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1 Introduction

This technical appendix provides detailed derivations for results reported in Del Negro and

Schorfheide “Monetary Policy Analysis with Potentially Misspecified Models.” We derive

the VAR approximation of a linearized DSGE model in Section 2. Section 3 provides details

about the DSGE-VAR framework, including the construction of the prior distribution, the

likelihood function, the posterior distribution, and a discussion of the various approaches

toward policy analysis. Section 4 solves a simplified DSGE model that is used in the paper to

explain some of the empirical results obtained with the full DSGE model. Finally, Section 5

describes how we specify the prior distribution.

2 VAR Approximation of DSGE Model

The policy rule can be written in general form as

y1,t = x′tβ1(θ) + y′2,tβ2(θ) + ε1,t, (1)

where yt = [y1,t, y
′
2,t]

′ and the k× 1 vector xt = [y′t−1, . . . , y
′
t−p, 1]′ is composed of the first p

lags of yt and an intercept. The shock ε1,t corresponds to the monetary policy shock σRε̃1,t

in the DSGE model. The matrices β1(θ) and β2(θ) select the appropriate elements of xt

and y2,t to generate the policy rule as a function of θ.

The observed private sector variables are stacked in the vector y2,t. We approximate the

DSGE model-implied moving average representation of y2,t with a p-th order autoregression,
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which we write as

y′2,t = x′tΨ
∗(θ) + u′2,t. (2)

Assuming that the law of motion for y2,t is covariance stationary, we define ΓXX(θ) =

IED
θ [xtx

′
t] and ΓXY2(θ) = IED

θ [xty
′
2,t] and let

Ψ∗(θ) = Γ−1
XX(θ)ΓXY2(θ). (3)

The equation for the policy instrument (1) can be rewritten by replacing y2,t with expres-

sion (2):

y1,t = x′tβ1(θ) + x′tΨ
∗(θ)β2(θ) + u1,t, (4)

where u1,t = u′2,tβ2(θ) + σRε̃1,t. Define u′t = [u1,t, u
′
2,t], B1(θ) = [β1(θ), 0k×(n−1)] and

B2(θ) = [β2(θ), I(n−1)×(n−1)]. We obtain a restricted VAR for yt of the form

y′t = x′tΦ
∗(θ) + u′t, IE[utu

′
t] = Σ∗(θ) (5)

with

Φ∗(θ) = B1(θ) + Ψ∗(θ)B2(θ)

Σ∗(θ) = ΓY Y (θ)− ΓY X(θ)Γ−1
XX(θ)ΓXY (θ).

Here the population covariance matrices are ΓY Y (θ) = IED
θ [yty

′
t] and ΓXY (θ) = Γ′Y X(θ) =

IED
θ [xty

′
t].

Lemma 1 (i) The VAR coefficient matrix Φ∗(θ) = Γ−1
XX(θ)ΓXY (θ). (ii) IEV AR

Ψ∗(θ),Σ∗(θ)[xtx
′
t] =

IED
θ [xtx

′
t] = ΓXX(θ).

Proof (i) We begin by calculating IED
θ [xty1,t]:

IED
θ [xty1,t] = IED

θ [xt(x′tβ1(θ) + y2,tβ2(θ) + ε1,t)]

= ΓXX(θ)β1(θ) + ΓXY2(θ)β2(θ).

We used the fact that under the DSGE model ε1,t is uncorrelated with past endogenous

variables. Using the definitions of B1(θ) and B2(θ) we deduce

IED
θ [xtyt] = IED

θ

[
ΓXX(θ)β1(θ) + ΓXY2(θ)β2(θ), ΓXY2(θ)

]
= ΓXX(θ)B1(θ) + ΓXY2(θ)B2(θ).

Pre-multiplying this result by Γ−1
XX(θ) completes the argument.
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(ii) Without loss of generality we can omit the intercept from the subsequent calcula-

tions. We present a proof for p = 2. The extension to a general p is straightforward. Define

M ′ = [In×n, 0n×n]. Moreover, xt = [yt−1, yt−2]. We will write the VAR with parameters

Φ∗(θ) and Σ∗(θ) in companion form:

xt+1 =

 Φ∗
′

M ′

xt +Mut.

