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Appendix for “Zeros, quality and space: Trade theory and trade evidence” by Richard Baldwin and 

James Harrigan, June 2007. 

This appendix provides a more complete treatment of the models discussed in the paper. 

1.1. Comparative advantage: Eaton-Kortum  

The slightly simplified version of the Eaton-Kortum (EK) model that we work with has C nations each 

of which is endowed with a single factor of production (labor) used to produce a continuum of goods 

under conditions of perfect competition and constant returns. The transport costs between a typical 

origin nation (nation-o) and a typical destination nation (nation-d) are assumed to be of the iceberg type 

and captured by the parameters τod ≥ 1 where τod is the amount of the good that must be shipped from o 

to sell one unit in d. The double-subscript notation follows the standard ‘from-to’ convention, so τoo = 1 

for all nations (intra-nation trade costs are zero). Consumer preferences are identical across nations and 

defined over the continuum of goods. They are described by a CES utility function, and expenditure on 

any given variety by a typical destination nation (nation-d) is  
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where cd(j) and pd(j) are nation-d’s consumption and consumer price of good-j, Pd is the ideal CES 

price index, Ed is total expenditure (GDP in equilibrium), and σ is the elasticity of substitution among 

varieties. Without loss of generality, we order product indices such that the set of available goods Θ 

equals the unit interval.  

 Each nation’s manufacturing technology – its’ vector of unit labor input coefficients – comes 

from a stochastic technology-generation process much like the one used later by Melitz (2003). In the 

EK model, this exogenous process is costless and realizations are drawn before the analysis opens. 

Denoting nation-o’s unit labor coefficient for good-j as ao(j), the model assumes that each ao(j) is an 

independent draw from the nation-specific cumulative distribution function (cdf)1 
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1 EK work with firm productivity as the random variable rather than the standard Ricardian labour input coefficient, namely 
z =1/a, so their cdf is exp(-T/zθ). 
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where To > 0 is a technology parameter that differs across countries. The expectation of ao(j) is 

1/ 11T θ

θ
− ⎡ ⎤Γ +⎢ ⎥⎣ ⎦

, where Γ is the gamma function, so To can be thought of as nation-o’s average absolute 

advantage parameter, i.e. its technology level. Importantly, the draws are independent across goods and 

nations.  

 Although all nations can make all goods, perfect competition means only the lowest cost 

supplier actually sells in destination d. The price that each nation-o could offer for good-j in destination 

nation-d  is: 

 )()( jawjp ooodod τ=          (A3) 

where wo and ao(j) are nation-o’s wage and unit labor coefficient in good-j, respectively. Perfect 

competition implies that the equilibrium price for good-j in nation-d satisfies: 

 1...( ) min ( )d o C od o op j w a jτ==         (A4) 

Finding comparative advantage 

The next step is to find the probability that a particular nation is the lowest cost supplier in a particular 

good in a particular market. This task involves a series of probability calculations that use two 

implications of (A2) and (A3). First, the cdf of pcd(j) is [ ] 1 exp( )cd cdG p p Tθ= − −  where 

( )cd c c cdT T w θτ −≡ .2 Thus the probability that pcd(j) > k equals exp( )cdk Tθ− . Second, pod(j) is lower than 

the offer price of all other nations with probability 1 minus the probability that all other prices are 

higher. Since all draws of the a’s are independent across nations, the probability that all other prices are 

higher is ( )exp cd cd
c o

p Tθ
≠

−∏ , which simplifies to exp od cd
c o

p Tθ

≠

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ . Since pod(j) is just one of many 

offer-prices that nation-o may have drawn, we must integrate over all possible pod(j), weighting each by 
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, where k is an 

arbitrary price level. Noting that this holds for all k and the supports of p and a are identical, we get the result in the text. 



 3 

its probability. Thus the probability of nation-o having a comparative advantage in good-j in market d 

is 
0
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Here πod is the probability that nation-o exports any given good-j to nation-d. Since the technology 

draws are independent across goods, πod applies to each of the continuum of goods j∈[0,1]. Notice that 

Δd is akin to the inverse of the remoteness variable in standard gravity equations, i.e. it is an inverse 

index of the distance between nation-d and its trade partners, assuming that trade costs rise with 

distance. 

 Given the complexity of the model, it is remarkable that the expression for ‘stochastic 

comparative advantage’, πod,  is so simple and intuitive. Thinking of the Tid’s as the expected 

competitiveness of nation-i’s goods in nation-d’s market, the probability that nation-o is the most 

competitive in any given good is just the ratio of nation-o’s expected competitiveness to that of the sum 

of all nations. Notice that the probability πod falls as the bilateral trade costs rises but rises with nation-

o’s average absolute advantage parameter, To. As we shall see, expression (A5) is the key to 

characterizing the spatial pattern of zeros in the EK model. 

