, AbeBooks, Bookfinder, and Alibris developed

web sites that aggregated listings from multiple bookstores, helping savvy consumers find

the books they wanted and compare prices. AbeBooks, which initially just aggregated

listings of physical stores in Victoria B.C., grew to be the largest aggregator (in part by

acquiring Bookfinder) with 20 million listings by 2000 and 100 million by 2007. Alibris is

of comparable size. In the late 2000’s there was a second substantial change after Amazon

acquired AbeBooks. The 2008 acquisition had little immediate impact – Amazon initially

left AbeBooks to operate as it had. But in 2010 they launched a program to allow used

book dealers to have their AbeBooks listings also appear on Amazon. The addition of

“buy used” links on Amazon could potentially have had a large effect on the number of

consumers who viewed aggregated used book listings.

To help understand how the shift to online sales might affect price distributions and sales

patterns in a market like that for used books, Section 2 presents some simple models which

cast the selling of unique items as a waiting-time problem: the firm sets a price p for its

item, and consumers with valuations drawn from a distribution F arrive at a known Poisson

rate γ. In a monopoly model we note that prices increase when the arrival rate is higher and

when the distribution has a thicker upper tail. In a complete-information oligopoly model

we note that a second important force, price competition, pulls prices down, especially in

the lower tail. And then we discuss a hybrid model along the lines of Baye and Morgan

(2001) in which some “shoppers” see all prices and some “nonshoppers” only visit a single

firm. We note that there can be a pure-strategy dispersed-price equilibrium if firms have

heterogeneous nonshopper arrival rates and discuss the form of the first-order condition.

We note that a shift to online sales may have different effects at different parts of the

price distribution – competition can pull down prices at the bottom end of the distribution

even as match quality effects increase prices at the high end. The model also suggests a

number of additional patterns that would be expected when comparing price distributions
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for different types of books and as the use of price comparison services grew.

Section 3 discusses the dataset. The data include information on 335 titles which we

first found at physical used book stores in 2009. The set of titles was chosen to allow us to

separately analyze three distinct types of books. In addition to the “standard” set of mostly

out-of-print titles that fill most of the shelves at the stores we visited, we oversampled books

that are of “local interest” to the area where the store is located, and we label a number of

books found at a large number of Internet retailers as “popular.” We collected offline prices

and conditions for these books in 2009. And we collected prices and conditions for copies of

the same books listed online via AbeBooks.com in 2009, 2012, and 2013. The 2009 online

data collection lets us compare contemporaneous online and offline prices. The 2012 data

collection lets us examine how prices compare before and after Amazon’s incorporation

of the AbeBooks listings increased the size of the searcher population. The 2013 data

collection provides something akin to demand data (which we infer by looking at whether

copies listed in November 2012 are no longer listed for sale two months later.)

Section 4 presents descriptive evidence on online and offline prices. Our most basic

observation is that online prices are typically higher than offline prices. Indeed this holds

in a very strong sense: for more than half of our “standard” titles, the one offline price that

we found was below the single lowest online price even when one does not count the true

cost of shipping in the online price. We then present a number of more detailed findings

examining additional predictions of the theory and find a number of striking facts that

support the model’s applicability. Among these are that the online price distribution for

standard titles has a much thicker upper tail than the offline version, that offline and online

prices are more similar for “local interest” titles (as if the Internet is making the market

for all titles look more like the market for local interest titles), and that between 2009 and

2012 there has been growth in the number of sellers listing very low prices with strikingly

little change in the upper tail. We note also that demand appears to be low and fairly price

sensitive: the single lowest-priced listing has a substantial chance of being sold in less than

two months, but the average title will not sell for years.

Observed price differences between offline and online books can be thought of as reflect-

ing the net of two effects: a match-quality effect increases the effective demand for books

and a competition effect pulls prices down. Estimating profit and/or social welfare requires

separately estimating the magnitudes of the two gross effects. In section 5 we develop

a structural approach to provide such estimates. We begin by describing an econometric

model along the lines of the theoretical model of section 2: shoppers and nonshoppers arrive
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at a Poisson rates, firms are heterogeneous in the arrival processes they face, and products

are sufficiently differentiated so that pure strategy equilibria exist. In a parsimonious model

we note that there is a one-to-one correspondence between prices and arrival rates. This

makes it possible to back out firm-specific arrival rates from observed prices, which makes

the model relatively easy to estimate via simulated maximum likelihood and lets us avoid

some difficulties associated with endogeneity while using our demand data. The structural

estimates indicate that arrival rates are substantially higher at online stores than offline

stores (although arrival rates are still very low for some titles), that demand includes a

very price-sensitive “shopper” segment, and that firms also receive a (very small) inflow

of much less price sensitive nonshoppers. Our profit and welfare calculations indicate that

both book dealers and consumers are benefitting from the shift to online sales: profits and

consumer surplus are estimated to be substantially higher in the online environment than

in the 2009 offline world. Per-listing profit levels do, however, appear to have declined by

about 25% between 2009 and 2012, perhaps due to the increased use of price comparison

tools.

Our paper is related to a number of other literatures, both theoretical and empirical.

One related empirical literature explores facts similar to those that motivate our analysis –

comparing online and offline prices for various products and documenting the degree of on-

line price dispersion. One early study, Bailey (1998), collected prices from samples of online

and offline retailers in 1997 and reported that online prices for software, books, and CDs

were 3% to 13% higher on average than offline prices. Later studies like Brynjolfsson and

Smith (2000), Clay, Krishnan, and Wolff (2001), Baye, Morgan, and Scholten (2004), and

Ellison and Ellison (2009), however, report that online prices are lower than offline prices.

All of these studies note that there is substantial dispersion in online prices. Another (much

smaller) related literature is that providing reduced-form evidence that price distributions

appear consistent with models of heterogeneous search. Two noteworthy papers here are

Baye, Morgan, and Scholten (2004), which discusses the implications of several theoretical

models and notes that dispersion is empirically smaller when the number of firms is larger,

and Tang, Smith, and Montgomery (2010), which documents that prices and dispersion

are lower for more frequently searched books. A number of other papers explore other

issues in the book market including Chevalier and Goolsbee (2003), Brynjolfsson, Hu, and

Smith (2003), Ghose, Smith, and Telang (2006), and Chevalier and Goolsbee (2009). The

focus of Brynjolfsson, Hu, and Smith (2003) is most similar in that it also estimates welfare

gains from Internet book sales. In their case, the consumer surplus improvement results
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from Amazon making books available to consumers that they would have been unable to

purchase at traditional brick and mortar stores.

On the theory side, although the model can be thought of as the simplest special case

of the dynamic inventory model of Arrow, Harris, and Marschak (1951), and similar stop-

ping time problems for the case where consumers make the price offers can be found going

back at least to Karlin (1962) amd McCall (1970), and there are substantial literatures

covering more complex dynamic monopoly problems with inventory costs, finite time hori-

zons, learning about demand, etc., we have not been able to find a reference for our simple

initial analysis of monopoly pricing with Poisson arrivals. Our subsequent consideration

of oligopoly pricing is influenced by the the literture on pricing and price dispersion with

consumer search including Salop and Stiglitz (1977), Reinganum (1979), Varian (1980),

Burdett and Judd (1983), Stahl (1989), and Baye and Morgan (2001).3 Relative to many

of these papers, we simplify our model by focusing exclusively on the firm pricing problem

without rationalizing the consumer search. Our approach of focusing on pure-strategy equi-

libria with heterogeneous firms harkens back to Reinganum (1979), although the structure

of the population is more similar to that of Baye and Morgan (2001).

Another active recent literature demonstrates how one can back out estimates of search

costs from data on price distributions under rational search models. An early paper was

Sorensen (2001), which performed such an estimation in the context of prescription drug

prices. Hortacsu and Syverson (2004) examine index mutual funds. Hong and Shum (2006)

discuss both a nonparametric methodology and an application involving used book prices.

Subsequent papers extending the methodology and examining other applications include

Moraga Gonzalez and Wildenbeest (2008), Kim, Albuquerque, and Bronnenberg (2010),

Brynjolfsson, Dick, and Smith (2010), De los Santos, Hortacsu, and Wildenbeest (2012)

(which also studies consumers shopping for books), Moraga Gonzalez, Sandor, and Wilden-

beest (2013), and Koulayev (2013). Relative to this literature, we will not try to estimate

search costs to rationalize demand – instead we focus just on estimating a consumer arrival

process from price distributions (and some quantity data) in a model that allows for sub-

stantial firm-level heterogeneity, in contrast to much of this literature which assumes firms

are identically situated. Broadly speaking, our motivation is also quite different: these

papers focus on estimating the distribution of search costs which rationalizes price distri-

butions whereas we are most interested in what we can learn about consumer demand and

welfare from those price distributions (and some quantity data).

3See Baye, Morgan, and Scholten (2006) for a survey that brings together many of these models.
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2 A Model

In this section we will discuss simple monopoly and duopoly models that can be used to

think about the problems faced by traditional and online used book dealers. The models

provide some predictions about offline and online prices that will be tested in section 4 and

motivate the structural model that we will estimate in section 5.

2.1 A monopoly model

We begin with a simple dynamic monopoly model. One can think of it as a model of a

brick-and-mortar bookstore or an Internet store serving customers who are browsing on its

particular website. It will also serve as a starting point for our subsequent analysis of an

oligopoly model in which some consumers also search across stores.

Suppose that a monopolist has a single unit of a good to sell. Consumers randomly

arrive at the monopolist’s store according to a Poisson process with rate γ. The value v

of the each arriving consumer is an independent draw from a distribution with CDF F (v).

Consumers buy if and only if their value exceeds the firm’s price so the probability that

the consumer will buy is D(p) = 1 − F (p). We assume that limp→∞ pD(p) = 0 to ensure

that optimal prices will be finite.

One can think about the dynamic optimal monopoly price in two different ways. One

is simply to compute the discounted expected profit π(p) obtained from any fixed price p.

Intuitively, expected profit is simply E(pe−rt̃) where t̃ is the random variable giving the

time at which the good is sold and r is a discount rate. Consumers willing to pay at least

p arrive at Poisson rate γD(p), which we will call the “net arrival rate.”4 The density of

the time of sale is then f(t|p) = γD(p)e−γD(p)t and the expected profit is

π(p) =

∫ ∞
0

pe−rtf(t|p)dt

=

∫ ∞
0

pe−rtγD(p)e−γD(p)tdt

=
γpD(p)

r + γD(p)

Hence, one way to think of the dynamic optimal monopoly price pm is as the maximizer of

this expression:

pm = argmax
p

π(p) = argmax
p

γpD(p)

r + γD(p)
.

4We will use the term “net arrival” to refer to the arrival of potential customers who actually purchase
whereas we will still use the non-modified term “arrival” to refer to the arrival of potential customers
regardless of their willingness to pay.
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Note that expected profits are zero in both the p→ 0 and p→∞ limits, so an interior opti-

mum exists if D(p) is continuous. The monopoly price will satisfy the first-order condition

obtained from differentiating the above expression if D(p) is differentiable. Note also that

π(p) only depends on γ and r through the ratio γ/r. This is natural because the scaling of

time is only meaningful relative to these two parameters, arrival rate and discount rate.

The second way to think about the dynamic profit maximization problem is as a dynamic

programming problem. Let π∗ (which depends on γ, r, and D()) be the maximized value

of π(p). This is the opportunity cost that a monopolist incurs if it sells the good to a

consumer who has arrived at its shop. Hence, the dynamic optimal monopoly price is also

the solution to

pm = argmax
p

(p− π∗)D(p).