The VAR implied covariance matrix, say ΓV for brevity, has to satisfy the following rela-

tionship

ΓV =

 Φ∗
′

M ′

ΓV

[
Φ∗, M

]
+MΣ∗M ′ (6)

We will now verify that ΓV = ΓXX does satisfy this relationship. Note that

ΓXX =

 IED
θ [yty

′
t] IED

θ [yty
′
t−1]

IED
θ [yt−1y

′
t] IED

θ [yty
′
t]

 (7)

ΓXY =

 IED
θ [yt−1y

′
t]

IED
θ [yt−2, y

′
t]

 .
Hence, (6) is satisfied if

ΓXX =

 Φ∗
′
ΓXXΦ Φ∗

′
ΓXXM

M ′ΓXXΦ M ′ΓXXM

+MΣ∗M ′.

Plugging in the definition of Φ∗ = Γ−1
XXΓXY , the condition can be rewritten as

ΓXX =

 ΓY XΓ−1
XXΓXY ΓY XM

M ′ΓXY M ′ΓXXM

+M(ΓY Y − ΓY XΓ−1
XXΓXY )M ′.

Using the expressions for ΓXX and ΓXY in (7) it is straightforward to verify that ΓV = ΓXX

indeed solves (6), which completes the proof. �

3 DSGE-VAR Inference

3.1 Prior Distribution

Let etr[A] = exp[− 1
2 tr[A]]. The VAR likelihood function is given by

p(Y |Ψ,Σ, θ) (8)

= (2π)−nT/2|Σ|−T/2etr
[
Σ−1(Y −XB1(θ)−XΨB2(θ))′(Y −XB1(θ)−XΨB2(θ))

]
.
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To capture misspecification, for now only in the conditional mean dynamics, we introduce a

discrepancy matrix Ψ∆, such that Ψ = Ψ∗+Ψ∆. Now consider the likelihood ratio (omitting

the θ-argument of the Bi(θ) functions)

ln
[

p(Y |Ψ∗,Σ∗, θ)
p(Y |Ψ∗ + Ψ∆,Σ∗, θ)

]
= −1

2
tr

[
Σ∗−1(Y −XB1 −XΨ∗B2)′(Y −XB1 −XΨ∗B2)

]
+

1
2
tr

[
Σ∗−1(Y −XB1 −XΨ∗B2 −XΨ∆B2)′(Y −XB1 −XΨ∗B2 −XΨ∆B2)

]
= −1

2
tr

[
Σ∗−1B′2Ψ

∆′
X ′XΨ∆B2

]
+ tr

[
Σ∗−1B′2Ψ

∆′
X ′(Y −XB1 −XΨ∗B2)

]
Now suppose we are taking expectations with respect to the probability distribution implied

by the DSGE model. Consider the following term

IED
θ

[
X ′(Y −XB1 −XΨ∗B2)

]
= ΓXY (θ)− ΓXX(B1 + Ψ∗B2)

= ΓXY (θ)− ΓXXΦ∗

= ΓXY (θ)− ΓXXΓ−1
XXΓXY = 0.

The second equality follows from the definition of Φ∗ and the last equality is a consequence

of Lemma 1(i). Hence,

IED
θ

[
ln
[

p(Y |Ψ∗,Σ∗, θ)
p(Y |Ψ∗ + Ψ∆,Σ∗, θ)

]]
= −1

2
tr

[
Σ∗−1B′2(θ)Ψ

∆′
ΓXX(θ)Ψ∆B2(θ)

]
.

We now choose a prior density for Ψ∆ that is proportional to the Kullback-Leibler discrep-

ancy:

p(Ψ∆|Σ∗, θ) ∝ etr
[
λTΣ∗−1

(
B′2Ψ

∆′
ΓXXΨ∆B2

)]
. (9)

For computational reasons it is convenient to transform this prior into a prior for Ψ. Using

standard arguments we deduce that this prior is multivariate normal

Ψ|Σ∗, θ ∼ N

(
Ψ∗(θ),

1
λT

[
(B2(θ)Σ∗−1B2(θ)′)⊗ ΓXX(θ)

]−1
)
. (10)

In practice we also have to take potential misspecification of the covariance matrix Σ∗(θ) into

account. Hence, we will use the following, slightly modified, prior distribution conditional

on θ in the empirical analysis:

Ψ|Σ, θ ∼ N

(
Ψ∗(θ),

1
λT

[
(B2(θ)Σ−1B2(θ)′)⊗ ΓXX(θ)

]−1
)

(11)

Σ|θ ∼ IW
(
λTΣ∗(θ), λT − k, n

)
,
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where IW denotes the inverted Wishart distribution. The latter induces a distribution for

the discrepancy Σ∆ = Σ− Σ∗.

