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Online Appendix

1 General Correlation Pattern

Section 4 in the main text discusses simulations results for a small number of
intra- and inter-party correlation values ρ and ρinter. Extending the analysis to
a larger set of correlations is more demanding computationally but presents no
logical difficulty. We present here the same results exposed in the main text,
obtained by increasing both ρ and ρinter, separately, from 0 to 0.9, in steps of
0.1. Without strong grounds to assume higher correlation among members of
one or the other party, we maintain the assumption that intra-party correlation
is equal in the two parties. In all graphs presented below, we plot intra-party
correlation on the horizontal axis, and inter-party correlation on the vertical
axis. We use a color scale such that lighter shades correspond to higher values
for the quantities of interest. Because of the high computational demand, we
limited ourselves to 200 simulations for each correlation pair1.

The first question we ask is how the concentration of votes at the mutual
best response rules is affected by changes in the correlations. Given the focus
on concentration, we use the Gini coefficient of the best response voting rules
as a summary statistic. We report it in Figure 1, in panel 1a for the majority
and panel 1b for the minority. A lighter shade stands for higher concentration.2

The figure has three main messages, confirming the results discussed in the
text. First, the majority concentrates votes less than the minority–this is ex-
pected, is clear in the figure, and holds for most correlation values. Second, the
majority’s voting behavior is relatively insensitive to correlation values: most
of the squares in Panel 1a indicate a Gini coefficient in the neighbourhood of
0.6. Third, the voting pattern is more variable for the minority party–there is
more variability in the shading of the squares in Panel 1b. In particular, for
given intraparty correlation, votes’ concentration first increases and then falls
as interparty correlation increases. We remarked on the same pattern in the
cases considered in the text.

The expected number of minority blocks, calculated at the mutual best re-
sponse rules, ranges from less than 1 to more than 2, depending on the corre-
lation values. It is plotted in Figure 2. As predicted, the number of blocks is
higher the higher is intra-party correlation, and the lower is inter-party corre-
lation.

Figure 3 reports the two parties’ welfares, at different correlation values, as
fraction of maximal possible welfare for each party. Note that to make both

1. In the results presented in the main text, we ran 1000 simulations for each correlation
pair.

2. The figure shows some unexpected non-monotonicities: squares of contrasting colors, rel-
ative to the neighboring squares (for example in the minority’s rules at inter-party correlation
of 0 and intra-party correlation of 0.5). Typically these occur when the best response rule is
not unique, the alternative rules have varying Gini coefficients, and the program has randomly
selected one of the best response rules. Because the alternatives are equivalent from a welfare
perspective, the apparent non-monotonicites do not appear when describing outcomes.
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(a) Majority party (b) Minority party

Figure 1: Vote concentration in the mutual best response rules, at different intraparty and
interparty correlations. Gini coefficients.

Figure 2: Number of minority blocks. Blocks are calculated at the mutual best response rules.
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(a) Majority party (b) Minority party

Figure 3: Welfare ratios for different correlation coefficients. Realized welfare as fraction of
maximal possible welfare, calculated at the mutual best response rules.

panels readable, the scale differs: the majority appropriates between 66 and 84
percent of possible welfare; the minority between 18 and 57 percent.

Expected welfare is always higher and less variable for the majority party.
Some variability, however, is observed across different correlation coefficients,
for the majority too, and reflects the power of the minority. For the minority
party (panel 3b), welfare mirrors the fraction of minority blocks in Figure 2
almost exactly. For the majority (panel 3a), the figure shows that welfare is
affected not only by the number of minority blocks, but also by the importance
of the nominations the minority derails. Because the concentration of votes by
the minority is the highest at intermediate interparty correlation, it is in this
range that it succeeds, occasionally, in stopping nominations that the major-
ity also considers important. The result is that majority welfare is lowest at
intermediate interparty correlation. At higher correlation, the minority shifts
at least partially away from direct competition with the majority and minority
blocks are not only less frequent but also less salient.

