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9 Algebra Appendix to “Michelson-Morley, Fisher, and Occam: The

Radical Implications of Stable Quiet Inflation at the Zero Bound.”

9.1 Formulas for delayed and temporary rate rises

Here I work out the algebra for impulse response functions of the fiscal theory with long term

debt model, with an announcement M years ahead of the interest rate rise, and an interest rate

rise that only lasts M years, in both continuous and discrete time, Equations (32)-(33).

An interest rate rise from i to i∗ that only lasts M years, continuous time:
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)
An announcement of an interest rate rise from i to i∗ that starts in M years, continuous time:
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An interest rate rise from i to i∗ that only lasts M years, discrete time:M−1∑

j=0
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An interest rate rise from i to i∗ that starts in M years, discrete time:M−1∑
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9.2 Sticky-price model solution

Here I derive the explicit solutions (62)-(63), for inflation and output given the equilibrium path

of interest rates. The simple model (58)-(59) is

xt = Etxt+1 − σ(it − Etπt+1)

πt = βEtπt+1 + κxt.

The model with money generalizes the IS equation only, to (73)

xt = Etxt+1 + (σ − ξ)
(m
c

)
Et
[(
it+1 − imt+1

)
− (it − imt )

]
− σ (it − Etπt+1) .

We can treat the two cases simultaneously by defining

zt ≡ it −
(
σ − ξ
σ

)(m
c

)
Et
[(
it+1 − imt+1

)
− (it − imt )

]
and writing the IS equation as

xt = Etxt+1 − σ (zt − Etπt+1) .

One must be careful that lags of zt are lags of expected interest rate changes, not lags of actual

interest rate changes.

Expressing the model in lag operator notation,

Et(1− L−1)xt = σEtL
−1πt − σzt

Et(1− βL−1)πt = κxt

Forward-differencing the second equation,

Et(1− L−1)(1− βL−1)πt = Et(1− L−1)κxt

Then substituting,

Et(1− L−1)
(
1− βL−1

)
πt = σκEtL

−1πt − σκzt

Et
[
(1− L−1)

(
1− βL−1

)
− σκL−1

]
πt = −σκzt

Et
[
1− (1 + β + σκ)L−1 + βL−2

]
πt = −σκzt.
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Factor the lag polynomial

Et(1− λ1L
−1)(1− λ2L

−1)πt = −σκzt

where

λi =
(1 + β + σκ)±

√
(1 + β + σκ)2 − 4β

2
.

Since λ1 > 1 and λ2 < 1, reexpress the result as

Et
[
(1− λ−1

1 L)(1− λ2L
−1)λ1L

−1πt
]

= σκzt

Et
[
(1− λ−1

1 L)(1− λ2L
−1)πt+1

]
= σκλ−1

1 zt

The bounded solutions are

πt+1 = Et+1
λ−1

1

(1− λ−1
1 L)(1− λ2L−1)

σκzt +
1

(1− λ−1
1 L)

δt+1

where δt+1 is a sequence of unpredictable random variables, Etδt+1 = 0. I follow the usual

practice and I rule out solutions that explode in the forward direction.

Using a partial fractions decomposition to break up the right hand side,

λ−1
1(

1− λ−1
1 L

)
(1− λ2L−1)

=
1

λ1 − λ2

(
1 +

λ−1
1 L

1− λ−1
1 L

+
λ2L

−1

1− λ2L−1

)
.

So,

πt+1 =
1

λ1 − λ2
Et+1

(
1 +

λ−1
1 L

1− λ−1
1 L

+
λ2L

−1

1− λ2L−1

)
σκzt +

1

(1− λ−1
1 L)

δt+1

or in sum notation,

πt+1 = σκ
1

λ1 − λ2

zt +
∞∑
j=1

λ−j1 zt−j +
∞∑
j=1

λj2Et+1zt+j

+
∞∑
j=0

λ−j1 δt+1−j . (88)

We can show directly that the long-run impulse-response function is 1:

1

(1− λ−1
1 )(1− λ2)

σκ

λ1
= − σκ

(1− λ1)(1− λ2)

= − σκ

(1− (λ1 + λ2) + λ1λ2)
= − σκ

(1− (1 + β + σκ) + β)
= 1.
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Having found the path of πt, we can find output by

κxt = πt − βEtπt+1.