We conduct a few additional manipulations that will be useful subsequently. To simplify

notation the (θ)-argument of the functions B1, B2, ΓXY , ΓXX , and ΓY Y is omitted. First,

note that the prior density for Σ is given by

p(Σ|θ) ∝ |Σ|− 1
2 (λT−k+n+1)etr

[
Σ−1λTΣ∗(θ)

]
(12)

The prior density for Ψ is of the form

p(Ψ|Σ, θ) ∝ etr
[
λTB2Σ−1B′2(Ψ−Ψ∗)′ΓXX(Ψ−Ψ∗)

]
∝ etr

[
λTΣ−1B′2Ψ

′ΓXXΨB2

]
−2etr

[
λTΣ−1B′2Ψ

′ΓXXΨ∗B2

]
It will be convenient for the derivation of the conditional posteriors to rewrite the second

term as follows. Recall that

y′t − x′tB1 = x′tΨ
∗B2 + u′t

Multiplying both sides by xt and taking expectations under the distribution generated by

the DSGE model yields

ΓXY − ΓXXB1 = ΓXXΨ∗B2.

If we adopt the notation that Ỹ = Y −XB1 and let

ΓỸ Ỹ = ΓY Y − ΓY XB1 −B′1ΓXY +B′1ΓXXB1

ΓXỸ = ΓXY − ΓXXB1.

then we obtain

p(Ψ|Σ, θ) ∝ etr
[
λTΣ−1

(
B′2Ψ

′ΓXXΨB2 − 2B′2Ψ
′ΓXỸ

)]
. (13)

Note that (13) implies that we can rewrite the prior mean of Ψ as

Ψ∗(θ) = Ψ̄(Σ, θ) = Γ−1
XX(θ)ΓXỸ (θ)Σ−1B′2(θ)[B2(θ)Σ−1B′2(θ)]

−1.

3.2 Likelihood Function

The likelihood function for the VAR representation was given in (8). It is instructive to

factorize the joint distribution of yt into a marginal distribution of y2,t and a conditional
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distribution of y1,t given y2,t. Under this factorization, the likelihood function can be ex-

pressed as

p(Y |Ψ,Σ, θ) (14)

∝ |Σ22|−T/2etr
[
Σ−1(Y2 −XΨ)′(Y2 −XΨ)

]
×|Σ11.22|−T/2etr

[
Σ−1

11.22(Y1 −Xβ1 −XΨβ2 − (Y2 −XΨ)Σ−1
22 Σ21)′

×(Y1 −Xβ1 −XΨβ2 − (Y2 −XΨ)Σ−1
22 Σ21)

]
where

Σ11.22 = Σ11 − Σ12Σ−1
22 Σ21.

The factorization shows that the likelihood function generates an endogeneity correction for

the endogenous regressors in the monetary policy rule.

3.3 Posterior

We will now discuss the conditional distributions for the Gibbs Sampler.

Conditional Posterior of Ψ: Combining the prior density (13) with the likelihood func-

tion (8) yields

p(Ψ|Σ, θ, Y )

∝ p(Y |Ψ,Σ, θ)p(Ψ|Σ, θ) (15)

∝ etr
[
Σ−1λT

(
− 2B′2Ψ

′ΓXỸ +B′2Ψ
′ΓXX(θ)ΨB2

)
+ (Ỹ −XΨB2)′(Ỹ −XΨB2)

]
∝ etr

[
Σ−1

(
− 2B′2Ψ

′(λTΓXỸ +X ′Ỹ ) +B′2Ψ
′(λTΓXX +X ′X)ΨB2

)]
Define

Ψ̃(Σ, θ) = (λTΓXX +X ′X)−1(λTΓXỸ +X ′Ỹ )Σ−1B′2(B2Σ−1B′2)
−1.