Finding the equilibrium prices 

To characterize the predictions for the spatial pattern of prices, we draw on two further implications of 

(A2) and (A3). First, with all draws independent across nations, the probability that we have pcd(j) > k 

for all origin-nations equals ( )
1

exp
C

cd
c

k Tθ
=

−∏ , which simplifies to ( )exp dkθ− Δ . Second, the probability 

of at least one nation having a pcd(j) < k  is 1 minus the probability that pcd(j) > k for all nations, or 

( )1 exp dkθ− − Δ .3  
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 Since we do not know each nation’s actual a’s, we cannot determine the price for any given 

good. Rather we find the distribution of the prices nation-d pays for a typical good. Due to competition, 

the price paid – i.e. the equilibrium price – is the lowest offer price as described by (A4). By definition, 

the cdf that describes the equilibrium price gives the probability that the equilibrium price is less than 

or equal to any particular level. To find the distribution that describes this ‘lowest price’, we use 

[ ] 1 exp( )cd cdF p p Tθ= − −  and the independence of prices across goods and suppliers. Specifically, the 

probability that all pod(j)’s are greater than an arbitrary level pd is ( )exp d dp θ− Δ , so the probability that 

at least one pod(j) is below pd is ( )1 exp d dp θ− − Δ . This holds for all possible pd and for any good-j so 

the nation-specific distribution that describes the equilibrium price for any good is 

 ( )[ ] 1 expd dG p pθ= − − Δ         (A6) 

Because each good’s a is identically and independently distributed, Gd[p] describes the price 

distribution for any nation-d, d=1,…,C for any good j ∈ [0,1].  

Using (A1), (A6) and switching the variable of integration, it is easy to find the equilibrium CES price 

index for nation-d, namely σ−1
dP  which is defined as ( )1( )di

p i diσ

θ

−

∈∫ . As noted, we cannot determine 

the equilibrium price of any given good-j, but we know its cdf to be (A6). Moreover, with a continuum 

of varieties (which implies an infinite number of draws from Gd[p]), we know that the distribution of 

equilibrium prices across all varieties is identical to the underlying distribution Gd[p] for any given 

variety. This means that σ−1
dP  equals 1

0
[ ]dp dG pσ∞ −∫ . Solving the integral 
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where the term in large parenthesis is the gamma function. This makes sense assuming the regularity 

condition 1 - σ + θ  > 1 holds.  

 The final task is to determine the distribution of prices for the goods that nation-o exports to 

nation-d. Since the probability of nation-o exporting any particular good to nation-d  is πod for all 

goods, the goods that nation-o actually exports to d is a random sample of all the goods that d buys. 

Thus, Gd[p] also describes the cross-good distribution of the prices for the exports from every origin 
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nation to nation-d. This elegant and somewhat surprising result follows from the fact that it is 

competition inside nation-d that determines prices, not the characteristics of any particular exporting 

nation. Successful exporting countries sell a large number of goods but do not on average charge lower 

prices. As we shall see, this result is the key to characterizing the spatial price implications in the EK 

model.  

Linking export probability to observables 

It is impossible to explicitly solve the EK model for general trade costs. The reason is that all nations’ 

wages enter the system non-linearly, so we cannot use market clearing conditions to determine what 

wage a nation must have in order to sell all its output. More specifically, every Tcd contains the inverse 

of the wage of nation-c. This, together with the form of πod means that each πod is of order C in each 

wage. While solutions exist for C ≤ 5, in practice the solution even for a pair of quadratic equations is 

typically too complicated to be useful. One can, however, easily find the wages in the case of autarky 

and free trade, as EK show. Without explicit solutions for the w’s, we cannot find a closed form 

solution for πod and thus we cannot solve the precise pattern of zeros predicted by the model. Although 

this is a major drawback for a theoretical investigation, it poses no problems for our empirical work. 

We use data from a single exporting nation for a single year so all identification comes from the spatial 

variation in the data which occurs regardless of the level of wages.  

 We can link the Tod’s and thus the πod’s to observable variables that allow estimation of the 

impact of distance and destination market-size on the probability of observing a zero. To this end, we 

specify the market-clearing condition for each origin nation. The share of nation-d’s total expenditure 

on manufactures from nation-o is πod times Ed, where Ed is d’s total expenditure on manufactures. 

Rearranging yields a version of EK’s expression 10, namely 

 dodod EV π=           (A8) 

where Vod is the value of all exports from nation-o to nation-d, and Ed is nation-d’s expenditure.4 

Nation-o’s market clearing condition is the summation of (A8) over all destination nations. Using (A5), 

                                                 
4 Note that this is the expected expenditure of nation-d on nation-o goods, but since o exports an infinite number of goods to 
d, the realisation will be identical to the expectation by the law of large numbers. 
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the total sales of nation-o to all markets (including its own) equals the value of its total output, Yo i.e. 