Looking at the problem from these two perspectives gives two expressions relating the

dynamic monopoly price to the elasticity of demand:

Proposition 1 Suppose D(p) is differentiable. The dynamic monopoly price pm and the

elasticity of demand ε at this price are related by

pm − π∗

pm
= −1

ε
,

and

ε = −
(

1 +
γ

r
D(pm)

)
.

Proof

The first expression is the standard Lerner index formula for the optimal monopoly

markup. The second can be derived from the first by substituting γpmD(pm)
r+γD(pm) for π∗ and

solving for ε. It also follows directly from the first order condition for maximizing π(p):

rpmD′(pm) + rD(pm) + γD(pm)2 = 0.

QED

Remarks:

1. In contrast to the static monopoly pricing problem with zero costs where a monopolist

chooses p so that ε = −1, the monopolist in this problem prices on the elastic portion

of the demand curve to reflect the opportunity cost of selling the good.
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2. The expressions in Proposition 1 are first-order conditions that one can solve to obtain

expressions for the monopoly price given a particular D(p). For example, if values

are uniform on [0, 1] so D(p) = 1 − p, they can be solved to find pm =

√
1+(γ/r)

1+
√

1+(γ/r)
.

Another fairly tractable example is a truncated constant elasticity demand curve:

D(p) = min{1, hp−η}. Here the monopoly price is

pm =


(

h
η−1

)1/η (γ
r

)1/η
if γ

r > η − 1

h1/η otherwise

One may be interested in comparative statics results on this dynamic monopoly price.

If, for instance, one thinks that a difference between offline and online used bookstores

is that more consumers may visit online stores, it would be interesting to know how the

monopoly price varied with arrival rate.

Proposition 2 The monopoly price pm is weakly increasing in γ
r .

Proof

As noted above, the monopoly price can be defined by

pm = argmax
p

(p− π∗(γ/r))D(p).

The function π∗(γ/r) is increasing because π(p, γ/r) is increasing in γ/r for all p. Hence,

the function (p − π∗(γ/r))D(p) has increasing differences in γ/r and p and the largest

maximizer is increasing in γ/r. QED

Remarks:

1. When the arrival rate γ is small, the monopolist’s problem is approximately that of a

standard monopolist with zero costs, so the monopoly price approaches the maximizer

of pD(p).

2. The behavior of the monopoly price in the γ/r →∞ limit depends on the support of

the consumer value distribution. When the value distribution has an upper bound,

the monopoly price will approach the upper bound. When there is no upper bound on

consumer valuations, the monopoly price will go to infinity as γ/r →∞. To see this,

note that for any fixed p and ε, π(p + ε, γ/r) = p+ε
1+r/(γD(p+ε)) → p + ε as γ/r → ∞.

Hence, the monopoly price must be larger than p for γ/r sufficiently large.
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3. The rate at which pm increases in γ/r depends on the thickness of the upper tail

of the distribution of consumer valuations. In the uniform example, the monopoly

price increases rapidly when γ/r is small, but the effect also diminishes rapidly: pm

remains bounded above by one as γ/r → ∞ and converges to this upper bound at

just a 1/
√
γ/r rate. In the truncated constant elasticity example the monopoly price

is proportional to (γ/r)1/η. In the extremely thick-tailed version of this distribution

with η slightly larger than 1, the monopoly price is almost proportional to the arrival

rate. But when the tail is thinner, i.e., when η larger, the monopoly price increases

more slowly. When demand is exponential, D(p) = e−γp, the monopoly price is

bounded above by a constant times log(γ/r).

In addition to different arrival rates of potential consumers, online and offline used book

dealers may also differ in the distribution of consumer values. For example, the probability

that a consumer searches for a particular book online may be increasing in the consumer’s

valuation for the book, whereas consumers who are browsing in a physical bookstore will be

equally likely to come across titles for which they have relatively low and high valuations.

One way to capture such an effect would be to assume that offline searchers’ valuations

are random draws from the full population f(v) whereas online searchers are more likely to

have valuations drawn for the upper part of the distribution. In particular, the likelihood

that a consumer with value v searches online for a title is an increasing function q(v) of his

or her valuation for that title. The density of valuations in the online searcher population

will then be g(v) = af(v)q(v) for some constant a. Note that g is higher than f both in

the sense of first-order stochastic dominance and in having a thicker upper tail: 1−G(x)
1−F (x) is

increasing in x. The following proposition shows that shifts in the distribution satisfying

the latter condition increase the monopoly price holding the arrival rate constant.

Proposition 3 Let pm(γ/r, F ) be the monopoly price when the distribution of valuations

is F (x). Let G(x) be a distribution with 1−G(x)
1−F (x) increasing in x. Then pm(γ/r,G) ≥

pm(γ/r, F ).

Proof

Let k = 1−F (pm(γ/r,F ))
1−G(pm(γ/r,F )) be the ratio of demands under the two distributions when the

firm charges pm(γ/r, F ). The desired result follows from a simple two-step argument:

pm(γ/r,G) ≥ pm(kγ/r,G) ≥ pm(γ/r, F ).
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The first inequality follows from Proposition 2 because k ≤ 1. (This follows because

k ≤ 1−F (0)
1−G(0) = 1.) The second holds because π(p; kγ/r,G) and π(p; γ/r, F ) are identical

at pm(γ/r, F ) and their ratio is increasing in p. Hence for any p < pm(γ/r, F ) we have

π(p; kγ/r,G) ≤ π(p; γ/r, F ) ≤ π(pm(γ/r, F ); γ/r, F ) ≤ π(pm(γ/r, F ); kγ/r,G). QED

The monopoly model with constant elasticity demand also has an interesting welfare

property that will come up in our empirical implementation. Given the formula we saw

earlier, pm =
(

h
η−1

)1/η (γ
r

)1/η
, any observed price can be rationalized by a variety of (γ, h, η)

combinations, e.g. a high price could indicate that demand is very elastic and arrival rates

are high or that demand is less elastic but arrival rates are low. It turns out, however, that

welfare is identical across all such combinations.

Proposition 4 Suppose that the distribution of consumer valuations is such that demand

has the truncated constant elasticity form and that the monopolist’s price is not at the kink

in the demand curve. Then expected social welfare in the model is given by E(W ) = pm.

Proof

With constant elasticity demand, E(v − p|v > p) = p
η−1 . Hence,

E(W ) =

∫ ∞
0

(
pm +

pm

η − 1

)
pme−rtγD(pm)e−γD(pm)tdt =

γD(pm)

r + γD(pm)
pm
(

1 +
1

η − 1

)
.

The FOC for profit maximization, rpmD′(pm)+rD(pm)+γD(pm)2 = 0, can be manipulated

to show that r+γD(pm) = rη and γD(pm) = rη−r. The result then follows from simplifying

the formula for welfare given above. QED

On the positive side, the result can be seen as a powerful tool for estimating social

welfare: if we are willing to assume that firms are profit maximizing and demand has

the constant elasticity form, then we can immediately infer expected social welfare just

from observing a firm’s price. Obviously, these are both strong assumptions. In particular,

welfare would not be parameter-independent if demand belonged to a different family. Here,

the result can also be thought of as providing the cautionary observation that estimated

welfare will be approximately equal to the price of the good unless demand estimation is

sufficiently flexible so that E(v − pm|v > pm) is not approximately equal to what it would

be with a constant elasticity demand curve that matched the estimated demand elasticity

at the observed price.

10



2.2 An oligopoly model

We now discuss related oligopoly models. We begin with a simple symmetric full-information

model which serves as a building block. And we then discuss an asymmetric oligopoly model

in which firms serve both comparison shoppers and a local market.

Suppose that there are N firms in the market. Suppose there is a flow with arrival

rate γ0 of shoppers who visit all N firms. Assume that shoppers buy from firm i with

probability D(pi, p−i) and that this demand function is symmetric, twice-differentiable,

weakly decreasing in pi, and weakly increasing in p−i. Assume also that the set of feasible

prices is a compact interval so argmaxp pD(p, p−i) always exists. As in the monopoly model,

we are interested in modeling a firm endowed with a single unit of the good to sell that

faces a dynamic waiting-time problem. In the oligopoly case it is natural that the dynamic

problem would have a time-varying component: a firm should anticipate that competition

could suddenly become more or less intense as additional sellers enter or current sellers sell

their goods. Optimal pricing in such a setting could be an interesting topic to explore, but

in this paper we will explore a simpler stationary model: we assume that whenever one of

a firm’s rivals makes a sale, the rival is instantaneously replaced by an identical entrant.

Profits in the dynamic model then relate to those of the static model as in the monopoly

case:

π(pi, p−i) =
γ0piD(pi, p−i)

r + γ0D(pi, p−i)
.

In the static version of this model with a nonzero marginal cost c, it is common to

assume that demand is such that πs(p) = (pi − c)D(pi, p−i) has increasing differences in pi

and p−i. The game is then one with strategic complements: best response correspondences

BRi(p−i) are increasing, and results on supermodular games imply that a symmetric pure

strategy Nash equilibrium always exists (Milgrom and Roberts, 1990). These results would

carry over to our dynamic model.

Proposition 5 Suppose πs(p) = (pi− c)D(pi, p−i) has increasing differences in pi and p−i

when pi > c. Then, best response correspondences in the the dynamic oligopoly model are

weakly increasing, and a symmetric pure strategy Nash equilibrium exists.

Proof

Let V (p−i) ≡ maxp π(pi, p−i) be firm i’s profit when it plays a best response to p−i.

The best response correspondences satisfy

BRi(p−i) = argmax
pi

(pi − V (p−i))D(pi, p−i).
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This will be montone increasing if the function on the RHS has increasing differences in pi

and p−i. Writing π̃(pi, p−i) for the function and differentiating twice we see

∂2

∂pi∂p−i
π̃(pi, p−i) =

∂2

∂pi∂p−i
((pi − c)D(pi, p−i))|c=V (p−i)

− ∂V

∂p−i

∂D

∂pi
.

The first term on the right is nonnegative by the assumption about the static profit function

because we only need to consider prices above V (p−i) (because demand is a probability and

hence less than one). The second is positive because firm i’s demand is decreasing in pi

and the value function are increasing in p−i. As in Milgrom and Roberts (1990), this also

suffices to guarantee equilibrium existence. QED

Remarks:

1. The first-order condition for the equilibrium in the full information oligopoly model

is similar to that for the monopoly price in the monopoly model:

rp∗
∂Di

∂pi
(p∗, p∗) + rDi(p

∗, p∗) + γ0Di(p
∗, p∗)2 = 0.

2. As in the monopoly model, equilibrium prices in the full information oligopoly model

are increasing in the arrival rate γ0. Each individual best response is increasing in γ0

by the same argument as in the monopoly case. And then the comparison of equilibria

follows as in Milgrom and Roberts (1990). The static oligopoly model corresponds

to γ0 = 0, so this implies that prices in the dynamic oligopoly model are higher than

those in the static model.

3. A more precise statement of the previous remark on comparative statics is that the

set of Nash equilibrium prices increases in γ0 in the strong set order. This is relevant

because the dynamic oligopoly model may have multiple equilibria even when the

static model has an unique Nash equilibrium. For example, in a duopoly model with

Di(p1, p2) = 1
9(1 − pi + 3

2p−i), the static (γ0 = 0) model has p∗ = 2 as its unique

symmetric PSNE, whereas the dynamic model with γ0/r = 1 has both p∗ = 4 and

p∗ = 10 as symmetric PSNE. Intuitively, the dynamic effect creates an additional

complementarity between the firms’ prices: when firm 2’s price increases, firm 1’s

opportunity cost of selling the good increases, which provides an additional motivation

for increasing p1.