The previous calculations show that

Ψ|Σ, θ, Y ∼ N
(

Ψ̃(Σ, θ),
[
(B2Σ−1B′2)⊗ (λTΓXX +X ′X)

]−1)
. (16)

Conditional Posterior of Σ: Combining the prior densities (13) and (12) with the likeli-
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hood function (8) yields

p(Σ|Ψ, θ, Y ) ∝ p(Y |Ψ,Σ, θ)p(Ψ|Σ, θ)p(Σ|θ) (17)

∝ |Σ|− 1
2 ((λ+1)T−k+n+1)|(B2Σ−1B′2)

−1|− k
2

etr
[
Σ−1

(
λT (ΓỸ Ỹ − ΓỸ XΓ−1

XXΓXỸ ) + (Ỹ −XΨB2)′(Ỹ −XΨB2)
)

+λT (B2Σ−1B′2)(Ψ− Ψ̄)′ΓXX(Ψ− Ψ̄)
]
.

Using the definition of Ψ̄, the last term can be manipulated as follows:

etr
[
λTB2Σ−1B′2(Ψ− Ψ̄)′ΓXX(Ψ− Ψ̄)

]
= etr

[
λTΣ−1

(
B′2Ψ

′ΓXXΨB2 − 2B′2Ψ
′ΓXỸ

)
+λTΣ−1B′2(B2Σ−1B′2)

−1B2Σ−1Γ′
XỸ

Γ−1
XXΓXỸ

]
Hence,

p(Σ|Ψ, θ, Y ) ∝ |Σ|− 1
2 ((λ+1)T−k+n+1)|(B2Σ−1B′2)

−1|− k
2 (18)

× etr
[
Σ−1

(
λTΓỸ Ỹ + Ỹ ′Ỹ − 2B′2Ψ

′(λTΓXỸ +X ′Ỹ )

+B′2Ψ
′(λTΓXX +X ′X)ΨB2

)]
× etr

[
λT (Σ−1B′2(B2Σ−1B′2)

−1B2Σ−1 − Σ−1)Γ′
XỸ

Γ−1
XXΓXỸ

]
.

If the DSGE model satisfies Equation (1) and the error u1,t is orthogonal to xt then

ΓXỸ = ΓXXΨ∗B2

and

(Σ−1B′2(B2Σ−1B′2)
−1B2Σ−1 − Σ−1)Γ′

XỸ
Γ−1

XXΓXỸ = 0. (19)

While the conditional posterior distribution of Σ given our prior distribution is not of

the IW form, use an IW distribution as proposal distribution in a Metropolis-Hastings

step. Define

S̃(Ψ, θ) = λTΓỸ Ỹ + Ỹ ′Ỹ − (λTΓXỸ +X ′Ỹ )′ΨB2 −B′2Ψ
′(λTΓXỸ +X ′Ỹ ) (20)

+B′2Ψ
′(λTΓXX +X ′X)ΨB2

Our proposal distribution for Σ is

IW(S̃(Ψ, θ), (λ+ 1)T, n).
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Conditional Posterior of θ: The posterior distribution of θ is irregular. Its density is

proportional to the joint density of Y , Ψ, Σ, and θ, which we can evaluate numerically since

the normalization constants for p(Ψ|Σ, θ) and p(Σ|θ) are readily available.

p(θ|Ψ,Σ, Y ) ∝ p(Y,Ψ,Σ, θ) = p(Y |Ψ,Σ, θ)p(Ψ|Σ, θ)p(Σ|θ)p(θ). (21)

To obtain a proposal density for p(θ|Ψ,Σ, Y ) we (i) maximize the posterior density of the

DSGE model with respect to θ and (ii) calculate the inverse Hessian at the mode, denoted

by Vθ̄,DSGE . (iii) We then use a random-walk Metropolis step with proposal density

N (θ(s−1), cVθ̄,DSGE)

where θ(s−1) is the value of θ drawn in iteration s − 1 of the MCMC algorithm, and c is a

scaling factor that can be used to control the rejection rate in the Metropolis step.

3.4 Policy Analysis

In addition to the direct analysis with the DSGE model the paper considers three modes of

policy analysis: backward looking, acknowledge misspecification, policy-invariant misspecifi-

cation.

