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1. Additional Background on the Korean Admissions System 

1.1 College Rankings 

Panel A of Table A.1 reports college ranking based on the score on the nationwide test 

needed for an applicant to have a realistic chance of being admitted as an undergraduate 

law major. We use a placement guideline made by Daesung, a well-known cram school 

in South Korea. This guideline is distributed to all high schools in South Korea and used 

by high school teachers. We expect that this guess will be correlated with an applicant’s 

quality given major-college. We report ranking based on a law major because almost all 

colleges (except for Postech) have an undergrad law major, and the law schools do not 

select applicants jointly with another schools. (e.g., for the economics major, some 

colleges select students as economics majors and others select them as social science 

majors). In all years from 1994 to 1999, Seoul National was ranked 1, meaning that the 

law major requires the highest score on the nationwide test. A college’s ranking is very 

stable over time (pair-wise spearman correlation ranges from 0.92 to 0.99). 

Panel B is based on a survey of how great a contribution a college makes to 

Korean society, conducted by Joongang Daily (herein JEDI, available at http://jedi.re.kr/).  

 

 

Table A.1 College Ranking 

 Panel A. Daesung Panel B. JEDI 

 1994 1995 1996 1997 1998 1999 2005 2010 2011 

Seoul National 1 1 1 1 1 1 1 1 1 

Korea 2 2 2 2 2 2 2 3 2 

Yonsei 3 3 3 3 3 3 3 2 4 

Postech - - - - - - 4 5 5 

Sogang 5 4 4 4 4 5 8 8 9 

Ewha women’s 6 5 4 5 5 6 9 10 8 

Pusan 8 7 6 6 7 7 10 14 14 

Kyungbook 8 7 6 6 6 7 11 15 13 

Joongang 7 6 5 6 5 6 13 9 10 

Hanyang 5 5 4 4 4 5 5 7 7 

Kyunghee 7 6 5 4 6 6 14 11 12 

Seongkyunkwan 4 4 4 4 4 4 7 6 6 

Hankook 7 6 6 6 6 6 12 12 11 

Note: Postech does not offer an undergrad law major. JEDI omitted KAIST from its 2005 report but 

included it in the 2010 and 2011 reports, in which KAIST was ranked 4
th

 and 3
rd

, respectively. 

 

 

http://jedi.re.kr/
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JEDI has announced college rankings every year since 2005 (equivalent to the US News 

college ranking). JEDI constructs several indexes based on a combination of surveys 

about how prestigious/visible a school is and other measures such as publication records 

and funding. Instead of using the overall ranking, we used people’s perceptions of a 

school’s contribution to Korean society as a quality measure because the measure is 

stable over time. There has been some controversy over using publication records and 

funding for college evaluation because JEDI uses a simple average instead of adjusting 

for the quality of a journal and so on. 

College ranking based on JEDI is highly correlated with the results in Panel A and 

fairly stable over time. For example, pairwise spearman correlations between JEDI and 

Daesung’s ranking range from 0.80 to 0.98. 

 

1.2 Distribution of Seats in Regular Admissions 

Table A.2 reports what fraction of regular admission seats was allocated to each exam 

day. Most colleges chose only one exam day for their regular admissions. The remaining 

a few colleges chose two days. For example, in 1997, Korea University allocated 16 

percent of its regular seats to Date A and the rest to Date B. This is because Korea 

University chose Date A for its highly competitive majors, such as law majors.   
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Table A.2 Percent of Regular Admission Seats Allocated to Each Day 