4. Although it is common to assume that demand is such that (p − c)D(pi, p−i) has

increasing differences, it is implausible that the assumption would hold at all price
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levels. For example, the assumption is globally satisfied in the linear demand case

Di(pi, p−i) = 1− pi + ap−i, but assuming that this formula holds everywhere involves

assuming that demand is negative for some prices.5 In such static models it is com-

mon to modify the demand function in some cases, for example assuming demand

is zero whenever the formula gives a negative answer. The modifications only affect

cases that are unimportant so the equilibrium set is unchanged and best responses

remain upward sloping. Similar modifications should also typically produce a more

plausible dynamic oligopoly model without affecting the equilibrium or the best re-

sponse functions. But it should be noted that the modified models will not globally

have the increasing differences property.

In practice, we know that there is a great deal of price dispersion in online used book

prices. The most common approach to explain such dispersion in the IO theory literature

is to assume that some consumers are not fully informed about prices.6 A simple way to

incorporate a similar mechanism in the above framework is to consider a hybrid of the

monopoly and full-information oligopoly models above and the gatekeeper model of Baye

and Morgan (2001). In particular, let us assume that there are N + 1 populations of

consumers. There is a flow with arrival rate γ0 of shoppers who visit all N online firms.

And for each i ∈ {1, 2, . . . , N}, assume there is a flow with arrival rate γi of nonshoppers

who visit only firm i. Assume that nonshoppers again buy from firm i with probability

Dm(pi) ≡ 1−F (pi) as in the monopoly model. Assume that shoppers buy from firm i with

probability D(pi, p−i) as in the full information oligopoly model. So, in other words, online

stores have a flow of consumers for whom they are effectively monopolists, the nonshoppers,

and a flow of consumers for whom they are effectively oligopolists competing with other

stores carrying the same title, the shoppers. We treat offline stores as only having a flow

of nonshoppers.

Again, we assume each firm that makes a sale is immediately replaced by an identical

entrant. Expected firm profits can then be calculated just as in the monopoly model:

πi(pi, p−i) =
pi(γiD

m(pi) + γ0D(pi, p−i))

r + γiDm(pi) + γ0D(pi, p−i)

For the reason noted in the final remark after Proposition 5, this objective function would

not be expected to satisfy increasing differences at all prices. And here the departures are

5Prices for which demand is greater than one are also inconvenient for our interpretation of demand
as a probability of purchase, but this can often be dealt with by scaling demand down by a constant and
increasing all arrival rates by the same constant.

6Among the classic papers in this literature are Salop and Stiglitz (1977), Reinganum (1979), Varian
(1980), Burdett and Judd (1983), Stahl (1989).
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consequential: the model will not have a pure strategy Nash equilibrium for some parameter

values. Intuitively, if the oligopoly demand function is very price sensitive and two firms

have nearly identical γi, then there cannot be an equilibrium where both firms set nearly

identical high prices because each would then like to undercut the other. There also cannot

be an equilibrium with nearly identical low prices because the firms would then gain from

jumping up to the monopoly price to exploit their nonshoppers. For other parameters,

however, there will be a pure strategy equilibrium in which firms with more nonshoppers

set a higher price. This will occur when the oligopoly demand is less price sensitive, the

shopper population is relatively small, and/or when arrival rates γi of nonshoppers are

farther apart.

When a pure strategy Nash equilibrium exists, the equilibrium prices p∗i will satisfy the

first-order conditions which can be written as:

0 = rp∗i γiD
m ′(p∗i ) + rγiD

m(p∗i ) + γ2
iD

m(p∗i )
2

+ rp∗i γ0
∂D

∂pi
(p∗i , p

∗
−i) + rγ0D(p∗i , p

∗
−i) + γ2

0D(p∗i , p
∗
−i)

2

+ 2γ0γiD
m(p∗i )D(p∗i , p

∗
−i).

Note that the first line of this expression is γi, the nonshopper arrival rate, times the

expression from the monopoly first-order condition. If the monopoly demand function is

single peaked, it is positive for p < pm and negative for p > pm. The second line of

the FOC is γ0, the shopper arrival rate, times the first-order condition from the oligopoly

model in which all consumers are shoppers. When the shoppers-only oligopoly game has

single-peaked profit functions and increasing best responses, this term will be positive for

the player i setting the lowest price pi if pi is less than the lowest equilibrium price of the

full-information oligopoly game. The third term is everywhere positive. Hence, when the

monopoly price pm is above the equilibrium price in the shoppers-only oligopoly model, all

solutions to this N + 1 population model will have firms setting prices above the shoppers-

only oligopoly level.

Roughly, one can think of the solution as being that firms with γi large relative to γ0,

a lot of nonshoppers relative to shoppers, will set prices close to pm(γi).
7 Meanwhile, firms

with γi small will set prices somewhat above shoppers-only oligopoly level both because of

the third term in the FOC and because some of their rivals are mostly ignoring the shopper

population and pricing close to pm(γ−i).

7Prices may be lower than pm(γi) because of the oligopoly demand, but may also be higher because the
shoppers also constitute an increase in the arrival rate.
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Note that the mechanism behind the price dispersion is somewhat different from that of

Baye and Morgan’s (2001) gatekeeper model. In Baye and Morgan’s model price dispersion

is a mixed strategy outcome made possible by the fact that there is a positive probability

that no other firms will be listed with the clearinghouse. We have modified the model in two

ways to get dispersion as a pure strategy phenomenon: we add product differentiation in

the shopper segment to eliminate the discontinuity in demand; and we add exogenous firm

heterogeneity (in the consumer arrival rates) to make asymmetric pricing natural. Given

that arrival rates can be thought of as creating different opportunity costs of selling the

good, the model can be thought of as more akin to that of Reinganum (1979) which first

generated dispersed price equilibria via heterogeneous costs.

Figure 1 illustrates how one might think of the difference between offline and online

prices in light of this model. We think of prices as differing because of two effects. First,

differences in the searcher population would be expected to make online monopoly prices

higher than offline monopoly prices. (Selection into searching may result in the distibution

of searchers’ values being higher and the customer arrival rate may be greater.) Second,

online prices will be reduced below the monopoly level as firms (especially those with low

arrival rates of nonshoppers) compete to attract customers from the shopper population.
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Figure 1: Numerical example: Effects of increasing valuations and adding shoppers

The left panel of Figure 1 illustrates the first effect. The thinner dashed line graphs the

distribution of offline monopoly prices for one specification of the demand/arrival process.

Each consumer j arriving at firm i is assumed to get utility 1 − pi + εij if he purchases

from firm i and ε0j if he does not purchase, where the εij are independent type 1 extreme
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value random variables. The heterogeneous arrival rates γi, which lead firms to set different

prices, are assumed to be exponentially distributed with mean 1. The thicker solid line is

the distribution of monopoly prices that results if we shift the distribution of consumer

valuations upward: we assume the utility of purchasing is now 1.25 − pi + εij . We think

of this as the online monopoly price distribution. The gap between the two distribution

illustrates how the higher valuations in the online population would lead to higher prices if

retailers retained their monopoly power.

The right panel illustrates the competitive effect. The thick solid line is the online

monopoly distribution from the left panel. The thick dashed line is the distribution of equi-

librium prices in a nine-firm oligopoly model. Each firm in this model faces a nonshopper

arrival process identical to the online monopoly process. But in addition there is also a

population of shoppers who arrive at Poisson rate γ0 = 2, see the prices of all firms, and buy

from the firm that provides the highest utility if it is greater than the utility of the outside

good (with random utilities as in the online monopoly model). Note that the oligopoly

model ends up displaying more dispersion than the monopoly models, in contrast to the

naive intuition that competition will force firms to charge the same prices. At the high

end of the distribution we see that the firms with high nonshopper arrival rates essentially

ignore the shopper population. Indeed their prices are slightly higher than they would set

in the online monopoly model due to the extra shopper demand. At the opposite end of

the distribution, prices are substantially below the online monopoly level as firms with low

nonshopper arrival rates compete more aggressively for shoppers. Here the competition

effect is sufficiently powerful so that the online oligopoly distribution has more low prices

than even the offline monopoly distribution (the light gray line). This lower tail comparison

is parameter dependent, however: when the competitive effects dominate, the online price

distribution will feature more low prices; and when shopper population effect dominates,

there will be more low prices offline.

3 Data

Our dataset construction began with a sample of books found at physical used book stores

in the spring and summer of 2009. One of the authors and a research assistant visited

several physical used book stores in the Boston area, one store in Atlanta, and one store

in Lebanon, Indiana, and recorded information on a quasi-randomly selected set of titles.

The information recorded was title, author, condition, type of binding, and the presence of

any special attribute, such as author’s signature.
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We then collected online prices and shipping charges for the same set of titles from

www.AbeBooks.com at three points in time: first in the fall of 2009, then in November of

2012, and again in January of 2013.8 AbeBooks’ default sort is on the shipping-inclusive

price, which makes sense due to the heterogeneity in how sellers use shipping charges –

some sellers offer free shipping, others have shipping fees in line with costs, and others have

very high shipping fees. In most of our analyses we will use a price variable defined as listed

price plus shipping charges minus two dollars. This price is designed to reflect the money

received by the seller from the sale (assuming shipping minus $2 is a rough estimate of the

excess of the shipping fees over actual shipping costs). The online collection was restricted

to books with the same type of binding, but includes books in a variety of conditions.

We collected information on the condition of each online copy and control for condition

differences in some analyses. For most of the titles the online data include the complete set

of listings on www.AbeBooks.com.9 But for some titles with a large number of listings we

only collected a subset of the listings. In the 2009 data collection we collected every nth

listing if a title had more than 100 listings, with n chosen so that the number of listings

collected would be at least 50. In the 2012 and 2013 collections we collected all listings if

a title had at most 300 listings, but otherwise just collected the 50 listings with the lowest

shipping-inclusive prices plus every 5th or 10th listing.

Most of our analyses will be run on the set of 335 titles that satisfy three conditions:

the copy found in a physical bookstore was not a signed copy, at least one online listing

was found in 2009, and at least one online listing was found in November of 2012.

The quasi-random set of books selected was influenced by a desire to have enough books

of different types to make it feasible to explore how online and offline prices varied with

the type of book. First, we intentionally oversampled books of “local interest.” We defined

this category to include histories of a local area, novels set in the local area, and books by

authors with local reputations. For example, this category included Celestine Sibley’s short

story collection Christmas in Georgia, the guidebook Mountain Flowers of New England,

and Indiana native Booth Tarkington’s novel The Turmoil. Most local interest books were

selected by oversampling from shelves in the bookstores labeled as having books of local

interest and hence are of interest to the bookstore’s location, but that it not always the case:

some are what we call dispaced local interest books which were randomly swept up in our

8The latter two data collections were primarily conducted on November 3, 2012 and January 5, 2013,
respectively.

9In 2012 new copies of some formerly out-of-print books have again become available via print-on-demand
technologies. We remove any listings for new print-on-demand copies from our 2012 and 2013 data.
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general collection but are of local interest to some other location. Prices for these displaced

books are potentially informative, so for all local interest books we constructed a measure

of distance between the locus of interest and the particular bookstore. For example, if a

history of the State of Maine were being sold in a Cambridge, Massachusetts, bookstore,

the distance measure would take on the value of the number of miles between Cambridge

and Maine’s most populous city, Portland.