In lag operator notation, and shifting forward one period,

κxt+1 = Et+1

[
(1− βL−1)πt+1

]
κxt+1 =

σκ

λ1 − λ2
Et+1

[
(1− βL−1)

(
1 +

λ−1
1 L

1− λ−1
1 L

+
λ2L

−1

1− λ2L−1

)
zt

]
+ Et+1

(1− βL−1)

(1− λ−1
1 L)

δt+1.

We can rewrite the polynomials to give

κxt+1 =
σκ

λ1 − λ2
Et+1

[
1− βλ−1

1

1− λ−1
1 L

+
(1− βλ−1

2 )
(
λ2L

−1
)

1− λ2L−1

]
zt + Et+1

[
1− βλ−1

1

1− λ−1
1 L

]
δt+1.

(In the second term, I use Et
[
βL−1δt+1

]
= 0) or, in sum notation,

κxt+1 =
σκ

λ1 − λ2

(1− βλ−1
1

) ∞∑
j=0

λ−j1 zt−j +
(
1− βλ−1

2

) ∞∑
j=1

λj2Et+1zt+j

+

+
(
1− βλ−1

1

) ∞∑
j=0

λ−j1 δt+1−j .

9.3 Impulse response function – explicit solution

The solution (88) is

πt+1 =
σκ

λ1 − λ2

it +

∞∑
j=1

λ−j1 it−j + Et+1

∞∑
j=1

λj2it+j

+

∞∑
j=0

λ−j1 δt+1−j

λ1 =
(1 + β + σκ) +

√
(1 + β + σκ)2 − 4β

2

λ1 =
(1 + β + σκ)−

√
(1 + β + σκ)2 − 4β

2

While it is straightforward to calculate and simulate the solution for a given path of interest

rates, it is useful also to have a formula for the response to a step function. We want to find the

impulse-response function to it = 0, t < 0, and it = i, t = 0, 1, 2, ... The interest rate rise is
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announced at time−M , so only δ−M 6= 0. That response is,

t < −(M + 1) : πt+1 = 0

−(M + 1) ≤ t ≤ 0 : πt+1 =
σκ

λ1 − λ2

(
λ−t2

1− λ2

)
+ λ

−(t+1+M)
1 δ−M

0 < t : πt+1 =
σκ

λ1 − λ2

(
1

1− λ2
+
λ−1

1 (1− λ−t1 )

1− λ−1
1

)
+ λ

−(t+1+M)
1 δ−M

Proceeding in the same way, the solution for x is

κxt+1 =
σκ

λ1 − λ2

(1− βλ−1
1 )

∞∑
j=0

λ−j1 it−j + (1− βλ−1
2 )Et+1

∞∑
j=1

λj2it+j

+(1−βλ−1
1 )

∞∑
j=0

λ−j1 δt+1−j

so the impulse-response function to it = 0, t < 0, and it = i, t = 0, 1, 2, ..announced at time−M ,

is,

t < −(M + 1) : xt+1 = 0

−(M + 1) ≤ t ≤ −1 : κxt+1 =
σκ

λ1 − λ2
(1− βλ−1

2 )
λ−t+1

2

1− λ2
+ (1− βλ−1

1 )λ
−(t+1+M)
1 δ−M

0 ≤ t : κxt+1 =
σκ

λ1 − λ2

(
(1− βλ−1

1 )
1− λ−(t+1)

1

1− λ−1
1

+ (1− βλ−1
2 )

λ2

1− λ2

)
+ λ

−(t+1+M)
1 δ−M

The interest rate is then

rt = it − Etπt+1.

For the impulse-response function, the expected and actual values are the same, except at −M ,

where though π−M 6= 0, E−M−1π−M = 0. Hence,

t ≤ −(M + 1) : rt = 0 (89)

−M ≤ t < 0 : rt = − σκ

λ1 − λ2

(
λ−t2

1− λ2

)
− λ−(t+1+M)

1 δ−M (90)

t = 0 : rt = i− σκ

λ1 − λ2

(
λ−t2

1− λ2

)
− λ−(t+1+M)

1 δ−M (91)

0 < t : rt = i− σκ

λ1 − λ2

(
1

1− λ2
+
λ−1

1 (1− λ−t1 )

1− λ−1
1

)
− λ−(t+1+M)

1 δ−M (92)
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9.4 Three-equation model solution

I solve the three-equation model of Figure 15 by standard methods, incorporating the Taylor

rule in to monetary policy rather than conditioning on the equilibrium interest rate and then

constructing the underlying Taylor rule. Both methods give the same answer, but a conventional

calculation is more transparent in this case, and it verifies that both approaches give the same

answer.