GDP, when5 
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Solving (A9) for To/wo
θ, using the definitions in (A5), and substituting out the Δ’s using (A7), noting 

that the gamma functions cancel, we get 
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1.2. Monopolistic competition 

Our version of the monopolistic competition model has C countries and a single primary factor L that is 

used in the production of differentiated goods (manufactures) whose trade is subject to iceberg trade 

costs. Preferences are CES, so expenditure on manufactured good-j in typical nation-d is given by (A1). 

 Manufactured goods are produced under conditions of increasing returns and Dixit-Stiglitz 

monopolistic competition. Unlike the EK model, all firms in all countries face the same unit labor 

requirement, a. According to well-known properties of Dixit-Stiglitz monopolistic competition, nation-

o firms charge consumer (i.e. c.i.f.) prices in nation-d equal to 
1od o odp w aσ τ

σ
=

−
. Consequently, the 

shipping (f.o.b.) price for any good is the same for every bilateral trade flow. The CES price index for 

typical nation-d involves the integral over all prices 

 1 1
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σφ τ −≡ ∈  

where we have, without loss of generality, chosen units such that a = 1-1/σ. The parameter φod reflects 

the ‘freeness’ of bilateral trade (φ ranges from zero when τ is prohibitive to unity under costless trade, 

i.e. τ = 1). nc is the number of goods produced in c.  

1.2.1. Free entry conditions 

With Dixit-Stiglitz competition, a typical nation-o firm’s operating profit from selling in market-d is6 

                                                 
5 This is related to EK’s unnumbered expression between their expressions 10 and 11. 
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Summing across all C markets, total operating profit of a typical firm in nation-o is 
1
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Developing a new variety involves a fixed set-up cost, namely an amount of labor FI (I for 

innovation).7 In equilibrium, free entry ensures that the benefit and cost of developing a new variety 

match, so the free-entry condition for nation-o is 

1
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for all o = 1,…,C. The equilibrating variables here are the per-firm demand shifters Bd and the wage.  

1.2.2. Employment condition and National budget constraint 

In equilibrium, all labor must be employed. The amount of labor used per variety is Iax F+ , where x is 

production of a typical good. Using the demand function, iceberg trade costs and equilibrium prices, 

the total production of a typical variety produced in o is 
1

( )
C

oc o c
c

w Bστ −

=
∑ . Solving the integral and using 

the expression for P, the full employment condition for typical nation-o is: 
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The final equilibrium expression requires that expenditure equals income. Since free entry eliminates 

pure profits, all income comes from labor income, and so equals woLo. The national budget constraint is 

thus: 

 o o oE w L=          (A14) 

1.2.3. Equilibrium 

There are three endogenous variable here for each nation, w, n and E and three equilibrium conditions, 

the free entry, employment and national budget constraint conditions. As usual, the three equilibrium 

                                                                                                                                                                        
6 Operating profit is proportional to firm revenue since the first order condition p(1-1/σ)=a implies (p-a)c, equals pc/σ. 
7 To relate this model to the previous one and the next, it is as if a firm must pay FI to take a draw from the technology-
generating distribution, but the distribution is degenerate, always yielding a=1-1/σ.  
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conditions – the free entry, employment and national budget constraint conditions – are not 

independent since we derived the demand equations imposing individual budget constraints. This 

redundancy allows us to drop one equilibrium condition and choose the labor of one nation as the 

numeraire.  

 Unfortunately, it is impossible to solve the model analytically for the same reason the EK model 

could not be solved – the wages enter the model in a highly non-linear manner. Specifically, we can use 

(A14) to eliminate the E’s and our expression for the price index to get the free entry condition in terms 

of the n’s and w’s only. Then we can use mill pricing to express the free-entry condition as 

o o Ix w Fσ σ−= , where xo is the output of a typical firm in nation-o, so that the employment condition 

becomes /{ ( ( 1) 1)}o o I on L F w σ σ−= − + . This gives us two equations per nation in the n’s and w’s. 

However, the w’s enter these equations with non-integer powers and this renders analytic solutions 

impossible.  

 As before, this lack of tractability is not a problem for our empirics since we work with a single 

exporter and a single year of data. The key is that given the CES demand structure, the choke-point 

price is infinity so every importing nation will buy some of every variety produced by every nation. 

Moreover, given Dixit-Stiglitz monopolistic competition, mill pricing is optimal so the export (i.e. 

f.o.b.) price should be the same for every destination regardless of transportation costs.   