Second, we collected data on a number of “popular” books. We define this subsample

formally in terms of the number of copies of the book we found in our 2009 online search: we

classify a book as popular if we found more than 50 copies online in 2009. Some examples of

popular books in our sample are Jeff Smith’s cookbook The Frugal Gourmet, Ron Chernow’s

2004 best-selling biography Alexander Hamilton, and Michael Didbin’s detective novel Dead

Lagoon. Informally, we think of the popular subsample as a set of common books for which

there is unlikely to be much of an upper tail of the consumer valuation distribution for two

reasons: many can be purchased new in paperback on Amazon, which puts an upper bound

on valuations10; and many potential consumers may be happy to substitute to some other

popular book in the same category.

Table 1 reports summary statistics for title-level variables. The average offline price (in

2009) for the books in our sample is $11.29 One half of the titles were deemed to be of local

interest to some location. The mean of the Close variable indicates that in a little more

than three quarters of those with local interest, the location of interest is within 100 miles

of the bookstore location. About 23% of titles are classified as Popular.

The table also provides some summary statistics on the online price distributions. In

the contemporaneous 2009 data the median online price for a title is on average well above

the offline price we had found: the average across titles of the median online price is $17.80

or a little more than 50% above the average offline price. But there is also a great deal

of within-title price dispersion. The average minimum online price is just $9.27 and range

between the maximum and minimum online price averages almost $100. To give more of

a sense of how online and offline prices compare, the PlaceinDist variable reports where

in the empirical CDF of online prices the offline price would lie. The average of 0.26 says

that on average it would be in the 26th percentile of the online distribution. Median online

prices have not changed much between 2009 and 2012. There is, however, a moderate but

noticeable decline in the lowest available online price and a substantial increase in the online

10Of the books mentioned above, Chernow and Dibdin’s books are in print in paperback, whereas The
Frugal Gourmet is not.
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price range.

Variable Mean St Dev Min Max
OfflinePrice09 11.29 21.11 1.00 250.00
LocalInterest 0.50 0.50 0 1

Close 0.74 0.44 0 1
Popular 0.23 0.41 0 1
MinOnlinePrice09 9.27 22.84 1.89 351.50
MedOnlinePrice09 17.80 23.87 2.95 351.50
MaxOnlinePrice09 108.16 488.38 5.00 8252
PlaceinDist09 0.26 0.28 0 1
NumList09(Max50) 23.55 17.72 1 50
MinOnlinePrice12 8.63 21.34 1.01 302.00
MedOnlinePrice12 17.67 25.46 1.95 302.00
MaxOnlinePrice12 184.23 1059.92 2.05 17,498
NumList12(Max50) 23.53 18.31 1 50

Note: Most variables each have 335 observations. Close is defined only for the 168 local
interest titles.

Table 1: Summary statistics

4 Used Book Prices

In this section we present evidence on online and offline used book prices. The first three

subsections compare offline and online prices from 2009. Our most basic finding is that

online prices are on average higher than offline prices. The shapes of the distributions are

consistent with our model’s prediction that “increased search” and “competition” effects will

have different impacts at the high and low ends of the price distribution. We then examine

how online prices have changed between 2009 and 2013 as Amazon has (presumably) come

to play a much more important role. Finally, we use our data on listing withdrawals to

present some evidence on demand.

4.1 Offline and online prices in 2009: standard titles

As we noted in the introduction one of the most basic facts about online and offline used

book prices is that online prices are on average higher. In this section we note that this

fact is particularly striking for “standard” titles, which we define to be titles that have no

particular local interest and are not offered by sufficiently many merchants to meet our

threshold for being deemed “popular.”

We have 100 standard titles in our sample. Most are out of print. The mean number of

2009 online listings for these books was 15.3. One very simple way to illustrate the difference
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between offline and online prices is to compare average prices. The average offline price for

the standard titles in our sample is $4.27. The average across titles of the average online

price is $17.74.

Figure 2 provides a more detailed look at online vs. offline prices. The left panel contains

the distribution of prices at which we found these titles at offline bookstores. Twenty of the

books sell for less than $2.50. Another 74 are between $2.50 and $7.50. There is essentially

no upper tail: only 6 of the 100 books are priced at $7.50 or more with the highest being

just $20.

The right panel presents a comparable histogram of online prices.11 The upper tail of

the online distribution appears is dramatically thicker: on average 27% of the listings are

priced at $20 or higher including 6% at $50 or more.12
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Figure 2: Offline and online prices for standard titles in 2009

The contrast between the upper tails is consistent with our model’s prediction for how

offline and online prices would compare if online consumers arrive at a higher rate and/or

have higher valuations. At the low end of the price distribution we do not see much evidence

of a thick lower tail that might be produced by a strong competition effect.

To provide a clearer picture of the lower-tail comparison the left panel of figure 3 presents

a histogram of the PlaceInDist variable. (Recall that this variable is defined as the fraction

of online prices that are below the offline price for each title.) The most striking feature is

11To keep the sample composition the same the figure presents an unweighted average across titles of
histograms of the prices at which each title is offered.

12To show the full extent of the distribution we have added three extra categories – $50-$100, $100-$200,
and over $200 – at the right side of the histogram. The apparent bump in the distribution is a consequence
of the different scaling.
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a very large mass point at 0: for 54% of the titles, the price at which the book was found in

a physical bookstore was lower than every single online price! (This occurs despite the fact

that we had found on average 15.3 online prices for each standard title.) Beyond this the

pattern looks roughly like another quarter of offline books are offered at a price around the

20th percentile of the online price distribution and the remaining 20% spread fairly evenly

over the the upper 70 percentiles of the online distribution. Overall, the patterns suggests

that the increased search rate/higher valuation effect is much more important than the

competition effect for these titles.
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Figure 3: Offline prices relative to online prices for the same title

4.2 Offline and online prices for local interest titles in 2009

We now turn our attention to local interest books and note that there are substantial

differences in price distributions, and the differences seem consistent with a match-quality

model. Our presumption on match quality was that the incremental benefits of selling used

books online may be much less important for “local interest” books. Indeed, one could

imagine that the highest-value match for a titles like The Mount Vernon Street Warrens:

A Boston Story, 1860-1910, New England Rediscovered (a collection of photographs), and

Boston Catholics: A History of the Church and Its People might be a tourist who has just

walked into a Boston used bookstore looking for something to read that evening. Consistent

with this presumption, we will show here that offline prices for local interest titles look more

like the online prices we saw in the previous section.

Our sample contains 158 titles which we classified as being of “local interest” and which

did not meet our threshold for being labeled as “popular.” The mean offline price for these

titles is $18.86. Average online prices are again higher, but the difference is much smaller:
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the mean across titles of the mean online price is $28.40.

Figure 4 provides more details on the offline and online price distributions. The left

panel reveals that the distribution of offline prices for local interest titles shares some

features with the distribution of online prices for standard titles: the largest number of

prices fall in the $7.50-$9.99 bin; and there is a substantial upper tail of prices including 26

books with prices from $20 to $49.99, and 9 books with prices above $50. The distribution

of online prices for these titles does again appear to have a thicker upper tail, but the

online-offline difference is not nearly as large. The online distribution also has a slightly

higher percentage of listings at prices below $5, but there is nothing to suggest that the

competition effect is very strong.

Distribution of Offline Prices
Local Interest Nonpopular Titles

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50 20
0

Price

P
e

rc
e

n
t 

o
f 

tit
le

s

Distribution of Online Prices
Local Interest Nonpopular Titles

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50 20
0

Price

P
e

rc
e

n
t 

o
f 

lis
tin

g
s

Figure 4: Offline and online prices for nonpopular local interest titles in 2009

The middle panel of figure 3 included a histogram showing where in the online price

distribution for each title the offline copy falls. Here we see that about 30% of the offline

copies are cheaper than any online copy. For the other 70% of titles the offline prices look

a lot like random draws from the online distribution although the highest prices are a bit

underrepresented.

4.3 Offline and online prices for popular titles in 2009

We now turn to the final subsample: popular books. Again, we will note that online-

offline differences and comparisons to the earlier data on standard titles generally appear

consistent with a match-quality model.

Recall that we labeled 77 books as “popular” on the basis of there being at least 50

copies offered through AbeBooks. Our prior was that two differences between these books

22



and standard titles would be most salient. First, the greater number of shoppers (and

sellers) might make the competition effect more important. Second, the distribution of

consumer valuations might have less of an upper tail because consumers may be quite

willing to switch from one detective novel and also sometimes have the option of simply

buying a new copy of the book in paperback. Popular book prices are fairly similar to

standard book prices at offline bookstores: the mean price is $4.89. The left panel of figure

5 shows that 14% of these books are selling for below $2.50 with the vast majority (70%)

being between $2.50-$7.49. None is priced above $18.
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Figure 5: Offline and online prices for standard titles in 2009

When we shift to examining online prices, we once again note that our basic finding is

present: online prices tend to be higher than offline prices. The mean across titles of the

mean of the online prices for each title is once again much higher at $21.23. Although the

prediction that the online-offline gap should be smaller for popular titles does not hold up in

this comparison of means, the mean for popular titles is heavily influenced by a few outliers,

and the online-offline gap would be substantially smaller for popular titles if we dropped

the extremely high-priced listings from both subsamples. For example, dropping prices of

$600 and above removes sixteen listings for popular titles and no listings for standard titles.

The average of the mean online price for a popular title would then drop to $10.85 whereas

the comparable figure for a standard title would remain at $17.74.

The price histograms illustrate that the online data again have a thicker upper tail than

the offline data. This thickness is somewhat less pronounced here than it was for standard

titles: on average 18% of listings are priced above $20 whereas the comparable figure for

standard titles was 27%. One other difference between popular and standard titles is that
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the online distribution for popular books has a larger concentration of low prices: about

one-third of the listings are priced below $5. The more pronounced lower tail is consistent

with the hypothesis that the competition effect may be more powerful for these titles.

The right panel of figure 3 shows that for about 20% of titles, the offline price we found

was below all online prices. This is a strikingly large number given that each title had at

least 50 online listings. Meanwhile the remaining prices look like they are mostly drawn

from the bottom two-thirds of the online price distribution for the corresponding title. A

comparison of the left and right panels provides another illustration that the online-offline

gap is narrower here than it was for standard titles.

4.4 Regression analysis of offline-online price differences

In the preceding sections we used a set of figures to illustrate the online-offline price gap

for standard, popular, and local interest books and noted apparent differences across the

different groups of books. In this section we verify the significance of some of these patterns

by regressing the PlaceInDist variable on book characteristics.

The first column of Table 2 presents coefficient estimates from an OLS regression. The

second column presents estimates from a Tobit regression which treats values of zero and

one as censored observations. We noted earlier that the distribution of consumer valuations

for “popular” books might be thinner because potential purchasers can buy many of these

books new in paperback and/or substitute to similar books. The effect of an increase in the

consumer arrival rate is greater when the distribution of valuations has a thick upper tail,

so the arrival effect that bolsters online prices should be smaller for popular books. The

coefficient estimate of 0.11 in the first column indicates that offline prices are indeed higher

in the online price distribution – by 11 percentiles on average – for the popular books. The

estimate from the Tobit model is larger at 0.21 and even more highly significant.