Panel A: 1994 to 1997 

  1994 1995 1996  1997  

  A B C A B C A B C A B C 

1 Seoul National 100 0 0 100 0 0 100 0 0 100 0 0 

2 Korea 100 0 0 100 0 0 0 100 0 16 84 0 

 Yonsei 100 0 0 100 0 0 0 100 0 0 100 0 

 Postech 0 100 0 0 100 0 0 100 0 0 100 0 

3 Sogang 100 0 0 100 0 0 0 100 0 0 100 0 

 Ewha women’s 100 0 0 100 0 0 0 100 0 0 100 0 

 Pusan 100 0 0 100 0 0 0 100 0 0 100 0 

 Kyungbook 100 0 0 100 0 0 0 100 0 0 0 100 

 Joongang 100 0 0 100 0 0 100 0 0 100 0 0 

 Hanyang 100 0 0 100 0 0 0 97 3 0 95 5 

 Kyunghee 100 0 0 100 0 0 100 0 0 0 100 0 

 Seongkyunkwan 0 0 100 100 0 0 100 0 0 0 100 0 

 Hankook 0 0 100 0 0 100 0 0 100 0 0 100 

 

Panel B: 1998 to 2001 

  1998 1999 2000  2001  

  A B C A B C A B C A B C 

1 Seoul National 100 0 0 100 0 0 100 0 0 100 0 0 

2 Korea 11 89 0 0 100 0 0 100 0 0 100 0 

 Yonsei 0 100 0 0 100 0 0 100 0 11 89 0 

 Postech 0 100 0 0 100 0 0 100 0 0 100 0 

3 Sogang 60 40 0 100 0 0 100 0 0 100 0 0 

 Ewha women’s 0 100 0 0 100 0 0 100 0 0 100 0 

 Pusan 0 100 0 0 100 0 24 76 0 28 72 0 

 Kyungbook 0 100 0 0 100 0 0 100 0 0 100 0 

 Joongang 100 0 0 100 0 0 92 8 0 100 0 0 

 Hanyang 0 97 3 0 95 5 0 97 3 20 80 0 

 Kyunghee 0 86 14 0 80 20 0 100 0 0 100 0 

 Seongkyunkwan 0 100 0 0 100 0 0 100 0 0 100 0 

 Hankook 0 0 1.00 0 0 100 100 0 0 100 0 0 
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2. Proofs of MLRP Properties 

 

Proof of MLRP Property 1: Consider any value y* and show that the FOSD property 

holds at y*, i.e. Fx(y*) < Fx’(y*). By definition of MLRP, the ratio fx(y) / fx’(y) is 

increasing in y.  Define  = fx(y*) / fx’(y*).   

If  < 1, then Fs(v*) =  <  =  Fx’(y*) and so Fx(y*) < Fx’(y*). 

If  > 1, then 1 – Fx(y*) =  >  =  1 - Fx’(y*) and so Fx(y*) < 

Fx’(y*).  

 

Proof of MLRP Property 2: This is a standard implication of First Order Stochastic 

Dominance. 

 

Proof of MLRP Property 3: The conditional distribution f(v | x, y < r) =  f(y | x) for y 

< r where  is a renormalizing constant given by  = 1 / Fx(r).  So the ratio f(y | x, y < r) / 

f(y | x’, y < r) = fx(y) / ’fx’(y), where  and ’ are constants.  So since fx(y) / fx’(y) is 

increasing in v by MLRP,  Fx(y | y < r) / fx’(y | y < r) is also increasing in v.  Thus, 

MLRP for x and y continues to hold given the new information that y < r.  Then by 

Properties 1 and 2, the conditional expectation E(y | x, y < r) is increasing in x. 

 

Proof of MRLP Property 4:   

The ratio Px(y > r1) / Px(y > r2) can be written as = P(y > r1 | y > r2, xi = x).   

As discussed in the proof of MLRP Property 3, the MLRP property for y and x carries 

over to conditional distributions of y – in this case, the conditional distribution given that 

y > r2. Thus, by MLRP Property 1, P(y > r1 | y > r2, xi = x) is increasing in x. 
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3. Results when Colleges Can Admit Students on Multiple Regular Admission Dates 

 

Proposition: In Regime 1, if each college chooses the number of students to admit on 

each of the two admissions dates, then in the limit as u2  1, the colleges will choose to 

admit all students on the same date.  

 

Proof: STEP 1: College 1 does not admit any students who apply originally to College 2.  

College 2 uses a higher admission threshold on Day 1 than Day 2 if it admits students on 

both days. 