While one can solve the model quickly via matrix techniques, here I use lag operator tech-

niques to write the solution for inflation analytically.

The model is

xt = Etxt+1 − σ(it − Etπt+1)

πt = βEtπt+1 + κxt

it = φπt + v̂it

vit = ρvit−1 + εit

Substituting the Taylor rule,

xt = Etxt+1 − σ(φπt + vit − Etπt+1)

πt = βEtπt+1 + κxt

Expressing the model in lag operator notation,

Et(1− L−1)xt = σEt
(
L−1 − φ

)
πt − σvit

Et(1− βL−1)πt = κxt

Forward-differencing the second equation,

Et(1− L−1)(1− βL−1)πt = Et(1− L−1)κxt

Then substituting into the first equation,

Et(1− L−1)
(
1− βL−1

)
πt = σκEt

(
L−1 − φ

)
πt − σκvit
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Et

[
1− 1 + β + σκ

1 + σκφ
L−1 +

β

1 + σκφ
L−2

]
πt = − σκ

1 + σκφ
vit.

Factor the lag polynomial

Et(1− λ1L
−1)(1− λ2L

−1)πt = − σκ

1 + σκφ
vit

where

λ =
1 + β + σκ±

√
(1 + β + κσ)2 − 4β (1 + φσκ)

2 (1 + σκφ)

These lag operator roots are the inverse of the eigenvalues of the usual transition matrix. The

system is stable and solved backward for λ > 1; it is unstable and solved forward for λ < 1.

The standard three-equation model uses φ > 1 so both roots are unstable, λ1 < 1 and λ2 < 1.

Then, we can write

Et(1− λ1L
−1)(1− λ2L

−1)πt = − σκ

1 + σκφ
vit

πt = −Et
1

(1− λ1L−1)(1− λ2L−1)

σκ

1 + σκφ
vit

πt = Et
1

λ1 − λ2

(
−λ1

1− λ1L−1
+

λ2

1− λ2L−1

)
σκ

1 + σκφ
vit

πt =
σκ

1 + σκφ

1

λ1 − λ2
Et

−λ1

∞∑
j=0

λj1v
i
t+j + λ2

∞∑
j=0

λj2v
i
t+j


Using the AR(1) form of the disturbance vi,

πt =
σκ

1 + σκφ

1

λ1 − λ2

−λ1

∞∑
j=0

λj1ρ
j + λ2

∞∑
j=0

λj2ρ
j

 ı̂t

πt =
σκ

1 + σκφ

1

λ1 − λ2

(
− λ1

1− λ1ρ
+

λ2

1− λ2ρ

)
vit

πt =
σκ

1 + σκφ

1

λ1 − λ2

(
λ2 (1− λ1ρ)− λ1 (1− λ2ρ)

(1− λ1ρ) (1− λ2ρ)

)
vit

πt = − σκ

1 + σκφ

(
1

(1− λ1ρ) (1− λ2ρ)

)
vit

Thus, to produce Figure 15, I simply simulate the AR(1) impulse-response, for {vit}, calculate πt

by the last equation, and calculate it = φπt + vit.
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9.5 Impulse-response with long-term debt and price stickiness

I develop the exact nonlinear formulas for the value of surpluses and a linear approximation.

The linear approximation turns out to be quite accurate in this application.

An interest rate rise from time t = 0 onwards is announced at time t = −M . I calculate for

each value of the inflation shock δ−M the percent change in a constant surplus corresponding to

that shock. Writing the surplus as se∆s, the value of nominal debt before the shock satisfies

∞∑
j=0

(
j−1∏
k=0

1

1 + f (k)

)
B(j)

P−M
=

∞∑
t=−M

βt−Ms. =
1

1− β
s.

where
{
B(j)

}
is the observed maturity structure of the debt, and the observed forward rates are

f (j), (f (j)
t is the forward rate at time t for loans from t + j to t + j + 1; f (0)

t = it is the one-period

interest rate). After the shock, nominal interest rates increase by i, the price level jumps from

P−M to P ∗−M , with

eπ
∗
−M = eπ−M+δ−M =

P ∗−M
P−M

.

Here, π−M denotes the solution with δ = 0, so actual inflation after the shock is announced

is π∗−M = π−M + δ−M . The basic solution for inflation (88) includes a jump in inflation when

the shock is announced, and I have defined δ as additional unexpected changes in inflation.