Dependent variable: PlaceInDist
OLS Tobit

Variable Coef. SE Coef. SE
Popular 0.11 (0.04) 0.21 (0.06)
LocalInt× Close 0.17 (0.04) 0.27 (0.06)
LocalInt× Far 0.08 (0.05) 0.17 (0.08)
Constant 0.16 (0.03) -0.01 (0.04)
Num. Obs. 335 335
R2 (or pseudo R2) 0.06 0.06

Table 2: Variation in offline-online prices with book characteristics
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Local interest books located in physical bookstores close to their area of interest may

have both a relatively high arrival rate of interested consumers and a relatively high dis-

tribution of consumer valuations. Again, this should lead to relatively high offline prices.

The 0.17 coefficient estimate on the LocalInterest × Close variable indicates that this is

true for local interest books in used bookstores within 100 miles of the location of interest.

The tobit estimate, 0.27, is again larger and more highly significant.

One would not expect misplaced local interest books to benefit in the same way. Here,

the regression results are less in line with the model. In the OLS estimation the coefficient

on LocalInterest × Far is about half of the coefficient on LocalInterest × Close, and

the standard error is such that we can neither reject that the effect is zero, nor that it is

as large as that for local interest books sold close to their area of interest. In the Tobit

model, however, the estimate a bit more than 60% of the size of the estimated coefficient on

LocalInterest×Close and is significant at the 5% level. This suggests that a portion of the

differences between local interest and other books noted earlier may be due to unobserved

book characteristics.

4.5 Within-title price distributions

The previous section illustrated how prices and price distributions differ between online and

offline book dealers by presenting price histograms of hundreds of distinct titles (as well

as some regression evidence). The averaging illuminates some general trends, but washes

out information on the within-title variation in prices. In this section, we illustrate these

changes by presenting prices distributions for three “typical” titles.

To identify “typical” price distributions, we first performed a cluster analysis which

divides the titles into three groups in such a way so that a set of characteristics of each title

is closer to the mean for its group than to the mean for any other group. We then chose

the title that was closest to the mean for each group as our “typical” title. We wanted to

cluster titles by the basic shape characteristics of their price distributions, so we chose the

following variables as the characteristics to cluster on: the log of the lowest, 10th, 20th, ...,

90th, and maximum prices, and the ratios of the 10th, 20th, and 30th percentile prices to

the minimum price.13 The cluster analysis divided the titles into three groups containing

125, 109, and 69 titles.

13The estimation uses Stata’s “cluster kmeans” command which is a random algorithm not a deterministic
one. The number of elements in each cluster varied somewhat on different runs, but the identity of the
“typical” element of each cluster appears to be fairly stable. We included the ratios in addition to the
percentiles to increase the focus of the clustering on the shape of the lower tail. Only titles with at least
four online prices were included.
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The left panel of figure 6 is a histogram of prices for the typical title in the largest

cluster, An Introduction to Massachusetts Birds, a 32 page paperback published by the

Massachusetts Audobon Society in 1975 that has long been out of print. There are ten

online listings for this title. Most are fairly close to the lowest price – the distribution

starts $3.50, $4, $5, $6, and $6.75 – but there is not a huge spike at the lower end. The

upper tail is fairly thin with a single listing at $22.70 being more than twice as high as the

second-highest price of $11.30.

The center panel of figure 6 is a histogram of prices for the typical title in the second

cluster, the hardcover version of Alexander Hamilton by Ron Chernow.14 For this title

there is a fairly tight group of six listings around the lowest price: the first bin in the figure

consists of copies offered at $2.95, $2.95, $4.14, $4.24, $4.24, and $4.48. But beyond these,

the distribution is more spread out with the largest number of offers falling in the $10 to

$12.49 bin. There is also an upper tail of prices including six between $20 and $30 and four

between $30 and $45. There is some correlation between price and condition: the four most

expensive copies are all in “fine” or “as new” condition. But most of the upper tail does

not seem to be attributable to differences in the conditions of the books. For example, the

six copies between $20 and $30 include two copies in “poor” condition, two in “very good”,

one in “fine”, and one in “as new”, whereas five of the six copies offered at less than $5 are

“very good” copies.

The right panel of figure 6 presents a histogram for a typical title in our third cluster,

The Reign of George III, 1760 - 1815, a hardcover first published by the Oxford University

Press in 1960 as part of its Oxford History of England series.15 Here again we see a cluster

of listings close to the lowest price: one in very good condition at $10.99, a good copy at

$12.03, and two poor copies at $12.09. But the lowest price is not nearly as low as it is for

the typical books in the other clusters, and the rest of the distribution is also more spread

out. There is a clear correlation between price and condition – the eight most expensive

listings are all in very good condition or better. None are signed copies, but some might

be distinguished by other unobserved characteristics such as being a first edition or having

an intact dust jacket.

The fact that the price distributions for typical titles in the more spread-out clusters

14This book was a best-seller when released in 2004 and a paperback version was released in 2005. Both
are still in print with list prices of $35 and $20, respectively.

15In 2013 it is again available new – presumably via a print-on-demand technology – at a very high
list price of $175, but is currently offered by Amazon.com and BN.com at just $45. The rise of print-on-
demand is a recent phenomenon and we assume few, if any, of the books in our sample were available via
print-on-demand in 2009.
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still include a small group of sellers with prices very close to the lowest price suggests that

some firms are competing to attract a segment of shoppers. The variation in condition

among the low-priced listings suggests that book condition may not be very important to

these consumers. The upper tail has some relation to condition, but mostly appears to be

another example of price dispersion on the Internet for fairly homogeneous products.

Although the three typical books we have examined here are of different types – the

first is a nonpopular local interest book, the second is a popular book, and the third is a

standard book – the clusters are not closely aligned with title types. For example, cluster

1 includes 42 standard titles, 41 nonpopular local interest titles, and 42 popular titles.
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Figure 6: Online prices for three “typical” titles in 2009

4.6 Online prices: 2009 and 2012

Amazon’s integration of AbeBooks listings may have substantially increased the number

of shoppers who viewed them. In this section, we compare online prices from 2009 and

2012 and note changes in the price distribution in line with the predicted effects of such an

increase.

Recall that in our theory section (e.g. Figure 1), we noted that an increase in the

proportion of shoppers will have an impact that is different in different parts of the price

distribution. At the lower end it pulls down prices and may lead several firms to price

below the former lower bound of the price distribution. But in the upper part of the

distribution it should have almost no impact (as firms setting high prices are mostly ignoring

the shopper segment). The upper left panel of figure 7 illustrates how prices of standard

titles changed between 2009 and 2012. The gray histogram is the histogram of 2009 prices

we saw previously in figure 2. The outlined bars superimposed on top of this distribution
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are a corresponding histogram of prices from November of 2012. At the low end of the

distribution we see a striking change in the distribution of the predicted type: there is a

dramatic increase in the proportion of listings below $2.50. Meanwhile (and perhaps even

more striking), the upper tail of the distribution appears to have changed hardly at all.

We find this consistency somewhat amazing given that there is a three-year gap between

the collection of these two data sets. The other two histograms in the figure illustrate the

changes in the price distributions for local interest and popular books. In each case we

again see an increase in the proportion of listings priced below $2.50. The absolute increase

is a bit smaller in the local interest case, although it is large in percentage terms given that

almost no local interest books were listed at such a low price in 2009. In both cases we also

again see little change in the upper part of the distribution. This observation is particularly

true for the popular histogram in which almost all of the growth in prices below $2.50 seems

to come out of the $2.50-to-$5 bin. We conclude that the pattern of the lower tail having

been pulled down while the upper part of the distribution changes less is fairly consistent

across the different sets of titles. This is very much in line with what we would expect if

Amazon’s integration of used book listings increased the size of the shopper population.

4.7 Online demand

Recall that our model posited two types of consumers, shoppers who compared prices and

nonshoppers who visited a store and decided whether to purchase. This model goes a

fair distance towards rationalizing the price distributions that we have seen and, indeed,

rationalizing both the differences in price distributions between online and offline book

dealers and changes in those distributions for online book dealers over a three-year period.

In this section we investigate more directly the applicability of this model to the market for

used books by looking at whether the demand patterns seem consistent with it. We are able

to provide some evidence on demand by looking at whether listings present in November

of 2012 were removed by the merchants by the time of our January 2013 data collection.16

In 2012-2013 large professional sellers play a big role on AbeBooks.com. The majority

of the 2067 online retailers in our November 2012 dataset have listings for just one or two

of our 318 titles, but these small-scale sellers only account for 15% of the total listings.17

16We are not aware of empirical work that has tried to infer demand by looking at the removal of listings
but feel that this technique might be useful in other situations where quantity data are not available.

17These statistics are for only 318 of the millions of published titles so even sellers that appear to be
small-scale merchants in our data may have many, many listings on AbeBooks. We examine a smaller set of
titles here than in previous sections because we omit very popular titles (those with more than 300 listings)
for which we did not collect complete listings data.
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Figure 7: Comparison of 2009 and 2012 online prices
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At the other extreme, 45 firms we will refer to as “power sellers” have listings for more

than 25 of the titles, including 16 firms that have listings for more than 50. The power

sellers play a particularly big role at the top (i.e., lowest prices) of AbeBooks.com’s lists.

In our November 2012 data, 55% of the titles have a power seller in the top position and

the proportion of power sellers remains above 30% in each of the top 25 slots.

Although we do not have any sales data, we are able to see a proxy: whether a listing in

our November 2012 sample is removed by January of 2013.18 We presume that most books

that disappear do so either because the book was sold (through AbeBooks or otherwise)

or because the seller decided to withdraw from listing on AbeBooks. The latter is hard

for us to detect when sellers have just one or two listings, but fortunately this is just a

small fraction of listings, and sales rates are such that we can identify fairly well whether

larger sellers exited simply by looking at whether all of their November 2012 listings have

disappeared by January of 2013. For example, of the 203 sellers with exactly three listings in

our November 2012 dataset, 168 have none of their copies disappear, 19 have one disappear,

2 have two disappear, and 14 have all three disappear.19 Given that only 2 firms sold two

of their three listings, we presume that all or almost all of the 14 firms that had all listings

disappear left the AbeBooks platform (or changed their name). We drop all listings by

the 32 firms with three or more listings who have all of their listings disappear. Summary

statistics indicate that our disappearance rates for very small-scale sellers probably reflect

a similar exit rate which we have not been able to clean out. Mean disappearance rates

for listings by sellers with just one or two listings in our sample are 10% and 12%, whereas

the disappearance rate for listings by sellers with three to ten listings is about 6%. Power

sellers sell books at a substantially higher rate – over 30% of their listings disappear – but

in part this reflects that they sell many popular books and set low prices.

We presume that listings that are very far down on AbeBooks lists (i.e., have very high

prices) are unlikely to sell through the website, and hence restrict our statistical analyses

to a dataset of listings that were among the 50 lowest-priced listings on AbeBooks in 2012.

This leaves a final estimation sample of 5282 listings for 318 titles.

Figure 8 presents histograms illustrating the relationship between listing-removal and

18Listings do not have a permanent identifier, so what we observe more precisely is whether the seller no
longer lists a copy of the same title in the same condition. Given this matching strategy, we drop from this
analysis all instances in which the same seller had multiple copies in a title-condition cell in November 2012,
all print-on demand listings, all signed copies, and the very popular titles for which we did not collect all
listings in our 2012 & 2013 data collections.