1.2.4. Aside: MC with an ‘outside’ sector 

A standard theoretical artifice yields analytic solutions pinning down the wage in all nations. The trick 

is to introduce a Walrasian sector whose output is costlessly traded. Assuming nations are similar 

enough in size for all nations to produce some of this ‘outside’ good, free trade equalizes wages 

globally. Choosing the outside good as numeraire and choosing its units such that its prices equals the 

wage, free trade equalizes all wages to unity worldwide. Under this artifice, the free entry condition for 

nation-o is 

 
1

C

oc c I
c

B Fφ σ
=

=∑          (A15) 
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The equilibrating variables here are the per-firm demand shifters Bd. The C free-entry conditions are 

linear in the Bd’s and so easily solved.8 In matrix notation 

 1
IFσ−=B Φ            (A16) 

where Φ is an C × C matrix of bilateral trade freeness parameters (e.g., the first row of Φ is φ11,…,φ1C), 

and B is the C × 1 vector of Bd’s. This shows that the equilibrium B’s depend upon bilateral trade 

freeness in a complex manner; all the φ’s affect every B. The complexity can be eliminated by making 

strong assumptions on trade freeness, e.g. imposing φod=φ for all trade partners, but we retain arbitrary 

φod’s. Importantly, the equilibrium B’s are completely unrelated to market size; they depend only upon 

the parameters of bilateral trade freeness. The deep economic logic of this has to do with the Home 

Market Effect; big markets have many firms since firms enter until the per-firm demand is unrelated to 

market size.9  

 We can characterize the equilibrium without decomposing the B into their components (E’s and 

n’s) but doing so is awkward because the B’s do not map cleanly into real world variables. The natural 

equilibrating variable – the mass of firms in each nation, nc – can be extracted from the B’s. Using the 

definition of the CES price index, Dixit-Stiglitz mark-up pricing and nation-wise symmetry of 

varieties, 1

1

C

d c cd
c

P nσ φ−

=

= ∑ . Using this, along with the definition of Bd in (A1), we write the C definitions 

of the B’s (with a slight abuse of matrix notation) as ' /=Φ n E B , where n is the C × 1 vector of nc’s 

and BE /  is defined as (E1/B1, …, EC/BC).  Solving the linear system  

 1 1

1

' ,..., C

C

E E
B B

− ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
n Φ          (A17) 

Each no directly involves all the φ’s, all the E’s, and all the B’s (each of which involves all the φ’s). 

Solutions for special cases are readily available, but plainly the equilibrium n’s are difficult to 

characterize for general size and trade cost asymmetries. The complexity of (A17) is the heart of the 

difficulties the profession has in specifying the Home Market Effect in multi-country models (see 

Behrens, Lamorgese, Ottaviano and Tabuchi 2004).  
                                                 
8 This solution strategy follows Behrens, Lamorgese, Ottaviano and Tabuchi (2004). 
9 In the terminology of Chamberlinian competition, the extent of competition rises until the residual demand curve facing 
each firm (i.e. p-σB) shifts in to the point where each firm is indifferent to entry. Since entry costs are identical in all 
markets, the residual demand-curve must be in the same position in every market. 
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 Notice that under this artifice, an increase in a nation’s L is fully offset by a rise in its n, so it B 

remains unaffected. This can happen since labor can be drawn from the outside sector at a constant 

wage rate. In the baseline model without the outside good, the rise in L results partly in a rise in n and 

partly in a rise in w. Or, to put it differently, the Home Market Effect is much stronger in the model 

with the outside good since a rising wage does not dampen the profits of local firms.  

1.3. A multi-nation asymmetric HFT model 

Our HFT model embraces all of the demand, market-structure and trade cost features of the MC model 

above but adds in two new elements – beachhead costs (i.e. fixed market-entry costs) and hetero-

generous marginal costs at the firm level. Firm-level heterogeneity is introduced – as in the EK model – 

via a stochastic technology-generation process. When a firm pays its standard Dixit-Stiglitz cost of 

developing the ‘blueprint’ for a new variety, FI, it simultaneously draws a unit labor coefficient ‘a’ 

associated with the blueprint from the Pareto cdf10 

 0
0

[ ] , 0aG a a a
a

κ
⎛ ⎞

= ≤ ≤⎜ ⎟
⎝ ⎠

       (A18) 

After seeing its a, the firm decides how many markets to enter. Due to the assumed Dixit-Stiglitz 

market structure, the firm’s optimal price is proportional to its marginal cost, its operating profit is 

proportional to its revenue, and its revenue in a particular market is inversely proportional to its relative 

price in the market under consideration.  

1.3.1. Cut-off conditions 

Thus, the cut-off conditions that define the maximum-marginal-cost thresholds for market-entry are 

1 1 1; (1 1/ )od d o od oB w a w f f Fσ σ σφ σ σ− − −= ≡ −      (A19) 

for all o, d = 1,…,N, where F is the beachhead cost (identical all firms in all nations for notational 

simplicity). Here Bd is defined as in (A1), and the endogenous aod’s are the cut-off levels of marginal 

costs for selling from nation-o to nation-d.  