Backward-looking Analysis: The model developed in the paper takes the form

y1,t = x′tβ1(θ(p)) + x′tΨβ2(θ(p)) + u1,t (22)

y′2,t = x′tΨ + u′2,t,

where

u1,t = u′2,tβ2(θ(p)) + ε̃1,tσR. (23)

According to the underlying structural model, the one-step-ahead forecast errors u2,t are a

function of the monetary policy shock ε̃1,t and the other structural shocks ε̃2,t. Hence, we

express u2,t as

u′2,t = ε̃1,tσRA1(θ(p),Σ) + ε̃′2,tA2(θ(p),Σ). (24)

Combining (23) and (24), we obtain

u1,t = ε̃1,tσR(1 +A1β2) + ε̃′2,tA2β2

u2,t = ε̃1,tσRA1 + ε̃′2,tA2
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Hence, the partitioned covariance matrix of the reduced-form innovations can be expressed

as

Σ11 = σ2
R(1 + β′2A

′
1)(1 +A1β2) + β′2A

′
2A2β2

Σ12 = σ2
R(1 + β′2A

′
1)A1 + β′2A

′
2A2

Σ22 = σ2
RA

′
1A1 +A′2A2.

We deduce that

σ2
RA1 = Σ12 − β′2Σ22

σ2
R = Σ11 − β′2Σ22β2 − 2(Σ12 − β′2Σ22)β2,

which leads to the following formulas for the effect of the structural shocks on u′2,t:

A1 =
[
Σ11 − β′2Σ22β2 − 2(Σ12 − β′2Σ22)β2

]−1

(Σ12 − β′2Σ22) (25)

A′2A2 = Σ22 −A′1

[
Σ11 − β′2Σ22β2 − 2(Σ12 − β′2Σ22)β2

]
A1 (26)

Following Sims (1986) we now rewrite our model as structural VAR with interactions

between contemporaneous variables on the left-hand-side. Our policy rule is of the form

y1,t = x′tβ1 + y′2,tβ2 + ε̃1,tσR. (27)

The private sector equations are given by

y′2,t = x′tΨ + u′2,t

= x′tΨ + ε̃1,tσRA1 + ε̃′2,tA2

= x′tΨ + (y1,t − x′tβ1 − y′2,tβ2)A1 + ε̃′2,tA2

Hence,

[y1,t, y
′
2,t]

 I −A1

−β2 I + β2A1

 = x′t[β1,Ψ− β1A1] + [ε̃1,tσR, ε̃
′
2,tA2] (28)

In our backward-looking analysis we are only changing the coefficients in the policy rule

equation when conducting the policy experiment. The private sector equations will remain

unchanged. Mechanically, we implement the analysis with the following computation:

For each value of θ̃(p) ∈ Θ(p), where Θ(p) is a grid of policy parameters, and each

posterior draw of the triplet (θ,Φ,Σ):

1. Compute β1, β2, A1 and A′2A2 based on (25) and (26) from the posterior draw of

(θ,Φ,Σ).
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2. Calculate the unconditional variance of yt based on the system

[y1,t, y
′
2,t]

 I −A1

−β2(θ̃(p)) I + β2A1

 = x′t[β1(θ̃(p)),Ψ− β1A1] + [ε̃1,tσR, ũ
′
2,tA2,tr]

where A2,tr is the Cholesky factor of A′2A2 and ũ2,t is a vector of innovations with

unit variance that are orthogonal to the monetary policy shock ε̃1,t.

Acknowledge Misspecification: Starting from the forward-looking analysis we re-introduce

the misspecification matrices Ψ∆ and Σ∆ into the policy analysis step. Hence, we use

y1,t = x′tβ1(θ̃(p)) + x′t
(
Ψ∗(θ̃(p), θ(np)) + Ψ∆

)
β2(θ̃(p)) + u1,t (29)

y′2,t = x′t
(
Ψ∗(θ̃(p), θ(np)) + Ψ∆

)
+ u′2,t,

and the covariance matrix of ut is given by Σ∗(θ̃(p), θ(np))+Σ∆. For each tuplet (θ̃(p), θ(np),Ψ,Σ)

we can compute A1 and A2 according to (25) and (26), let

u1,t = ε1,tσR(1 +A1β2) + ε̃′2,tA2β2

u2,t = ε1,tσRA1 + ε̃′2,tA2

and σR = 0 to eliminate the monetary policy shock. In the absence of a firm theory

that explains how the discrepancy matrices respond to policy changes, we use the prior

distribution to characterize beliefs about post-intervention model misspecification.