Surpluses rise to se∆s, giving

∞∑
j=0

(
M−1∏
k=0

1

1 + f (k)

)(
j−1∏
k=M

1

1 + f (k) + i

)
B(j)

P ∗−M
=

∞∑
t=−M

β(t−M) u′(Ct)

u′(C−M )
se∆s (93)

To easily calculate the multiperiod discount factor on the right hand side, I use

u′(Ct)

u′(Cτ )
=
e−γ(c+xt)

e−γ(c+xτ )
= e−

1
σ

(xt−xτ )

Dividing pre and post shock values of (93), s cancels and

eπ−M+δ−M =

∑∞
j=0

(∏M−1
k=0

1
1+f (k)

)(∏j−1
k=M

1
1+f (k)+i

)
B(j)∑∞

j=0

(∏j−1
k=0

1
1+f (k)

)
B(j)

∑∞
t=−M β(t−M)∑∞

t=−M β(t−M)e−
1
σ

(xt−x−M )
e−∆s.

Conversely, then, we can find the surplus required to support a given time -M shock δ−M –

whether that surplus comes from active or from passive fiscal policy – by solving for ∆s,
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e∆s =

∑∞
j=0

(∏M−1
k=0

1
1+f (k)

)(∏j−1
k=M

1
1+f (k)+i

)
B(j)∑∞

j=0

(∏j−1
k=0

1
1+f (k)

)
B(j)

∑∞
t=−M β(t−M)∑∞

t=−M β(t−M)e−
1
σ

(xt−x−M )
e−(π−M+δ−M ).

(94)

For each choice of δ−M , then, I find the solution for inflation and interest rates by (90)-(92);

I compute the product of real rates in the bottom right term of (94), and I compute the required

percentage change in surplus ∆s. To find the fiscal-theory / long-term debt solution, I search

for the δ−M that produces ∆s = 0. It is important to treat the numerator and denominator of the

last term of (94) equally. If one truncates the denominator, truncate the numerator at the same

point.

9.6 Linearized valuation equation

To linearly approximate (94), write

e∆s ≈ V
∑∞

t=−M β(t−M)∑∞
t=−M β(t−M)e−

1
σ

(xt−x−M )
e−(π−M+δ−M ). (95)

1 + ∆s ≈ (1 + v)

∑∞
t=−M β(t−M)∑∞

t=−M β(t−M)
(
1− 1

σ (xt − x−M )
)(1− (π−M + δ−M )). (96)

1 + ∆s ≈ (1 + v)
1

1−
∑∞
t=−M β(t−M) 1

σ
(xt−x−M )∑∞

t=−M β(t−M)

(1− (π−M + δ−M )). (97)

∆s ≈ v +

∑∞
t=−M β(t−M) 1

σ (xt − x−M )∑∞
t=−M β(t−M)

− (π−M + δ−M ). (98)

∆s ≈ v + (1− β)

∞∑
t=−M

β(t−M) 1

σ
(xt − x−M )− (π−M + δ−M ). (99)

In numerical experimentation, it turns out that the exact and linearized approach produce

almost exactly the same answer to the first few decimals. So, the nonlinearity of long-term

present values is not an issue for this magnitude – a few percent at most – of interest rate varia-

tion.
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For one-period debt, v is unchanged so we have

∆s ≈ −∆Et (πt) +
1− β
σ

∞∑
j=0

βj∆Et (xt+j − xt) (100)

where ∆Et ≡ Et − Et−1 and t is the date of the announcement of a new policy.

The first term of (100) captures the fact that unexpected inflation devalues outstanding gov-

ernment debt. In the second term, (xt+j − xt)/σ is the real interest rate between time t and time

t+ j. So this term captures the fact that if real rates rise, the government must pay more interest

on the debt.

9.7 The Model with Money

This section derives the model with money (73). The utility function is

maxE

∫ ∞
t=0

e−δtu(ct,Mt/Pt)dt.

The present-value budget constraint is

B0 +M0

P0
=

∫ ∞
t=0

e−
∫ t
s=0 rsds

[
ct − yt + st + (it − imt )

Mt

Pt

]
dt

where

rt = it −
dPt
Pt

and s denotes real net taxes paid, and thus the real government primary surplus. This budget

constraint is the present value form of

d(Bt +Mt) = itBt + imt Mt + Pt(yt − ct − st).