                                                 
10 The EK and HFT models work well with a broad family of distributions, but the analytics are more transparent with an 
explicit distribution, e.g. either the Pareto or exponential distributions; the Pareto is traditional in HFT models. This 
formulation of the randomness differs trivially from Melitz, who, like EK, works firm-level efficiency (i.e. 1/a). 
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1.3.2. The free entry conditions 

From the cut-off conditions, we know that not all blueprints will be produced. Thus the mass of 

blueprints in typical nation o – what we call mo – exceeds the mass of produced varieties – what we call 

no in line with standard MC model notation. Usual Dixit-Stiglitz results imply that the mass of 

blueprints rises to the point where potential entrants are just indifferent to sinking the development 

costs woFI and taking a draw from the technology-generating distribution (A18).  

 A potential entrant in o knows the various a’s that may be drawn will result in different levels 

of operating profit. Before paying woFI to take a draw from (A18), the firm forms an expectation over 

all possible draws using its knowledge of the thresholds defined by (A19). The expected value of 

drawing a random a is ( )( )11 1

0
1

( ) [ ] / 1 1/od
C a

od d o o
d

B w a w f dG a σσ σφ σ σ −− −

=

− −∑∫ . Here each term in the sum 

reflects the expected operating profit from selling to a particular market (net of the beachhead cost) 

taking account of the fact that the firm only finds it profitable to sell to the market if it draws a 

marginal cost below the market-specific threshold marginal cost, aod. Potential entrants are indifferent 

to taking a draw when this expectation just equals the set-up cost, woFI, so the free-entry conditions 

hold when  1 1 1

0
1

( ) [ ] (1 1/ )od
C a

od d o o o I
d

B w a w f dG a w Fσ σ σφ σ σ− − −

=

− = −∑∫  for each nation o. Solving the 

integrals (assuming the regularity condition 1 - σ + κ > 0 so the integrals converge), the free-entry 

condition for nation-o is 

 
1 1

1

1
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1 1/ 1

C
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o od o I I I
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− −
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− = ≡ − ≡ >
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We use the cut-off conditions to write the free entry condition more simply as 

 
1

( 1)N k
od Id

f a fβ
=

= −∑          (A20) 

Here we have, without loss of generality, chosen units such that a0 is unity.  
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1.3.3. Employment condition and National budget constraint 

The labor demand arising from the sale of produced varieties in market-d is 

1

0
[ ]

1 1/
oda

o
d o

w a B F m dG a
σ

σ

σ

−
−

⎡ ⎤⎛ ⎞ +⎢ ⎥⎜ ⎟−⎝ ⎠⎢ ⎥⎣ ⎦
∫ . Solving the integral yields 

11 1/ 1
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. Using the cut-off condition, this simplifies to 

1
1o odm F aκσβ

β
⎛ ⎞−
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. Summing over the labor demand from sales to all markets, adding in the labor 

demand from developing new blueprints and setting this equal to the labor supply in nation o, the full 

employment condition is 
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m F a m F Lκσβ
β =

⎛ ⎞−
+ =⎜ ⎟−⎝ ⎠

∑  

Using the free entry condition this simplifies even further to 

 , 1,o
o

I

Lm o C
Fσβ

= = …          (A21) 

Finally, the national budget constraint is just Eo = woLo since there are no pure profits in equilibrium 

(the pure profits earned by active firms just pays for the pure losses incurred by firms that abandon 

their blueprints and never produce).  

1.3.4. Equilibrium 

There are C2 threshold aod’s, and C m’s, E’s and w’s; these are determined by the C2 cut-off conditions, 

C free entry conditions, employment conditions and national budget constraints. We can eliminate the 

E’s with the national budget constraints and lack of pure profit, and the m’s with (A21). This leaves C2 

cut-off thresholds and the C w’s to be determined from the C2 cut-off conditions and the C free entry 

conditions. Since the w’s enter the cut-off and free-entry conditions with different non-integer powers, 

there is no analytic solution to the system. Numerical solutions, however, are readily available. 

Simulation results (available upon request) demonstrate that the B’s for big nations (i.e. nations with 

high L’s) are larger than the B’s for small nations. Thus a nation’s real GDP can be used as a proxy for 

its B.  
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1.3.5. Aside: Asymmetric HFT with an ‘outside’ sector 

In earlier drafts of this paper, we worked with an outside sector. The result, as in the MC-with-outside-

sector model considered above, was that the B’s are completely unrelated to market size. This implies 

that the threshold marginal costs are independent of market size and thus the number of export zeros 

should be independent of market size. Since this is clearly counterfactual (see Table 4), we decided to 

eliminate the theoretical artifice of an outside sector despite the fact that this modeling choice implies a 

lack of analytic solutions. 