Suppose that College 1 and College 2 assign a positive number of admission slots 

to both Day 1 and Day 2.  In equilibrium, the colleges will use admission thresholds, 

which we index by y
jt
 for college j at time t, and the students will choose where to apply 

on the basis of these (anticipated) thresholds.  Then the admission thresholds will emerge 

endogenously to ensure that each college actually admits the announced number of 

students on each admissions day. 

If y
12

 <
 
y

21
, so that College 1 applies a lower threshold for admission at Day 2 

than that of College 2 at Day 1, then no student would apply to College 2 on Day 1, since 

it would be preferable instead to wait to apply to College 1.  So in equilibrium, it must be 

that y
12

 >
 
y

21
.  But given that y

12
 >

 
y

21
, students who apply to College 2 at Day 1 and are 

not admitted would also not be admitted to College 1 at Day 2.  That is, College 1 only 

admits students (on either Day 1 or Day 2) who apply to College 1 immediately on Day 

1.  That is, any equilibrium where College 1 admits students on both days is equivalent to 

an equilibrium where College 1 admits students only on Day 1.  Thus, we define College 

1’s ultimate admissions threshold as y
1
 = min(y

11
, y

12
) and we observe that y

1
 > y

21
 is 

necessary for any students to apply to College 2 on Day 1 in equilibrium.  

If y
22

 <
 
y

21
, then once again no student would apply to College 2 on Day 1, since 

it would be preferable to apply to College 1 on Day 1 and then to College 2 on Day 2 if 

not admitted to College 1.  So in equilibrium, it must also be that y
22

 > y
21

. 

 

 

STEP 2: Students with highest x-values apply to College 1 on Day 1. 
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Applying to College 1 on Day 1 yields utility (to applicant i) of u1 if yi > y
1
, u2 if y

22
 < yi 

< y
1

 and 0 if yi < y
22

.  By contrast, applying to College 2 on Day 1 yields utility u2 if yi > 

y
21

 and 0 otherwise. Defining the function h(yi) to be the difference in these utilities,  

h(yi) = -u2 if y
21

 < y
i
 < y

22
;   h(yi) = u1 if y

1
 < y

i
; h(yi) = 0 otherwise.  

As shown in the proof of MLRP Property 3, MLRP between x and y also applies to the 

conditional distribution of y given that x > y
21

.  Since h(yi) is an increasing function for y 

> y
21

, (and since MLRP implies First Order Stochastic Dominance), E(h(yi) | x, y > y
21

) 

is increasing in x.  Thus, there is some cutoff x’ such that E(h(yi) | x, y > y
21

), is positive 

iff x > x’.  Finally, since h(yi) = 0 for y < y
21

, E(h(yi) | x) is just a scaled version of 

E(h(yi) | x, y > y
21

) and is also positive iff x > x’.  That is, applicants will apply to 

College 1 on Day 1 if x > x’ and otherwise will apply to College 2 on Day 1.  

 

STEP 3: In the limit as u2 approaches u1, College 2 achieves higher expected payoff if it 

admits all students on one day than if it admits some students on each admissions day. 

Define y
1S

 and y
2S

 as the admissions thresholds for the two colleges when both colleges 

admit all students on Day 1.  We know from above that y
22

 > y
21

 if College 2 admits 

students on both admissions days.  We also know from Proposition 2 that the two 

admission thresholds converge to the same value y(2K) in the limit as u2 approaches u1.  

If College 2 assigns some of its admissions slots to Day 2, then fewer than 2K 

students will be admitted on Day 1.  Further, since y
21

 < y
1 

(and all students apply to one 

college or the other on Day 1), then y
1
 must be strictly greater than y(2K) – otherwise more 

than 2K students will be admitted on Day 1.  Then in the limit as u2 approaches u1, 

College 1 attracts more applicants, uses a higher admissions threshold and achieves 

higher expected utility when College 2 admits students on both admissions days rather 

than just on Day 1.   