Policy-Invariant Misspecification We assume that the estimated discrepancy, in terms

of impulse response functions, is policy invariant. For the impulse response functions to be

interpretable, it is useful to apply an identification scheme that links them to the structural

shocks in the underlying DSGE model. Recall that the monetary policy shock has been

identified through an exclusion restriction. However, we still have to identify the matrix A2

in (24). We follow the approach taken in Del Negro and Schorfheide (2004). Let A′2,trA2,tr =

A′2A2 be the Cholesky decomposition of A′2A2. The relationship between A2,tr and A2 is

given by A′2 = A′2,trΩ, where Ω is an orthonormal matrix that is not identifiable based on

the estimates of β(θ), Ψ, and Σ. However, we are able to calculate an initial effect of ε2,t on

y2,t based on the DSGE model, denoted by AD
2 (θ). This matrix can be uniquely decomposed

into a lower triangular matrix and an orthonormal matrix:

AD′

2 (θ) = AD′

2,tr(θ)Ω
∗(θ).

To identify A2 above, we combine A′2,tr with Ω∗(θ). The calculation is easily implementable

in a Markov Chain Monte Carlo analysis. For every draw of (θ,Ψ∆,Σ∆) from their joint

posterior distribution we compute Ω∗(θ) and A2.
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In order to implement the policy analysis, we use posterior draws of (θ,Ψ,Σ) to create

two moving average representations for y2,t:

∞∑
j=0

D̃∗
j (θ)u2,t =

∞∑
j=0

D̃∗
j (θ)

(
A∗1(θ)

′ε̃1,t +A∗2(θ)
′ε̃2,t

)
∞∑

j=0

D̃j(Ψ)u2,t =
∞∑

j=0

D̃j

(
A1(θ,Σ)′ε̃1,t +A2(θ,Σ)′ε̃2,t

)
The first representation is calculated from the VAR approximation of the DSGE model

Ψ∗(θ) and Σ∗(θ). The second representation is obtained from the estimated DSGE-VAR

specification. The impulse response function discrepancies (DSGE-VAR(λ̂) versus DSGE-

VAR(∞)) are given by

IRF∆
j = D̃j(Ψ)

[
A1(θ,Σ)′, A2(θ,Σ)′

]
− D̃∗

j (θ)
[
A∗1(θ)

′, A∗2(θ)
′].

We consider the following post-intervention law of motion for y2,t:

y2,t =
∞∑

j=0

[
D̃∗

j (θ̃(p), θ(np))
[
A∗1(θ̃(p), θ(np))′, A∗2(θ̃(p), θ(np))′

]
+ IRF∆

j

] ε̃1,t

ε̃2,t

 . (30)

3.5 Measurement Equation

The relationships between the deviations from steady state that appear in the DSGE model

description and the observables yt are given by the following measurement equation:

y1,t = ra
∗ + 400γ + πa

∗ + 4Rt, y2,t =


πa
∗ + 4πt

ỹt

100 ln(1− α)/(1 + λf ) + lsht

Lt

 . (31)

Here, we have partitioned yt such that y1,t corresponds to the policymaker’s instrument (the

interest rate), and y2,t is a vector that includes the remaining four observables. The steady

state (net) real interest rate in our model is given by ra
∗ +400γ. The parameter ra

∗ is related

to the discount rate β according to β = 1/(1 + ra
∗/400). The monetary policy rule can be

rewritten in terms of observables as follows:

y1,t = (1−ρR)[(ra
∗ +400γ+π∗a)−ψ1 lnπ∗a]+y1,t−1ρR +y′2,t


(1− ρR)ψ1

4(1− ρR)ψ2

0

0

+σRε1,t. (32)
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4 A Simple Example

To gain some intuition for the empirical results reported in the paper and the proposed

approaches to policy analysis we consider the following simplified DSGE model:

Rt = ψ1πt + ψ2ỹt + σRε̃1,t (33)

ỹt = IEt[ỹt+1]− (Rt − IEt[πt+1]) (34)

πt = βIEt[πt+1] + κ(ỹt − zt) (35)

zt = ρzzt−1 + σz ε̃z,t (36)

To obtain straightforward analytical solutions, we assume that the central bank has histor-

ically followed the policy ψ1 = 1/β. From (35) we obtain

IEt[πt+1]−
1
β
πt = −κ

β
(ỹt − zt)

which can be combined with (33) and (34)

(1 + ψ2)ỹt = IEt[ỹt+1]−
κ

β
(ỹt − zt)− σRε̃1,t.