1.3.6. HFT’s spatial pattern of zeros and prices 

The spatial pattern of zeros comes from the cut-off thresholds. For a typical nation’s export matrix, 

there should be more zeros with more distant partners. More formally, consider the firm that produces 

variety-j with marginal costs a(j). The probability of this firm exporting to nation-d is the probability 

that its marginal cost is less than the threshold defined in (A19), namely 

 
1/( 1)

1/( 1)
0

Pr ( ) d d

od o od o

B Ba j
w f w f a

σ β

σ σ κ σκ β κτ τ

−

−

⎧ ⎫
< =⎨ ⎬

⎩ ⎭
      (A22) 

where we used the Pareto distribution to evaluate the probability. In our empirics, we only have data on 

products that are actually exported to at least one market so it is useful to derive the expression for the 

conditional probability, i.e. the probability that a firm exports to market j given that it exports to at least 

one market. This conditional probability of exports from o to d by typical firm j is 

 
min

od d

c o oc c

B
B

κ β

κ β

τ
τ

−

−
≠

          (A23) 

The wage drops out since we work with data for a single exporting nation. Again, for a typical 

exporting nation-o, the denominator is the same for all destination markets. As discussed in the 

previous subsection, market size in d will be positively related to GDP in d. Equation (A23) thus 

illustrates that the probability of a good being exported from nation-o depends positively on the  

destination nation’s GDP and negatively on trade costs between o and d.   

 The spatial pattern of prices in the HFT model is also simple to derive. We consider both the 

export (f.o.b.) price for a particular good exported to several markets, and the average export (f.o.b.) 

price for all varieties exported by a particular nation. As the HFT model relies on Dixit-Stiglitz 
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monopolistic competition, mill pricing is optimal for every firm, so the f.o.b. export price each good 

exported should be identical for all destinations. For example, export prices should be unrelated to 

bilateral distance and unrelated to the destination-nation’s size. When it comes to the average export 

price – i.e. the weighted average of the f.o.b. prices of all varieties exported from nation-o to nation-d – 

the cut-off conditions imply ( )
1

0

|
1 1/

oda
od o

od od oo
w ap dG a a a

στ
σ

−
⎛ ⎞= ≤⎜ ⎟−⎝ ⎠∫ , where odp  is the average f.o.b. 

price. Solving the integral,  

1
1

d
od o od

Bp
f

κ σ
σ

κδ τ

+ −
−

− ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
        (A24) 

where δo is a function of parameters and country o variables only. Since the maximum marginal cost 

falls aod with bilateral distance, the average export price of nation-o varieties in nation-d should be 

lower for more distant trade partners.  

1.3.7. The Melitz-Ottaviano model 

Melitz and Ottaviano (2005) work with the Ottaviano, Tabuchi and Thisse (2002) monopolistic 

competition framework and assume C nations, a single factor of production, L, and iceberg trade costs. 

They do not allow for beachhead costs. Adopting the standard outside-good artifice to pin down wages, 

they assume that there are two types of goods: a costlessly traded Walrasian good that equalizes wages 

internationally, and differentiated goods produced under conditions of monopolistic competition and 

increasing returns. Nations can be asymmetric in terms of size (i.e. their L endowment) and location 

(i.e. the bilateral iceberg trade costs faced by their firms). 

 The Ottaviano et al  framework assumes quasi-linear preferences and this generates a linear 

demand system where income effects have been eliminated. As usual in the monopolistic competition 

tradition, there are many firms each producing a single differentiated variety. Since the firms are small, 

they ignore the impact of their sales on industry-wide variables. Practically, this means that the 

producer of each differentiated variety acts as a monopolist on a linear residual demand curve. 

Indirectly, however, firms face competition since the demand curve’s intercept declines as the number 
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of competing varieties rises. Specifically, the residual demand curve in market-d facing a typical firm 

is:11 

( )( ) ( ) ; ; ( )
d

d d
d d d d d dc

d

L Pc i B p i B P p j dj
n
αγ

γ γ Θ

+
= − ≡ ≡

+ ∫    (A25) 

where Ld is the number of consumers in d (and thus nation’s labor supply since each person has one 

unit of labor), Bd is the endogenous y-axis intercept (the per-firm demand shifter as in the HFT model), 

and c
dn  is the mass of varieties consumed in d (since not all varieties are traded, we need a separate 

notation for the number of varieties produced and consumed). Finally, Pd is the price index and Θd is 

the set of varieties sold in market-d. Inspection of (A25) reveals two channels thorough which a typical 

firm faces indirect competition: 1) a ceteris paribus increase in the number of varieties consumed, nc, 

lowers the intercept B, and 2) a decrease in the price index P lowers the intercept.  