From the perspective of College 2, since (1) y
22

 > y
21

 and (2) all students who are 

rejected by College 1 on Day 1 then apply to College 2 on Day 2, y
22

 must be strictly 

greater than y(2K) as otherwise once again more than 2K students will be admitted in total 

to the two colleges.  In the limit as u2 approaches u1, the aggregated utility of the two 

colleges is less when College 2 admits students on both days than when all students are 

admitted on Day 1, since the limiting equilibrium with simultaneous admissions produces 
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an efficient admissions rule (students with yi > y(2K) are admitted and others are not) and 

the limiting equilibrium where College 2 admits students on both days does not.  So we 

know that College 1 gains utility and aggregate utility for the two colleges declines in 

equilibrium if College 2 admits students on both days rather than just on Day 1. Thus, it 

must be that College 2 loses in expected utility by admitting students on both days rather 

than just on Day 1.  

 

4. Proof of Existence of Equilibrium in Regimes 2M and 2S: 

 

Step 1: College 2 has a unique best response [eC2(eC1, vC1), vC2(eC1, vC1)] to each pair of 

thresholds for College 1 in Regime 2M.   

 

Proof: Given (eC1, vC1, eC2) such that College 2 admits K or fewer applicants early, there 

is a unique choice of regular admission threshold, vC2, for College 2 to fill its class.  A 

marginal early admit to College 2 is either (1) a student who would otherwise be admitted 

as a regular applicant to College 1 or (2) a student who would not be admitted to College 

1 or College 2 as a regular applicant.  So the marginal value of an early admit to College 

2 is a weighted average of (A) E(vi2 | yi = e C2) and (B) E(vi2 | yi = eC2, vi1 < vC1, vi2 < 

vC2), where the weights are proportional to (A) P(vi1 > vC1 | yi = eC2) and (B) P(vi1 < vC1, 

vi2 < vC2 | yi = eC2). 

Fix (e1, vC1) and suppose that College 2 increases eC2 to eC2’ > eC2 but does not 

change vC2.  Then comparing values (A) and (B) and their weights in the marginal value 

computation when we change the marginal early test score for eC2 to eC2’ > eC2, the 

conditional expectations (A) and (B)  increase and weight for (A) increases while weight 

for (B) falls since test scores and abilities satisfy MLRP.  So the expected ability of the 

marginal early admit will increase with eC2 under these circumstances. 

In fact, for College 2 to maintain enrollment at K, it must reduce vC2 when it 

increases eC2 – that is, it must increase the number of regular admits to compensate for a 

reduction in early admits.  This change in vC2 eliminates some applicants from the earlier 

computation of expected value – specifically those with vi2 values just below vC2, which 

could change the outcome of the comparative static computation.  But if the average 
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marginal value of an early admit to College 2  is greater or equal to vC2, candidates with 

vi2 < vC2 are worse than the average marginal value and so eliminating them can only 

help College 2.  That is, if the expected value of a marginal early admit to College 2 is 

(weakly) greater than vC2, then this expected value is increasing in eC2.  Further, since vC2 

must fall when eC2 rises for fixed (eC1, vC1), there can be at most one combination (e2, 

vC2) for each (e1, vC1) such that College 2 is indifferent between admitting an early 

applicant with y2 = e2 and a regular applicant with vi2 = vC2.  

Now consider the boundary options for College 2 in response to (eC1, vC1).  At the 

lowest plausible early application cutoff, College 2 fills its class with early applicants and 

sets its regular admission cutoff to vC2 = .  At this point, College 2 clearly prefers its 

marginal regular applicant to its marginal early applicant.
1
  As we increase eC2 to its 

highest plausible value eC2 = eC1, there is either a single interior optimum (where 

marginal early and regular applicants have the same expected ability vi2), or College 2 

prefers its marginal regular applicant at vi2 = yC2 to its marginal early applicant at yi = eC2 

for each possible eC2, in which case, College 2’s optimal policy is to admit only regular 

applicants.  In either case, there is a unique best response for College 2 to College 1’s 

fixed thresholds (eC1, vC1). 

 

Step 2: In Regime 2M, there exists an equilibrium [(e1, r1), (e2, r2)], where each college’s 

choice of admission thresholds is a best response to the other college’s admission 

thresholds.  