19Similarly, 11 firms with four or five listings have all of their listings disappear, whereas only one firm
with four or five listings has all but one listing disappear.
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order in which listings would appear when one sorts on shipping-inclusive price.20 The

left panel illustrates the relationship between listing-removal and item prices for standard

titles. The x-axis gives the rank within the title of the shipping-inclusive price. The height

of the bars indicates the average rate of disappearance for listings at that rank.21 The figure

suggests that sales rates are substantial for the lowest-price listings and that sales rates are

quite price/rank sensitive. Listings in the top two positions disappear in the two-month

span about one-third of the time. Listings in positions 3-5 disappear about 25% of the time.

Disappearance rates fall to about 15% in the lower part of the top 10, and then appear to

be 5-10% for titles in the second 10, although the rank-specific means are quite noisy by

this point. Recall that the slope of this curve should be less than the structural demand

curve. Disappearances reflect both sales through the search engine and outside of it, and

firms would be expected to choose relatively high prices when they have a high outside

sales.
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Figure 8: A demand proxy: removals of online price listings

The middle panel presents a similar histogram for nonpopular local interest titles. Sales

rates are somewhat lower for these titles. Disappearance rates are about 20% at the top two

ranks, about 10-15% at the next two ranks, and then fall to 5-10% in the lower part of the

top 10. The right panel presents results for popular titles. Here, disappearance rates are

substantially higher. They start at close to 50% for listings in the top 5 positions. Beyond

20This is the default ordering on AbeBooks, but others are possible as well. Our orderings may not match
what a consumer would have seen when prices (in dollars and cents) are identical.

21We have cut off the figures where the sample size falls below 25 because the estimates of the (small)
disappearance probabilities become very noisy by that point. In this case, the figure presents data for ranks
1 through 21.
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this point they drop off fairly sharply: they are around 30-40% in ranks 6-10, a little over

20% in the next 10, and a little over 10% for listings with ranks in the 21-30 range. Sample

sizes do not drop off as rapidly here, so we have extended this figure out through rank 50.

The somewhat odd shape of the leftmost part of the graph – being roughly flat for the first

few ranks and then dropping off rapidly – may reflect the difference between our ranks and

what the typical consumer saw. We do not know how listings with identical prices were

sorted by AbeBooks, and there also may be a great deal of churning in the price order

among the top-ranked titles (which typically have prices differing by just a few cents).22

Table 3 presents statistical analyses that provide additional detail on the patterns. The

first column presents estimates of a logit model in which the probability that a listing will

disappear is a function of the listing’s rank and condition. (It also includes two title-level

controls and one seller-level covariate, the number of distinct titles in our full dataset for

which the seller has at least one listing.) The coefficient on log(Rank) is highly significant.

Its magnitude implies that increasing log(Rank) by one unit, e.g. moving from rank 1 to

rank 2.7 or rank 2.7 to rank 7.3, is associated with a 58% decrease in the probability of

disappearance. This result suggests that demand is highly elastic when prices are tightly

bunched. In the second column we include both the rank of the listing and the shipping-

inclusive price. The two are fairly collinear, but, nonetheless, each is highly significant

in this regression. The magnitude of the rank effect is somewhat smaller – increasing

log(Rank) by one unit is now associated with a 39% decrease in the disappearance rate.

But this is augmented by the (fairly modest) price effect – a 10% increase in price is

associated with a 4.6% decrease in the disappearance rate.

The Condition variable is also significant in both versions. It indicates that a listing

that is one condition better, e.g. from “good” to “very good,” will have a about a 10%

higher disappearance rate. The coefficient on log(Storetitles) is also significant, reflecting

that power sellers appear to sell many more copies even after we control for rank/price

differences and the title popularity. These specifications use just two controls for popularity:

the number of listings for the title in the full dataset and the log of the lowest price at which

the title is offered.

The third and fourth columns present estimates from models which instead use title

fixed effects to control for differences across titles.23 The estimated coefficients on the price

effects are similar, with the point estimate on the price effect a little larger and that on the

22Another potential bias is that disappearances could underestimate sales if a seller replaces a sold copy
of a book with another copy in the same condition.

23121 of the 318 titles in the previous regression are dropped because none or all of the listings disappear.
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rank effect a little smaller.

The final three columns reestimate this model on three subsamples: standard, nonpopu-

lar local interest, and popular titles. In the smaller samples it is harder to separately identify

the price and rank effects, and not all coefficients are significant. The disappearance-price

rank relationship seems to be somewhat weaker, and book condition appears to matter

less for standard titles. Power sellers do better in all three samples, but the coefficient on

log(Storetitles) is no longer significant in the local interest subsample.

Importantly, these demand patterns are broadly consistent with our priors and intuition

about this market as well as predictions of our model. In particular, a market with two

types of consumers, such as described in our model, would likely display a high degree of

price sensitivity at low ranks, where shoppers operate, and a sharply decreased degree of

price sensitivity at higher ranks, where nonshoppers would often operate.

Dependent Variable: Disappear
Variable (1) (2) (3) (4) (5) (6) (7)
log(Rank) -0.67 -0.44 -0.77 -0.32 -0.10 -0.51 -0.27

(0.05) (0.06) (0.05) (0.09) (0.17) (0.21) (0.12)
log(Price) -0.53 -0.92 -0.74 -0.55 -1.54

(0.10) (0.15) (0.23) (0.31) (0.25)
Condition 0.10 0.13 0.12 0.17 0.01 0.17 0.29

(0.04) (0.04) (0.04) (0.04) (0.07) (0.10) (0.07)
log(StoreTitles) 0.39 0.31 0.34 0.25 0.30 0.13 0.22

(0.04) (0.04) (0.04) (0.04) (0.08) (0.09) (0.07)
Constant -2.90 -2.10

(0.34) (0.37)
log(MinPrice) -0.40 0.02

(0.09) (0.12)
log(TitleListings) 0.43 0.25

(0.06) (0.07)
Title fixed effects No No Yes Yes Yes Yes Yes
Titles included All All All All Stnd. Local Popular
Number of obs. 5282 5282 4330 4330 1119 1137 2074
Pseudo R2 0.135 0.142 0.143 0.157 0.133 0.122 0.203

The table reports coefficient estimates and standard errors from logit regressions with an
indicator for whether a listing was removed between November 3, 2012 and January 5, 2013
as the dependent variable. The sample includes the (up to 50) lowest priced listings for 318
titles.

Table 3: Logit estimates of the listing disappearance process
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5 A Structural Model of the Market

In the model we discussed earlier, online prices differ from offline prices for two offsetting

reasons: increases in consumer arrival rates and distributions of valuations tend to increase

online prices; and increased competition brings online prices down. The welfare effects

of online sales depend on the magnitudes of the underlying gross effects: the increase in

consumer arrival rates; the increase in consumer valuations; the equilibrium delay before

sales occur; etc. In this section we develop and estimate a structural model which includes

all of these effects. We note that features of the model make it amenable to estimation

via simulated maximum likelihood. Our estimates indicate that customer arrival rates

were substantially higher online than offline by 2009 and suggest that Internet sales led to

substantial increases in both profits and consumer surplus.

5.1 A structural framework

In this section we discuss an empirical model closely related to that discussed in our theory

section and note that aspects of the model facilitate estimation.

Consider a model similar to that of section 2 in which I + 1 populations of consumers

shop for each title k at stores i = 1, 2, . . . , I.24 One of these is a population of shoppers

who arrive at Poisson rate γ0k. Shoppers observe all prices and purchase from store i at

the instant at which they arrive with probability Do
k(pik, p−ik;Xik,Λ, βik), where Xik is a

vector of characteristics of store i and title k, Λ is a vector of parameters to be estimated,

and βik is a vector of unobserved random coefficients. Assume that the arrival rate γ0k

and random coefficient vector βik are draws from distributions that may depend on the

parameter vector Λ.

The other I populations are nonshoppers who do not compare prices across sellers:

nonshoppers from population i arrive at store i at Poisson rate γik. Suppose that they

purchase upon arrival with probability Dm
ik(pi;Xik,Λ, βik). Again, the γik and βik are

random variables with a distribution that may depend on Λ.

Assume that stores choose the prices that would maximize expected profits in a sta-

tionary dynamic model like that of section 2, i.e. assume that pik is chosen to maximize

πi(pik, p−ik) ≡
pik(γikD

m
k (pi) + γ0kD

o
k(pik, p−ik))

r + γikD
m
k (pik) + γ0kD

o
k(pik, p−ik)

,

where we have omitted the characteristics and parameters from the arguments for readabil-

ity.

24The number of sellers varies by title, but we omit the k subscript on I in this description for simplicity.
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Suppose that we are given data on a set of titles k = 1, 2, ..., . . . ,K. These data will take

two distinct forms. For some titles we observe just the vector of prices (p1k, p2k, . . . , pIk).

For other titles we observe both prices and an indicator for whether the title sells in a given

time period: (p1k, q1k, . . . , pIk, qIk). We wish to estimate the parameter vector Λ.

One observation about this model that will facilitate estimation is that the first order

condition for store i’s title k price to be optimal,

0 = rpikγikD
m ′(pik) + rγikD

m(pik) + γ2
ikD

m(pik)
2

+rpikγ0k
∂Do

∂pi
(pik, p−ik) + rγ0kD

o(pik, p−ik) + γ2
0kD

o(pik, p−ik)
2

+2γ0kγikD
m(pik)D

o(pik, p−ik),

is a quadratic function of γik once one fixes γ0k, the parameters affecting Dm(pik), and

Do(pik, p−ik), and values for the random coefficients. Specifically, this FOC is of the form

aγ2
ik + bγik + c = 0 for

a(pik, Xik; Λ, βik) = Dm(pik)
2

b(pik, Xik; Λ, βik) = rpikD
m ′(pik) + rDm(pik) + 2γ0kD

m(pik)D
o(pik, p−ik)

c(pik, Xik; Λ, βik) = rpikγ0k
∂Do

∂pi
(pik, p−ik) + rγ0kD

o(pik, p−ik) + γ2
0kD

o(pik, p−ik)
2

Under some conditions (b > 0, c < 0), only the larger root of this quadratic will be positive.

When this occurs, we can calculate the conditional likelihood of each price observation pik

(conditional on the parameters, Xik, and random coefficients) by backing out the unique

γik which makes pik optimal and then computing the likelihood via

L(pik|γ0k, Xik,Λ, βik) = L(γik|γ0k, Xik,Λ, βik)
1

∂g
∂γ (γik)

,

where g is the best-response pricing function with g(γik) = pik. By implicitly differentiating

the FOC we find that

∂g

∂γik
(γik) = − 2γika(pik) + b(pik)

∂a
∂pik

γ2
ik + ∂b

∂pik
γik + ∂c

∂pik

.

Another aspect of our model that facilitates estimation is that the one-to-one corre-

spondence between the observed pik and unobserved γik also makes it easy to account for

endogeneity when using the demand data. Given the observed pik and an inferred γik, the

“net” arrival rate of consumers who would buy book k from store i is

dik ≡ γ0kD
o(pik, p−ik) + γikD

m(pik)
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Hence the probabilty that the book will be sold in a ∆t time interval is

E(qik|pik, p−ik, γ0k,Λ, βik) = 1− edik∆t.

The joint likelihood of observed pairs (pik, qik) is simply the product of this expression and

our earlier expression for the likelihood of pik.

Together these two observations suggest a simple procedure for simulated maximum

likelihood estimation. Given any potential parameter vector Λ, we take random draws

for any random coefficients (which may vary by title or by listing). Given these random

coefficients, we compute the joint likelihood of each observed price vector (p1k, . . . , pIk)

and of each observed price/quantity vector (p1k, q1k, . . . , pIk, qIk) using the above formulae.