Introducing a multiplier λ on the present value budget constraint, we have

∂

∂ct
: e−δtuc(t) = λe−

∫ t
s=0 rsds,

where (t) means (ct,Mt/Pt). Differentiating with respect to time,

−δe−δtuc(t) + e−δtucc(t)
dct
dt

+ e−δtucm(t)
dmt

dt
= −λrt e−

∫ t
s=0 rsds
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where mt ≡Mt/Pt. Dividing by e−δtuc(t), we obtain the intertemporal first order condition:

− ctucc(t)

uc(t)

dct
ct
− mtucm(t)

uc(t)

dmt

mt
= (rt − δ) dt. (101)

The first-order condition with respect to M is

∂

∂Mt
: e−δtum (t)

1

Pt
= λe−

∫ t
s=0 rsds (it − imt )

1

Pt

e−δtum (t) = e−δtuc(t) (it − imt )

um (t)

uc(t)
= it − imt . (102)

The last equation is the usual money demand curve.

Thus, an equilibrium ct = yt satisfies

−ctucc(t)
uc(t)

dct
ct
− mtucm(t)

uc(t)

dmt

mt
= −δdt+

(
it −

dPt
Pt

)
dt (103)

um (t)

uc(t)
= it − imt (104)

B0 +M0

P0
=

∫ ∞
t=0

e−
∫ t
s=0 rsds

[
st + (it − imt )

Mt

Pt

]
dt (105)

The last equation combines the consumer’s budget constraint and equilibrium c = y. I call it the

government debt valuation formula.

9.7.1 CES functional form

I use a standard money in the utility function specification with a CES functional form,

u(ct,mt) =
1

1− γ

[
c1−θ
t + αm1−θ

t

] 1−γ
1−θ

.

I use the notationm = M/P , with capital letters for nominal and lowercase letters for real quan-

tities.

This CES functional form nests three important special cases. Perfect substitutes is the case

θ = 0 :

u(ct,mt) =
1

1− γ
[ct + αmt]

1−γ .
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The Cobb-Douglas case is θ −→ 1:

u(ct,mt) −→
1

1− γ

[
c

1
1+α

t m
α

1+α

t

]1−γ
. (106)

The monetarist limit is θ →∞:

u(ct,mt)→
1

1− γ
[min (ct, αmt)]

1−γ .

I call it the monetarist limit because money demand is then Mt/Pt = ct/α, i.e. α = 1/V is

constant, and the interest elasticity is zero. The separable case is θ = γ:

u(ct,mt) =
1

1− γ

[
c1−γ
t + αm1−γ

t

]
.

In the separable case, uc is independent of m, so money has no effect on the intertemporal sub-

stitution relation, and hence on inflation and output dynamics in a new-Keynesian model under

an interest rate target. Terms in (θ − γ) or (σ − ξ) with σ = 1/γ and ξ = 1/θ will characterize de-

viations from the separable case, how much the marginal utility of consumption is affected by

money.

With this functional form, the derivatives are

uc =
[
c1−θ
t + αm1−θ

t

] θ−γ
1−θ

c−θt

um =
[
c1−θ
t + αm1−θ

t

] θ−γ
1−θ

αm−θt .

Equilibrium condition (104) becomes

um (t)

uc(t)
= α

(
mt

ct

)−θ
= it − imt . (107)

The second derivative with respect to consumption is

ucc
uc

= (θ − γ)
1[

c1−θ
t + αm1−θ

t

]c−θt − θc−1
t

−cucc
uc

= −
(θ − γ) c1−θ

t − θ
[
c1−θ
t + αm1−θ

t

]
[
c1−θ
t + αm1−θ

t

]
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−cucc
uc

=
γc1−θt + θαm1−θ

t

c1−θ
t + αm1−θ

t

−cucc
uc

= γ

[
1 + θ

γα
(
mt
ct

)1−θ
]

[
1 + α

(
mt
ct

)1−θ
] .

The cross derivative is

mucm
uc

= (θ − γ)
αm1−θ

t

c1−θ
t + αm1−θ

t

= (θ − γ)
α
(
mt
ct

)1−θ

1 + α
(
mt
ct

)1−θ .

or, using (107)

mucm
uc

= (θ − γ)

(
mt
ct

)
(it − imt )

1 +
(
mt
ct

)
(it − imt )

.

9.7.2 Money demand

Money demand (107) can be written

mt

ct
=

(
1

α

)−ξ
(it − imt )−ξ . (108)

where ξ = 1/θ becomes the interest elasticity of money demand, in log form, and α governs the

overall level of money demand.

The steady state obeys
m

c
=

(
1

α

)−ξ
(i− im)−ξ . (109)

so we can write money demand (108) in terms of steady state real money as

mt

ct
=
(m
c

)( it − imt
i− im

)−ξ
, (110)

avoiding the parameter α. (Throughout, numbers without time subscripts denote steady state

values.)