How do these patterns affect social welfare, and do storable votes improve
efficiency, relative to simple majority voting? Figure 4 reports the share of max-
imal total welfare realized with storable votes (in panel4a), and with majority
voting (panel 4b) in our simulations, at different correlation coefficients.

The figure is very instructive. Both panels are almost perfectly monotonic
in the two correlation parameters, and in opposite direction. In particular,
storable votes are closer to efficiency at high intraparty correlation and low
interparty correlation and deliver progressively less social welfare (relative to
the potential maximum) as intraparty correlation falls and interparty correlation
increases, in the direction of the diagonal line. (Recall that the diagonal can
be understood as the highest possible interparty correlation consistent with a
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(a) Storable Votes (b) Majority Voting

Figure 4: Comparison of the share of efficient welfare realized for different correlation coef-
ficients, by voting rule.

given intraparty correlation coefficient). On the other hand, the performance
of majority voting display the opposite pattern: it performs closer to efficiency
at the highest admissible inter party correlation and falls monotonically as the
lower-right corner is approached, where intra party correlation is strong and
interparty correlation is weak – i.e. when parties are cohesive but they do not
compete on nominees. We discussed the reason in the main text of the paper:
the more similar are the values draws across the two parties, the more does size
alone determine which party should win, from an efficiency perspective. It is
when interparty correlation is low and at the same time values are correlated
within parties that the probability of efficient minority victories–larger total
values on the minority size–is highest. An important result suggested by the
graphs and confirmed by the simulation results is that majority voting yields
more variable outcomes than storable votes. Majority voting performs the worst
at an intraparty correlation of .9 and no interparty correlation, where it achieves
63% of efficiency, it performs the best when both correlations are .9, where it
almost achieves perfect efficiency (99.97% ). Storable votes, instead, reaches a
minimum of 71% of efficiency when both correlations are .9 and a maximum of
94% when intra party correlation is .6 and interparty correlation is nil.

The relative performance of the two voting rules, in welfare terms, is sum-
marized in Figure 5. The figure simply shows the difference in efficiency shares
between storable votes and majority voting at different levels of correlation: a
higher number, represented by a lighter shade, implies that storable votes per-
forms all the better compared to majority voting. As anticipated, using our
efficiency criterion, majority voting outperforms storable votes along and in the
immediate vicinity of the diagonal; storable votes outperform majority in the
remaining areas of the graph, and particularly so in the lower right corner. We
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Figure 5: Difference, in percentage point, of the share of efficiency achieved by storable votes
and the share of efficiency achieved by majority voting. Cases where storable votes achieves
a higher share of efficiency are marked with a black dot.

marked with a dot the cases where storable votes performs better than majority
voting, i.e. when the difference in efficiency shares is positive. The dot patterns
makes it clear that storable votes usually does better on this metric unless the
interparty correlation is at the boundary of the admissible values given an intra
party correlation.
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2 Simulating intensities

This section describes how intensities are generated in our simulations.
Consider the committee of N members with M majority members and m

minority members who have to vote on a slate of K nominees. The simulations
assume that the marginal distribution of intensities for each member on a given
nominee, Γ′, is a uniform: Γ′ ≡ U [0, 1]. Moreover we also assume that the
intensities are correlated: the intra party (linear) correlation in the majority
party is ρM , it is ρm in the minority. Finally, the inter-party correlation is given
by ρinter.

Standard statistical packages allow us to draw multivariate normals with
a given mean and covariance matrix. We use R and the mvtnorm package.
Hence, we can draw a multivariate normal of dimension N for each nominee,
with covariance matrix Σ given by

Σ =





1 ρ′M ρ′M

ρ′inter majority
...

...

ρ′M ρ′M 1

ρ′inter
1 ρ′m

minority...