Summing across the draws of the random coefficients gives the unconditional likelihood.

Parameter estimates are obtained by maximizing this likelihood over the parameter space.

5.2 Empirical specification

To estimate arrival rates and demand in the used book market and explore how they have

changed with the shift to online sales, we implement a parsimonious version of the model

including only as many parameters and random coefficients as was necessary to estimate

quantities of interest and match the main features of the data.

We assume that the arrival rate of shoppers varies only with the “popularity” of a title

and the year (2009 versus 2012):

γ0k = γ0Popularity
γN0
k ∆γ

2012 I(t=2012)
0 .

The Popularityk variable is the ratio between the count of listings for title k in the 2012

online data and the mean of this count across listings. We assume that shoppers have

logit-style preferences: consumer j is gets utility

uijk =

{
XkΛ− αδkpik + εijk if j purchases title k from store i
XkΛ + β0k + εijk if j does not purchase title k

,

where the εijk are independent random variables with a type 1 extreme value distribution.

The demand for firm i’s offering is then

Do
k(pik; p−ik) =

e−αδkpik

eβ0k +
∑

` e
−αδkp`k

.

The parameters δk let the price-sensitivity vary across titles, which will help the model fit

data in which price levels vary substantially across titles. We will adopt a random coeffi-

cients specification which allows the unobserved outside good utilities β0k to be normally
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distributed across titles. This feature helps to fit data in which the fraction of listings

that sell varies substantially across titles and also helps the model explain why one store

sometimes substantially undercuts all other stores.

The arrival rate of nonshoppers is similarly allowed to vary with popularity, year, and

whether a store is online/offine. We assume that it also varies randomly across store-titles

– a store’s price is an increasing function of the rate at which it is visited by nonshoppers,

and it is through the random variation in γik that the model can account for each observed

price as a best response. Formally, the arrival rate is

γik = zikPopularity
γNi
k ∆γ

2012 I(t=2012)
i ∆γ

off I(offline)
i ,

where the zik are i.i.d. gamma-distributed random variables with mean µγi and standard

deviation σγi . We assume that nonshopper demand curves have the constant elasticity

form. In utility terms, this amounts to assuming that a nonshopper j considering buying

book k from store i gets utility

uikj =

{
vj − δkpik if he buys.
0 if he does not

,

where the vj are heterogeneous across consumers with density f(vj) = hηv−η−1 on [h1/η,∞].

We assume that η > 1 (otherwise the monopoly price is infinite) and that h > 0 is sufficiently

small so that all observed prices are in the support of the value distribution. With this

assumption the probability that a shopper purchases at the observed price is

Dm(pik) = h(δikpik)
−η.

The model description above has more parameters than we are able to estimate. There

are two issues of identification: the arrival rate γik of nonshoppers cannot be separately

identified from the multiplicative constant h in nonshopper demand; and all profit functions

only depend on ratios γ/r. Also, as a practical matter, we are unable to estimate the large

number of title fixed effects δk that shift the level of equilibrium prices for each title.

Accordingly, we have chosen to fix some parameters in our estimation. We fix r = 0.05 so

that arrival rates should be thought of as arrivals over a period of one year. We set the

constant h in the shopper demand equation to one.25 And, finally, we implicitly fix the δk

25We treat demand as being p−η even when this expression is greater than one and hence inconsistent
with the demand being a probability of purchase given arrival. Note, however, that the same equations
could always have be made consistent with the probability interpretation simply by choosing a smaller value
of h and scaling up the consumer arrival rate while keeping their product constant.
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at a different value for each book by scaling the prices for each book so that the lowest 2009

online price is equal to one and then setting each δk to one.

These assumptions produce a model with twelve parameters to be estimated: (γ0,∆γ
2012
0 ,

γN0 , α, µβ, σβ, µγi , σγi ,∆γ
2012
i , γNi , η,∆γ

off
i ). We estimate these parameters on a dataset

containing 313 books which had valid listings in all four of our data collection waves: they

were found in an offline store in 2009 and had listings successfully scraped from Abe-

Books.com in all three online collections.26 The demand data qik are inferred by comparing

the November 2012 and January 2013 listings, and are used only for books for which our

2013 data collection was complete. The estimation follows the procedure noted above with

the “outside options” β0k as the only random coefficients.27

5.3 Estimates of arrival rates and demand

Table 4 presents estimates of the parameters of our structural model. The left half of the

table reports estimates related to the nonshoppers. The most basic finding is that the

“net” arrival rate of nonshoppers (arrival rate of a nonshopper who actually purchases) at

online stores appears to be quite low. The µ̂γi = 0.054 estimate indicates a firm with a

typical listing should expect that a nonshopper willing to purchase the good at the lowest

price in 2009 online data for that title will arrive approximately once every 18.5 years.

The σ̂γi = 0.04 estimate indicates that there is variation across stores, with some having

essentially no nonshoppers and others having substantially more. The γ̂Ni = 0.14 estimate

indicates that arrival rates are higher for more popular titles, but it is not a very big

effect. For example, a title that has twice as many listings as average has about a ten

percent higher (per listing) arrival rate of nonshoppers. The year dummy indicates that

nonshopper arrival rates did not change between 2009 and 2012. All of these estimates

are fairly precise. Intuitively, the 2012 quantity observations for high-priced firms provide

a lot of information about nonshopper arrival rates, and the fact that the upper parts of

the price distributions are so similar in 2009 and 2012 drives the estimate that nonshopper

arrival rates must be similar in the two years.

26For our structural analysis we also drop all listings priced above $50 and any title that does not have
at least two listings.

27With just one random coefficient relevant to each title, the “simulated” maximum likelihood becomes
just a numerical integration over the unknown coefficient. We perform this integration by evaluating the
likelihood for 50 values of the random coefficient spaced evenly in CDF space. For some parameters the model
cannot rationalize some observations (in which one firm sets a price substantially below the second lowest

price) using any positive γik). When this happens we use a penalty function, L(pik|Xik,Λ) = e−10+10|γik|

that increases in the distance between the (negative) γik that would make the first-order condition for
profit-maximization satisfied and the nearest value that is in the support of the distribution (which is zero).
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Parameter Coef.Est. SE Parameter Coef.Est. SE
Nonshopper arrival Shopper arrival

µγi 0.054 (0.003) ln(γ0) 3.70 (2.68)
σγi 0.04 (0.003) ∆γ2012

0 1.06 (0.49)
∆γ2012

i 1.02 (0.04) γN0 1.23 (0.20)
γNi 0.14 (0.02)

Offline arrival 2009 Shopper utility

∆γoff
i 0.36 (0.03) µβ -8.21 (2.31)

Nonshopper utility σβ 3.80 (0.34)
η 1.15 (0.01) α 13.34 (1.42)

Table 4: Estimates of structural model parameters

Although nonshopper arrival rates at online stores are modest, the coefficient directly

below this indicates that they are still substantially higher than arrival rates at offline

stores. The 0.36 estimate for ∆̂γ
off
i indicates that 2009 offline arrival rates were only about

36% of online arrival rates, or about 0.02 consumers per year for the typical listing.28 Such

a difference in arrival rates would lead to substantial differences in the expected welfare

gains produced by an eventual sale. Of course, it should be kept in mind that, unlike in the

online world, these arrival rates are estimated without any quantity data and instead reflect

just that lower offline prices can be rationalized in our model only by a lower consumer

arrival rate. Despite that caveat, we do not find it at all implausible that a lot of used

books sat on the shelves of used book dealers for years waiting for an interested buyer to

happen by.

The final estimate on the left side is an estimate of the elasticity of demand of the

nonshoppers. The estimated elasticity of demand is -1.15. A constant elasticity demand

curve with this elasticity has a very thick upper tail. Such a situation will lead to estimates

that each sale to a nonshopper generates a great deal of consumer surplus.

The right half of the table reports estimates related to the population of online shoppers.

When interpreting arrival rates, keep in mind that “net arrival rates” will be lower than the

arrival rate coefficient because some consumers prefer the outside good. We have allowed

for unobserved heterogeneity across titles in the net shopper arrival rate by introducing

heterogeneity in the utility of the outside option. The estimated mean outside good utility

turns out to be substantially higher than the mean utility provided by the lowest-priced

listing for each title, so for the median title, only a little over 1% of arriving shoppers will

28Note, however, that prices and demand are scaled so that a potential consumer buys with probability
one if he sees a price equal to the lowest 2009 online price. Offline firms that set lower prices will sell at a
somewhat higher probability.
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actually purchase from anyone. The estimated variance of the outside good utility indicates

that there is a great deal of unobserved heterogeneity across titles. About 9% of titles have

outside good utilities that are below the mean utility provided by the lowest-priced listing,

in which case most shoppers will purchase. At the other extreme, a large number of titles

have essentially no shoppers willing to purchase at the observed prices.

The estimated shopper arrival coefficient (e3.70 ≈ 40) indicates that some titles of will

have a net arrival rate of nearly 40 consumers per year.29 This is dramatically higher than

the rate at which nonshoppers are estimated to arrive. As noted earlier, however, it is

only a few titles that have such shopper net arrival rates. The median title is estimated to

have a shopper net arrival rate that is comparable to each firm’s nonshopper arrival rate,

and other titles are estimated to have very few shoppers at all. These estimates reflect

a basic fact about demand noted earlier: we observe many sales of some titles, but zero

sales over a two-month period for about one-third of the titles in our sample. Note also

that the standard error on the estimate of ln(γ0) is very large. This reflects a collinearity

between the arrival rate and the outside good utility – it is hard to tell whether there is a

large arrival rate of consumers who are each unlikely to purchase or a lower arrival rate of

consumers who are each likely to purchase.

The γ̂0
N = 1.23 estimate indicates that the number of shoppers increases more than

proportionately to a title’s popularity. Note that the fraction of consumers who are shoppers

is roughly independent of popularity because the coefficient estimate for nonshoppers is for

a single store, whereas the coefficient estimate for shoppers is for the whole population.

The estimates do imply, though, that the potential benefit of attracting shoppers is a more

important consideration for stores selling popular titles.

Unfortunately, we are unable to say much about how Amazon’s incorporation of Abe-

Books’s listings affected the shopper arrival rate. The imprecise estimate of ∆̂γ
2012
0 indicates

an increase of arrivals of 6%±49%. Hence, the 95% confidence interval includes both a dou-

bling of the shopper arrival rate and substantial decreases. We can reject larger increases

in the shopper arrival rate.

The price coefficient α̂ = 13.34 indicates that online shoppers are very price sensitive.

In most cases (excluding, for example, when the “outside option” is unusually bad), this

estimate implies that a firm with a price close to the lowest listed price will see its demand

go down by about 13% if it raises its price by 1%. A consequence of this price sensitivity

29In this paragraph we use “net arrival rate” to refer to the arrival rate of shoppers willing to purchase
from a store offering the lowest price observed in the data for that title.
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coupled with our logit functional form assumption is that a standard welfare calculation

will indicate that shoppers who purchase the book do not get a great deal of consumer

surplus. In principle, one could avoid this implication by putting heterogeneity directly into

the the shopper arrival rate and estimating a more flexible demand function that allowed

consumers to have different price sensitivities among inside goods versus the outside good.

But in practice, our data do not make it possible to estimate such a flexible specification.