 The linear demand system makes this model extremely simple to work with. Atomistic firms 

take Bd as given and act as monopolists on their linear residual demand curve. A monopolist facing a 

linear demand curve sets its price halfway between marginal cost and the intercept. Thus optimal prices 

are linked to heterogeneous marginal costs via 

2
][ odd

od
aB

ap
τ+

=          (A26) 

Here pod is the consumer (i.e. c.i.f.) price and τoo = 1 for all nations o.  The operating profit earned by a 

firm that sells to market-d is then 

 ( )2[ ]
4

d
od d od

La B aπ τ
γ

= −         (A27) 

                                                 

11 The utility function for the representative consumer is 

2

2
0 ( ) ( ) ( )

2 2
U c c j dj c j dj c j djγ ηα

Θ Θ Θ

⎛ ⎞
⎜ ⎟= + − −
⎜ ⎟
⎝ ⎠

∫ ∫ ∫ where c0 is 

consumption of the numeraire and cj is consumption of variety j. We assume that each economy is large enough so that 
some numeraire is made and consumed in both nations regardless of trade barriers. To reduce notational clutter, we 
normalise η = 1 by choice of units (and thus without loss of generality). 
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Cut-off and free-entry conditions 

It is immediately obvious from (A25) that firms with marginal costs above the demand curve intercept 

Bd find it optimal to sell nothing to market-d. This fact defines the C2 cut-off conditions 

 , , 1,...,d
od

od

Ba o d C
τ

= ∀ =        (A28) 

Note that (A28) implies that export cutoffs into market d are just a fraction of  the domestic survival 

cutoff, dd
od

od

aa
τ

= . The expected operating profit in all markets to be earned from a random draw from 

G[a] is ( )2

1 0

1 [ ]
4

odaC
d d odd

L B a dG aτ
γ =

−∑ ∫ . The free entry condition is that this expected profit equals 

the entry cost FI. Using (A28) to eliminate Bd, assuming the Pareto distribution (A18) for G[a] and 

solving the integrals, and finally substituting dd
od

od

aa
τ

= , the free-entry condition is 

 2
1

, , 2 (2 )(1 )C
d od dd I od od I Id

L a f f Fκ κφ φ τ γ κ κ+ −
=

= ≡ ≡ + +∑   (A29) 

for all o = 1,…C.  This is a system of C equations in the C domestic survival cutoffs add. The φ’s reflect 

the ‘freeness’ of bilateral trade, i.e. φod = 0 corresponds to infinite trade costs (τod = ∞) and φod = 1 

corresponds to free trade (τod  = 1). The system can be written in matrix notation as If=LΦA ι� , where 

[ ]1, , Cdiag L L=L …  is a C × C matrix with country sizes along the diagonal and zeros elsewhere, Φ is 

a C × C symmetric positive definite12 matrix with typical element φod,  2 2
11 ,...,

Tk k
CCa a+ +⎡ ⎤≡ ⎣ ⎦Α�  is a C × 1 

vector of transformed domestic survival cutoffs, and ι is a C × 1 vector of ones. The solution for the 
2
dda κ+  terms is 1 1

If− −=A Φ L� . Denoting the d-th diagonal element of 1−Φ  as dφ� , the equilibrium cut-offs 

are  

 

1
21 , , 1,...,

k
d

od
od d

a o d C
L
φ

τ

+⎛ ⎞
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⎝ ⎠

�
      (A30) 

                                                 
12 Symmetry follows by τod = τdo . A sufficient condition for non-singularity is that trade costs depend on distance, and that 
no two countries occupy the same point. Positive definiteness follows because the diagonal elements are 1 and the off-
diagonal elements are between 0 and 1. 
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Using this and the optimal pricing rule in (A26) with the cutoff condition (A28), the equilibrium cif 

import prices are 

 

1
21[ ]

2
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od od
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+
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�
  

Weighted average f.o.b. export prices are computed by dividing [ ]odp a  by bilateral trade costs,  and 

integrating over the density of a conditional on exporting from o to d: 

 [ ] ( ) ( )

1
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κκ φ
τ κ τ
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∫

�
    (A31) 

MO’s spatial pattern of zeros and prices 

Inspection of  (A30) and (A31) yield the predictions for zeros and prices. Expression (A30) shows that 

the threshold marginal cost falls with bilateral trade costs and with the size of the destination market13. 

Using these facts with the distribution of a’s, we see that zeros are more likely with partners that are 

distant and large. The counter-intuitive (and counter-factual) prediction for market size on zeros is an 

implication of the Home Market Effect; large markets have many local firms which implies more 

severe competition for foreign firms (i.e. a lower Pd and thus lower Bd). Given this intuition for the 

cutoffs, expression (A31)is not surprising: average f.o.b. export prices are falling with bilateral distance 

and will be lower for partners with big markets.  

1.4. The Quality HFT model 

Here we lay out all the assumptions and solve the quality-based heterogeneous-firms trade model that 

was introduced in the text.  

 As usual, we assume a world with C nations and a single factor of production L. The goods 

produced consist of a continuum of goods that we refer to as manufactures. All goods are traded; labor 

is internationally immobile and inelastically supplied. CES preferences are as usual with one major 

difference, which is that consumers value “quality”. The utility function is  

                                                 
13 The bilateral thresholds for exporting to d also depend in a complex way on the full distribution of world transport costs 
through the term dφ� .  In a world where all countries are equidistant, dφ� will not vary across countries. 
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( ) 1;)(
)/11/(1/11 >=

−

Θ∈

−∫ σ
σσ

i ii diqcU       (A32) 

where c and q are the consumption and quality of a typical variety and Θ is the set of consumed 

varieties. The corresponding expenditure function for nation-d is 
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where ( )
( )

dp j
q j

 is the quality-adjusted price of good-j, E is expenditure, and P the CES index of quality-

adjusted prices.  