Hence,

ỹt =
1

1 + ψ2 + κ/β
IEt[ỹt+1] +

κ/β

1 + ψ2 + κ/β
zt −

σR

1 + ψ2 + κ/β
ε̃R,t. (37)

Solving (37) forward leads to

ỹt =
κ/β

1− ρz + ψ2 + κ/β
zt −

σR

1 + ψ2 + κ/β
ε̃R,t. (38)

Marginal costs in the simple model are given by

mct = ỹt − zt = − 1− ρz + ψ2

1− ρz + ψ2 + κ/β
zt −

σR

1 + ψ2 + κ/β
ε̃R,t. (39)

According to (35) inflation is the sum of discounted future marginal costs:

πt = −κ 1− ρz + ψ2

(1− ρz + ψ2 + κ/β)(1− βρz)
zt − κ

σR

1 + ψ2 + κ/β
ε̃R,t (40)

Hence, the law of motion of output and inflation is given by (36), (38), and (40), which

corresponds to a restricted moving average representation of ỹt and πt in terms of ε̃1,t and

ε̃z,t. The effects of policy changes, e.g. changes in ψ2 on the variability of output and

inflation can be calculated from (38) and (40). In the absence of a monetary policy shock,

the model can be simplified further. We deduce from quasi-differencing of (38) and (40)

that

ỹt = ρz ỹt−1 +
κ/β

1− ρz + ψ2 + κ/β
σz ε̃z,t (41)

πt = ρzπt−1 − κ
1− ρz + ψ2

(1− ρz + ψ2 + κ/β)(1− βρz)
σz ε̃z,t (42)
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which implies

IEt[ỹt+1] = ρz ỹt, IEt[πt+1] = ρzπt. (43)

In general, we regard the cross-equation restrictions of the DSGE model as potentially

misspecified and use the DSGE-VAR framework to relax these restrictions. The DSGE-VAR

approximates (38) and (40) by a VAR, using lagged output, inflation, and interest rates as

right-hand-side variables.

To gain insights into the backward-looking policy analysis, we replace the conditional

expectations in (34) and (35) by (43). Hence we can write our model in backward looking

form as

Rt = ψ1πt + ψ2ỹt (44)

ỹt = ρz ỹt − (Rt − ρzπt) (45)

πt = βρzπt + κ(ỹt − zt) (46)

zt = ρzzt−1 + σz ε̃z,t (47)

We proceed by manipulating (45):

ỹt = ρz ỹt − (ψ1πt + ψ2ỹt − ρzπt) (48)

= − ψ1 − ρz

1− ρz + ψ2
πt

Quasi-differencing (46) yields

(1− βρz)πt − κỹt = ρz(1− βρz)πt−1 − ρzκỹt−1 − κσz ε̃z,t.

We can now substitute ỹt and ỹt−1 and express inflation as an AR(1) process:

πt = ρzπt−1 − κ
1− ρz + ψ2

(1− βρz)(1− ρz + ψ2) + (ψ1β − ρzβ)κ/β
σz ε̃z,t. (49)

Notice Equations (42) and (49) are identical for ψ1 = 1/β, regardless of ψ2. The reason

is that for ψ1 = 1/β expectations of future output and inflation do not depend on the

policy rule parameter ψ2. Hence, policy analysis in terms of ψ2 with the backward-looking

approximation of the DSGE model will yield the same predictions as the forward-looking

analysis. We can see from (49) that an increase in ψ1 lowers inflation and hence output

volatility.
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5 Prior Distribution

We are using dogmatic priors for three of the DSGE model parameters: the capital depre-

ciation rate δ = 0.025, growth rate of technology γ = 1.5, and the steady state mark-up

λf = 0.3.