 

Proof:  When students can submit multiple regular applications, the marginal value of an 

early admit to College 1 when e1 = y1 is simply E(vi1 | s = e1).  For any interior choice of 

early admission cutoff with e1L < e1 < , College 1 must be indifferent between a 

marginal early applicant and a marginal regular applicant, so the regular admission 

threshold is implicitly defined by the early admission threshold i.e. r1(e1) = E(vi1 | yi = 

e1).  

                                                        
1 Intuitively, since we assume full support over (yi, vij), College 2 can always find a higher ability regular 

applicant with a low score yi who is preferred to a marginal early applicant.   

V

S
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From Lemma 2 we know that College 2 has a unique best response [e2(e1, r1), 

(vC2(e1, r1)] to each pair of thresholds (e1, r1(e1)) for College 1.  By construction each 

college is indifferent between its marginal early and regular applicants, so if College 1 

enrolls exactly K students given these thresholds [(e1, r1(e1)), [e2(e1, r1(e1)), (r2(e1, 

r1(e1))]], then we have identified an equilibrium.   

College 1’s enrollment is continuous in e1 given thresholds [(e1, vC1), [e2(e1, vC1), 

(r2(e1, vC1)]] and further College 1’s enrollment is greater than K at e1 = e1L, since it 

would still admit additional regular applicants in addition to K early applicants.  Thus, 

there is either an interior equilibrium at some e1 with e1L < e1 < S, or College 1 always 

admits too many students for each (e1, r1), including the boundary case with e1 = S, r1 = 

E(vi1 | e1 = S).  If there is no interior equilibrium, then consider options with (e1 = S, r1 > 

E(vi1 | e1 = S)), where College 1 strictly prefers its marginal regular applicant to its 

marginal early applicant, but does not enroll any early applicants.  In this case, simply 

increase r1 until the point where College 1 exactly fills its class with regular applicants 

(and no early admits), and by construction, this cutoff for regular admission to College 1 

produces an equilibrium.  

 

Step 3: There is a unique equilibrium in the early application game in Regime 2S. 

 

Proof: In Regime 2S, early applicants with yi > eCj enroll at school j and have expected 

contribution E(vij | yi), while regular applicants to school j with vij > rCj enroll at school j 

(as they can’t apply to any the other school) with contribution vij. In equilibrium, each 

school must be indifferent between admitting marginal early and marginal regular 

applicants as they set the early and regular admission thresholds simultaneous.  That is, 

rCj = E(vij | yi = eCj) so that each college’s regular threshold is a (strictly decreasing) 

function of its early threshold.   Assume for the rest of this proof the colleges use 

admission thresholds of form (eCj, rCj = E(vij | yi = eCj)).  Then we can summarize each 

college’s strategy by its early admission threshold.  

For each possible value of eC1, College 2’s enrollment is strictly decreasing in eC2.  

Thus, there is a unique value eC2(eC1) that yields enrollment K for College 2.  Further, 

eC2(eC1) is strictly increasing in eC1 as an increase in eC1 expands the pool of applicants, 
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both early and regular, who are available to College 2. By construction, this value 

eC2(eC1) is College 2’s unique best response to eC1.  Assuming this best response by 

College 2 to eC1, College 1’s implied regular threshold rC1 and both of College 2’s 

admission thresholds are strictly increasing in eC1, so total enrollment at the two schools 

is strictly decreasing in eC1.  For eC1 very small, more than 2K students will be admitted, 

so either (1) there is a unique choice of eC1 between 0 and 1 that yields total enrollment 

2K or (2) total enrollment is greater than 2K for all possible values of eC1, including eC1 = 

1.  In Case (1), each college enrolls K students and by construction, we have identified a 

unique equilibrium.  In Case (2), there is a boundary solution where College 1 does not 

admit any early applicants and chooses rC1 > E(vij | yi = eCj) to admit exactly K students.  

In either case, we have identified a unique equilibrium in Regime 2S.     

 

 