5.4 Estimating welfare gains

In this section we examine both welfare gains from a shift from offline to online used

book sales and the division of these gains between consumers and stores. Welfare gains

occur when books are sold to consumers with higher valuations and/or books are sold

more quickly. Online retailers must be better off if the number of nonshoppers (and the

distribution of their valuations) increases, but the magnitude of the gain will be affected by

the size of these increases and the relative sizes of the shopper and nonshopper populations.

Given an estimated parameter vector Λ̂, the average per-listing welfare generated by

the listings for title k can be calculated by integrating over the posterior distribution of the

unobserved random coefficient β0k:

E(Wk|Λ̂) =
1

Ik

∫
β

(
E(CSk|Λ̂, β) +

∑
i

E(π(pik, p−ik)|Λ̂, β)

)
f(β|p1k, . . . , qnk}dβ,

where Ik is the number of listings for title k, CSk, is the total discounted consumer surplus

generated by the eventual sales of all the listings and π is the discounted expected profit

that the firm listing copy i will earn.

The profit term can be computed using the same profit functions we use in estimating

the model. Given the price pik, a value β0k for the outside good utility, and the other

estimated parameters, we back out a value for γik. Expected profits are then simply

E(π(pik, p−ik|Λ̂, β) =
pik(γikD

m(pik) + γ0kD
o(pik, p−ik))

r + γikDm(pik) + γ0kDo(pik, p−ik)

Consumer surplus is a little more complicated. It is a sum of consumer surplus from

sales to nonshoppers and sales to shoppers. The two are most naturally calculated in dif-

ferent ways. Expected total consumer surplus from sales to nonshoppers can be calculated

similarly to how we calculated profits:

E(CSnsk ) =
∑
i

E(e−rti)Prob{i sells to a nonshopper}E(v − pik|v > pik)

=
∑
i

γikD
m(pik) + γ0kD

o(pik, p−ik)

r + γikDm(pik) + γ0kDo(pik, p−ik)

γikD
m(pik)

γikDm(pik) + γ0kDo(pik, p−ik)

pik
η − 1

.
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The consumer surplus that accrues to shoppers, on the other hand, is easier to calculate

by thinking about the present value of the flow consumer surplus that accrues as shoppers

arrive because consumers prefer choosing among the Ik goods at the observed prices to

being forced to buy the outside good:

E(CSsk) =

∫ ∞
0

γ0k(E(CS(p1k, . . . , pIkk)− E(CS(∞, . . . ,∞))e−rtdt

=
γ0k

r

1

α

(
log(eβ +

∑
i

e−αpik)− β

)
.

The final step here takes advantage of the well known formula for the logit inclusive value to

calculate how the expected consumer surplus of each shopper increases due to the presence

of the inside goods.

Recall that in the case of isoelastic demand and no shoppers, expected welfare will

simply be the price, but these formulae tell us how this welfare is divided. They are also

more general, applying the cases with arbitrary demand and shoppers.

5.5 Welfare gains from Internet sales

In this section we present profit and welfare estimates calculated using the above methodol-

ogy. Among our main findings are that profits and consumer surplus resulting from online

sales are quite large and represent a substantial gain to market participants relative to the

offline market for used books. An increase in the number of listings between 2009 and 2012

may have lead to an additional welfare increase, although per-listing profits are estimated

to have declined somewhat from the 2009 level.

The first row of Table 5 presents estimates of the expected gross profit per listing. More

precisely, it is the average across titles of the average across listings of the estimated gross

profit given the listing’s price and our estimated demand parameters. We use the 313 titles

that have valid listing in both 2009 and 2012. (These are “gross” profits in that they do not

account for the acquisition cost of the books being sold.) A first finding, visible in the first

column, is that average per-listing profits are estimated to have been fairly low in the offline

world, just $1.32 per listing. This is the product of the mean price for the titles, $10.21,

and a discount factor of E(e−0.05t), reflecting the fact that sales occur probabilistically in

the future. In particular, the estimated discount factor of 0.13 reflects our estimates that

many books would take decades to sell: offline arrival rates are about 0.02 customers per

year. The second column gives comparable figures for the 2009 online listings. It illustrates

the dramatic increase in profits from moving online: per listing gross profits are estimated
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to be over twice as large at $3.11. The higher gross profits reflect both higher average prices

and a higher estimated sales rate, which reduces the extent to which the eventual sales are

discounted. Note, however, that the three-times higher arrival rate does not reduce the

effective discount factor as much as a naive calculation would indicate: firms react to the

higher arrival rate by increasing prices, and high-priced listings take longer to sell. The

final column presents estimates for the 2012 listings. The estimates indicate that per-listing

profits are still well above the 2009 offline profit level, although not as high as the 2009

online profits. This reflects both that average prices and price-weighted waiting times to

sell are intermediate. The waiting time effect reflects the model’s prediction that for many

titles, high priced firms are now very unlikely to sell to a shopper.

Average value 2009 offline 2009 online 2012 online
per listing listings listings listings

Gross profit $1.32 $3.11 $2.29
(0.07) (0.10) (0.10)

Price × $10.21 $15.04 $13.80
Discounting × 0.13 × 0.21 × 0.17

Consumer surplus $8.90 $16.61 $13.63
(0.09) (0.85) (0.50)

Nonshoppers + $8.85 $16.01 $13.36
Shoppers + $0.60 + $0.27

Welfare $10.21 $19.73 $15.91
(——) (0.87) (0.49)

Table 5: Profit and welfare estimates

In thinking about the reliability of these estimates, it should be noted that the 2012

figures are estimated from better data – it is only in 2012 that we have a proxy for the rate

at which listings are sold. The 2009 vs. 2012 online comparison reflects both the observed

fact that average online prices were higher (recall that price distributions were otherwise

similar but 2012 had more low-priced listings), and the structural model’s inferences about

demand: the similar upper tails suggest that nonshopper arrival rates were similar in 2009,

and the demand model infers that the growth of low-priced listings would have reduced

the number of sales that high-priced firms make to shoppers. Also, the 2009 offline profit

estimates are made without the sales proxy as well. We know prices were lower but are
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relying on the model’s inference that firms set lower prices because they were facing lower

demand.

The second row of the table presents estimates of consumer surplus. Here, the estimates

indicate that consumers also benefitted substantially from the shift to online sales. In 2009

online listings are estimated to generate, on average, almost twice the consumer surplus

(per listing) as offline listings. As noted in the introduction, the naive intuition that higher

online prices suggest that consumers are not benefitting from online sales misses the basic

point that profits and consumer surplus can both be higher if Internet sales result in higher

match quality and faster sales. The estimates indicate that this is true to an extreme:

consumers are estimated to capture most of the total surplus generated by both online and

offline sales, and in 2009 consumer surplus per listing is estimated to be almost twice as

high for online sales.

The estimates that consumer surplus is so much higher than profits reflects the distribu-

tion of prices. The model rationalizes the coexistence of low and high prices via a demand

curve with a very thick upper tail, which then makes the average valuation of consumers

who purchase very high. The thickness of the uppermost part of the tail, of course, relies

on functional form assumptions, and one could also worry that some high prices are not

actually profit-maximizing. For this reason, the precise magnitudes here should be taken

with a grain of salt. Another limitation of our model, mentioned earlier, however, works in

the other direction. In assuming a simple logit specification for demand, we have assumed

that consumers who are very price-sensitive when comparing online listings are equally price

sensitive in comparing listings to the outside option of not purchasing. This feature biases

us towards a finding of relatively little consumer surplus. Although it would be preferable

to estimate a model with more flexible substitution patterns, such as a nested logit model

with the outside good in a separate nest if it were feasible, we are perhaps fortunate that

these biases work in opposite directions.

The third row of the table presents estimates of total welfare. Our model of 2009

offline sales is a version of the monopoly-constant elasticity model discussed in section 2.1.

As a result, the estimated welfare is simply the average price (and is independent of the

estimated parameters). Our empirical models for the 2009 and 2012 online markets are not

just monopoly models, so the welfare estimates will depend on the estimated parameters.

The estimates are that per-listing welfare was almost twice as high in the 2009 online market

as in the 2009 offline market. Welfare is somewhat lower in 2012 than 2009 reflecting the

increased sales to nonshoppers and the somewhat lower prices.
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6 Conclusion

A number of previous studies have noted that the Internet has not transformed retail

markets as some forecast: price declines have been more moderate than revolutionary, and

the “law of one price” has not come to pass. We began this paper by noting that the

Internet market for used books shows these effects in the extreme: prices increased in a

strong sense and there is tremendous price dispersion. We feel that these facts make the

Internet market for used books a nice environment in which to try to gain insight into the

mechanisms through which the Internet affects retail markets. Crucially, we emphasized

that these basic facts do not necessarily indicate that the Internet has failed to live up

to its promise. If Internet search allows consumers to find products that are much better

matched to their tastes, then it leads to an increase in demand which can lead to higher

prices in a variety of models (particularly for goods like out-of-print books for which supply

is fairly inelastic).

The match-quality-increased-demand theory is very simple, so to provide evidence in

its favor we devoted a substantial part of our paper to developing less obvious implications

that could be examined to help assess its relevance. We examined these implications using

three sources of variation. First, we examined how price distributions – rather than just

price levels – differ between the online and offline markets. Here, our primary supporting

observation was that the online price distribution for standard titles has a thick upper

tail where the offline distribution had none. Second, we examined how price distributions

differed for different types of used books. Here, we noted that price increases were smaller

for popular books (which one would expect if the valuation distribution had less of an upper

tail and there is more competition) and that there was already an upper tail of prices for

local interest books in physical bookstores. One of our favorite characterizations of the

latter result is that it appears as if the Internet has made all books of local interest. Third,

we examined how online price distributions changed between 2009 and 2012. Here, we noted

that the Amazon-induced increase in viewing of aggregated listings would be expected to

increase the number of sellers offering very low prices but have little impact on the upper

part of the price distribution, and found that this was strikingly true in the data. Our

demand analysis also revealed patterns that seem consistent with the assumptions of our

model: there is a concentration of demand among the top-ranked firms as one would expect

from a price-senstive shopper segment; but firms with much higher prices also appear to

have some probability of making a sale.
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The structure of our model – in particular the use of one-dimensional unobserved het-

erogeneity and the assumption that firms maximize relative to steady-state beliefs – makes

it relatively easy to estimate structurally. The one-to-one mapping between unobserved

consumer arrival rates and observed prices makes it easy to control for endogeneity in de-

mand and to estimate the model via simulated maximum likelihood. And consumer surplus

and welfare are easily calculated from the estimated parameters by computing some things

on a title-by-title basis and others on a consumer-by-consumer basis. Our implementation

of the model suggests that there were substantial increases in both profits and consumer

surplus from the move to online sales of used books. Amazon’s subsequent incorporation of

used-book listings seems to have reduced book dealer profits somewhat, but they are still

much higher than they were in the offline world.

Our analysis has a number of limitations that could provide opportunities for future

research. On the theory side it would be interesting to analyze a similar dynamic pricing

problem without the steady-state beliefs we have imposed in the model: there could be

interesting swings in pricing as duopolists hold off on selling in hopes of becoming a mo-

nopolist and then lower prices substantially when entry occurs and makes this less likely.

On the empirical side we think that the combination of assumptions we have used could

make other analyses tractable as well, but think that it would also be worth exploring gen-

eralizing our model in other ways and allowing for multidimensional heterogeneity among

firms. With regard to used books, we think that among the most important elements we

have not incorporated is a relation between market prices and the flow of used books into

used book dealers. Building out the model in this direction would also be useful for un-

derstanding differences in how different retail markets have been affected by the Internet

growth.
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