Prior distributions for the remaining DSGE model parameters are summarized in Ta-

ble 1. All intervals reported below are 90% credible. The distribution for ψ1 and ψ2 is

approximately centered at Taylor’s (1993) values, whereas the smoothing parameter lies in

the range from 0.18 to 0.83. The prior mean for the growth-adjusted real interest rate,

ra
∗ + γa, is 2.5% and annualized steady state inflation ranges from 1 to 7%, which is consis-

tent with pre-1982 long-run historical averages. The prior mean of g∗ implies that that the

government share of GDP is 20%. According to our prior the habit persistence parameter

h lies between 0.6 and 0.8. Boldrin, Christiano, and Fisher (2001) found that a value of

0.7 enhances the ability of a standard DSGE model to account for key asset market statis-

tics. The interval for νl implies that the Frisch labor supply elasticity lies between 0.3 and

1.3, reflecting the micro-level estimates at the lower end, and the estimates of Kimball and

Shapiro (2003) and Chang and Kim (2005) at the upper end.

According to the prior for ζp, firms re-optimize their prices, on average every 1.5 to 6.5

quarters. This interval encompasses findings in micro-level studies of price adjustments such

as Bils and Klenow (2004). The prior for the adjustment cost parameter s′′ is consistent

with the values that Christiano, Eichenbaum, and Evans (2005) report when matching

consumption and investment DSGE impulse response functions, among others, to VAR

responses. Our prior for a′ implies that in response to a 1% increase in the return to

capital, utilization rates rise by 0.15 to 0.4%. These numbers are considerably smaller than

the one used by Christiano, Eichenbaum, and Evans (2005). Finally, the priors for the

autocorrelations of the exogenous shocks are centered at 0.75 with a standard deviation

of 0.1. The priors for the standard deviation parameters are chosen to obtain realistic

magnitudes for the implied volatility of the output gap, the labor share, hours worked,

inflation, and interest rates.

6 Accuracy of VAR Approximation

To document the accuracy of the finite-order VAR approximation to the state-space repre-

sentation of the linearized DSGE model the following figure compares DSGE and DSGE-
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VAR(∞) impulse responses.
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Figure 1: Impulse Responses: DSGE versus DSGE-VAR(∞)
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Table 1: Prior Distributions

Name Domain Density P(1) P(2)

Policy Rule Parameters

ψ1 IR+ Gamma 1.500 0.400

ψ2 IR+ Gamma 0.200 0.100

ρR [0, 1) Beta 0.500 0.200

Nominal Rigidities

ζp [0, 1) Beta 0.600 0.150

ζw [0, 1) Beta 0.600 0.150

Preference Parameters

h [0, 1) Beta 0.700 0.050

νl IR+ Gamma 2.000 0.750

Technology Parameters

α [0, 1) Beta 0.350 0.050

s′′ IR+ Gamma 4.000 1.500

a′′ IR+ Gamma 0.300 0.075

Steady State Parameters

ra
∗ IR+ Gamma 1.000 0.400

π∗a IR Normal 4.000 2.000

g∗ − 1 IR+ Gamma 0.250 0.100
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Table 1: Prior Distributions (Continued)

Name Domain Density P(1) P(2)

Shock Autocorrelations

ρz [0, 1) Beta 0.750 0.100

ρg [0, 1) Beta 0.750 0.100

ρλf
[0, 1) Beta 0.750 0.100

ρφ [0, 1) Beta 0.750 0.100

ρµ [0, 1) Beta 0.750 0.100

ρb [0, 1) Beta 0.750 0.100

Shock Standard Deviations

σR IR+ InvGamma 0.200 4.000

σz IR+ InvGamma 0.300 4.000

σg IR+ InvGamma 0.500 4.000

σλf
IR+ InvGamma 0.150 4.000

σφ IR+ InvGamma 3.000 4.000

σµ IR+ InvGamma 0.750 4.000

σb IR+ InvGamma 0.750 4.000

Hyperparameters for AR(2) Shocks

ξg [0, 1) Beta 0.750 0.100

ωg IR+ InvGamma 0.500 4.000

Notes: P(1) and P(2) list the means and the standard deviations for Beta, Gamma, and

Normal distributions; the upper and lower bound of the support for the Uniform distribution;

s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs2/2σ2
. We are

reporting annualized values for π∗ and r∗ (a-subscript). The following parameters were

fixed: δ = 0.025, γ = 1.5, λf = 0.15, and λw = 0.3. Parameters are assumed to be a priori

independent. The effective prior is truncated at the boundary of the determinacy region.