The product m
c (i− im) , the interest cost of holding money, appears in many subsequent
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expressions. It is
m

c
(i− im) =

(
1

α

)−ξ
(i− im)1−ξ .

With ξ < 1, as interest rates go to zero this interest cost goes to zero as well.

9.7.3 Intertemporal Substitution

The first order condition for the intertemporal allocation of consumption (103) is

−ctucc(t)
uc(t)

dct
ct
− mtucm(t)

uc(t)

dmt

mt
= −δdt+ (it − πt) dt

where πt = dPt/Pt is inflation. This equation shows us how, with nonseparable utility, monetary

policy can distort the allocation of consumption over time, in a way not captured by the usual

interest rate effect. That is the central goal here. In the case of complements, ucm > 0 (more

money raises the marginal utility of consumption), larger money growth makes it easier to con-

sume in the future relative to the present, and acts like a higher interest rate, inducing higher

consumption growth.

Substituting in the CES derivatives,

γ
1 + θ

γα
(
mt
ct

)1−θ

1 + α
(
mt
ct

)1−θ
dct
ct
− (θ − γ)

α
(
mt
ct

)1−θ

1 + α
(
mt
ct

)1−θ
dmt

mt
= −δdt+ (it − πt) dt

and using (107) to eliminate α

γ
1 + θ

γ

(
mt
ct

)
(it − imt )

1 +
(
mt
ct

)
(it − imt )

dct
ct
− (θ − γ)

(
mt
ct

)
(it − imt )

1 +
(
mt
ct

)
(it − imt )

dmt

mt
= −δdt+ (it − πt) dt (111)

We can make this expression prettier as

γ
dct
ct

+ (θ − γ)

(
mt
ct

)
(it − imt )

1 +
(
mt
ct

)
(it − imt )

(
dct
ct
− dmt

mt

)
= −δdt+ (it − πt) dt

Rexpressing in terms of the intertemporal substitution elasticity σ = 1/γ and interest elasticity
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of money demand ξ = 1/θ, and multiplying by σ,

dct
ct

+

(
σ − ξ
ξ

) (
mt
ct

)
(it − imt )

1 +
(
mt
ct

)
(it − imt )

(
dct
ct
− dmt

mt

)
= −δσdt+ σ (it − πt) dt. (112)

We want to substitute interest rates for money. To that end, differentiate the money demand

curve

mt

ct
=
(m
c

)( it − imt
i− im

)−ξ
mt

ct

(
dmt

mt
− dct

ct

)
= −ξ

(m
c

)( it − imt
i− im

)−ξ d (it − imt )

it − imt(
dct
ct
− dmt

mt

)
= ξ

m
c
mt
ct

(
it − imt
i− im

)−ξ d (it − imt )

it − imt

Substituting,

dct
ct

+

(
σ − ξ
ξ

) (
mt
ct

)
(it − imt )

1 +
(
mt
ct

)
(it − imt )

(
ξ
m
c
mt
ct

(
it − imt
i− im

)−ξ d (it − imt )

it − imt

)
= −δσdt+ σ (it − πt) dt.

dct
ct

+ (σ − ξ) m
c

1

1 +
(
mt
ct

)
(it − imt )

(
it − imt
i− im

)−ξ
d (it − imt ) = −δσdt+ σ (it − πt) dt.

With xt = log ct, dxt = dct/ctm, approximating around a steady state, and approximating that

the interest cost of holding money is small,
(
m
c

)
(i− im) << 1, we obtain the intertemporal sub-

stitution condition modified by interest costs,

dxt
dt

+ (σ − ξ) m
c

d (it − imt )

dt
= σ (it − πt) . (113)

In discrete time,

Etxt+1 − xt + (σ − ξ)
(m
c

) [
Et
(
it+1 − imt+1

)
− (it − imt )

]
= σ (it − Etπt+1) .

For models with monetary control, one wants an IS curve expressed in terms of the monetary

aggregate. From (112), with the same approximations and m̃ = log(m),

dxt
dt

+

(
σ − ξ
ξ

)(m
c

)
(i− im)

(
dxt
dt
− dm̃t

dt

)
= σ (it − πt) dt. (114)
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In discrete time,

(Etxt+1 − xt) +

(
σ − ξ
ξ

)(m
c

)
(i− im) [(Etxt+1 − xt)− Et (m̃t+1 − m̃t)] = σ (it − πt) . (115)