ρ′m 1

(1)

Consider a draw X from the multivariate normal with covariance matrix Σ
and mean 0. The marginal distribution of each element of the vector is then
a standard normal distribution. Using the uniform transformation and Φ(.)
being the standard normal cumulative distribution function, for all element Xi

of vector X, Φ(Xi) ∼ U [0, 1].
The linear correlation between the variables Φ(Xi) is the Spearman (rank-

or fractile-) correlation between the variables Xi. The rank correlation r̃ of the
standard normal variables X,Y with correlation ρ̃ is given by3:

ρ̃ = 2sin
(π

6
r̃
)

(2)

Therefore, the draws of the valuations are done as follows:

• For each target uniform correlation profile r̃ ∈ {ρM , ρm, ρinter}, compute
the corresponding normal linear ρ̃ correlation via Equation 2

• For instance, ρ′inter = 2sin
(
π
6 ρinter

)
3. See Hotelling and Pabst (1936) or Phoon, Quek, and Huang (2004)
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• For each nominee, draw a multivariate normal of size N, mean 0 and
correlation matrix Σ.

• For each nominee, apply the standard normal cdf Φ(.) to each element of
the drawn vector

3 Constraints on the correlations

In order to be able to compute the intensity draws, one requires the matrix Σ
defined in (1) to be invertible. In the following, the prime notations are omitted
for simplicity.

Define

b = (2 + (m− 1)ρm + (M − 1)ρM )

c = (1 + (M − 1)ρM )(1 + (m− 1)ρm)−Mmρ2
inter

The eigenvalues of Σ are given by

λ1 = 1− ρM
λ2 = 1− ρm

λ3 =
1

2

[
b−

√
b2 − 4c

]
λ4 =

1

2

[
b+

√
b2 − 4c

]

Note that we always have b2 ≥ 4c since c ≤ (1+(M−1)ρM )(1+(m−1)ρm) =
c̄ and we can write b = x + y and c̄ = x · y. Finally, (x + y)2 ≥ 4xy for
any x, y. Hence, the necessary and sufficient condition for Σ > 0 is given by
1
2

[
b−
√
b2 − 4c

]
> 0 assuming all correlations are in [0, 1]. This is equivalent

to testing that c > 0.
The condition c > 0 gives us that

ρ2
inter ≤

(1 + (M − 1)ρM )(1 + (m− 1)ρm)

Mm

The constraint on the interparty correlation in the uniform case as a function
of the uniform, intraparty correlations can be easily obtained by inverting the
relation in equation 2. Note that, because the arcsin function is increasing on
[−1, 1], we have that if ρ = 2sin

(
π
6 r
)

Then ρ ≤ ρ̄ ⇔ r ≤ 6
πarcsin

(
ρ̄
2

)
. The

upper bound on the interparty linear correlation when the values are drawn from
a uniform [0, 1] is shown in Figure 6. Figure 6a assumes the same intraparty
correlation in both parties (ρM = ρm) while Figure 6b allows those correlations
to differ. In the latter figure, we display the levels of the upper bound on the
interparty correlation as a function of the two intra party correlations.
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(a) Same intra party correlation (b) Different intra party correlation

Figure 6: Upper bound on interparty correlation with M = 55 and m = 45 as a function of
the intra party correlations – Linear correlations for uniformly distributed intensities.

Importantly for our simulations and the results shown in the paper and in
the appendix, the constraint on ρinter can be simplified for large groups. Notice
that as M and m diverge to infinity, we have that 1 + (M − 1)ρM ∼MρM and
1+(m−1)ρm ∼ mρm for ρM , ρm > 04. Hence, we obtain that the upper bound
for ρ2

inter is equivalent to ρMρm. If the intra party correlations are identical,
ρM = ρm = ρ , we obtain that for large M and m, the constraint is close to
ρinter ≤ ρ. This explains why in the various tiled figures used in the main paper
and in this appendix, the admissible cases of intra- and interparty correlation
are below the diagonal of the unit square.
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4. Remember that the subscript M and m for the intra party correlation simply distinguish
the two parties, and do not reflect a dependence of the correlation on party size.
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