 Manufacturing firms have constant marginal production costs and three types of fixed costs. 

The first fixed cost, FI, is the standard Dixit-Stiglitz cost of developing a new variety. The second and 

third fixed costs are beachhead costs that reflect the one-time expense of introducing a new variety into 

a market. Its cost F units of L to introduce a variety into any market and potential manufacturing firms 

pay FI to take a draw from the random distribution of unit labor coefficients, the a’s. By assumption, 

quality is linked to marginal cost (the a’s) by 

( ) 1,)()( 1 −>= + θθjajq        (A34) 

where 1+θ  is the elasticity of quality with respect to a. We could easily generalize the model by 

allowing a positive correlation between costs and quality, but doing so would raise the level of 

complexity without providing any compensating insight. The assumed distribution of the a’s is 

 0
0[ ] 1 ,aG a a a

a

κ
⎛ ⎞= − ≤⎜ ⎟
⎝ ⎠

        (A35) 

(This G is distinct from the one in the baseline HFT model.) Notice that it is necessary to flip the usual 

Pareto distribution for a’s to ensure that there are fewer high quality (i.e. high a) firms than low quality 

firms. Without loss of generality, we choose units of manufactures such that a0 = 1. 

 At the time it chooses prices, the typical firm takes its quality and marginal cost as given, so it 

faces a demand that can be written as ( )( ) / ( ) dp j q j Bσ−  where q(j) is its quality. Since p enters this in 

the standard way, the standard Dixit-Stiglitz results therefore obtain; mill-pricing with a constant mark-



 19 

up, σ/(σ-1), is optimal for all firms in all markets and operating profit is a constant fraction, 1/σ , of 

firm revenue market by market. Using these facts, operating profit for a typical nation-o firm selling in 

nation-d is 

 
1

1 1/
o da w B

σθ

σ σ

−−⎛ ⎞
⎜ ⎟−⎝ ⎠

         (A36) 

The only substantial difference between this and the corresponding expression for profits without 

quality differences is the θ  in the exponent.  

 Plainly, the properties of this model depend crucially on how elastic quality is with respect to 

the unit input coefficient. For [ )1,0θ ∈ − , quality increases slowly with cost and the optimal quality-

adjusted consumer price increases with cost. In this case, a firm’s revenue and operating profit fall with 

its marginal cost. For 0θ > , by contrast, quality increases quickly enough with marginal cost to ensure 

that the quality-adjusted price falls as a rises. The means that higher a’s are associated with higher 

operating profit. Henceforth we focus on the 0θ >  case.  

1.4.1. Cut-off conditions 

The cut-off condition for selling to typical market-d is  

 1 ( 1) 1; (1 1/ )od o od d ow a B w f f Fσ θ σ σφ σ σ− − −= ≡ −     (A37) 

(This f is distinct from the f in the HFT model.) With 0θ > , this tells us that only firms with 

sufficiently high-price/high-quality goods find it worthwhile to sell in a given market. Moreover, 

controlling for the per-firm demand, the threshold quality rises for more distant markets (since φ falls 

with distance). Notice that the aod(j)’s here are minimum cost thresholds rather than maximums as in 

the standard HFT model.  

1.4.2. Free-entry conditions 

Turning to the free-entry conditions, a potential entrant pays FI to develop a new variety with a 

randomly assigned a and associated quality 1a θ+ . After observing its a, the potential entrant decides 

which markets to enter. In equilibrium, free entry drives expected pure profits to zero. The free entry 

condition for typical nation-o is 
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Assuming the regularity condition θ(σ-1)-k < 0, this solves to14 
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Using the cut-off conditions as in the HFT model, the free entry condition is 
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( 1)N
od Id

f a fκ β−
=

= −∑         (A38) 

Inspection of the N(N-1) equilibrium conditions defined by (A38) reveals that the QHFT model is 

isomorphic to the HFT model apart from the definition of the constants, powers and the fact that the 

aod’s are minimums rather than maximums. Thus our analysis of the HFT model applies here directly 

and so need not be repeated.  

 One point that bares some study is the spatial implications for average prices. As in the HFT 

model, distance acts as selection device on varieties, but the highest priced variety are the most 

competitive, the basket of varieties sold in distant markets (controlling for Bd of course) will have a 

higher average price than the basket for a near-by market. The impact of distance and market size on 

zeros, however, will be identical to that of the HFT model.  
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14 The typical integral is 1 ( 1) 1
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