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The appendix follows the organization of the paper. Appendix A describes the data
sources and the cleaning process, appendix B presents technical details relevant for section 5.
These include details on condition 1 and limit equilibria, details on RSP+C mechanisms and
proofs of results presented in that section. Appendix C presents technical details relevant for
section 6, including proofs and additional results on identification and testable restrictions of
equilibrium behavior. Appendix D proves consistency of our two-step approach and details

the Gibbs’ sampler used in section 7.

A Data Appendix

The primary data for the study come from the Cambridge Public Schools. Under a non-
disclosure agreement, we use data from student registration records, assignment files, and
data on student characteristics.

The student registration records contain the school /program the student is registered at,
student’s grade, language spoken at home, and the paid-lunch status at registration.

The assignment files include the rank-order list of the student, sibling or proximity pri-
ority at the ranked school, the randomly generated tie-breaker used in the assignment as
well paid-lunch/free-lunch status of the student. Cambridge pre-assigns about 40% of the
students to public elementary schools via arrangements with pre-kindergarten schools. The
assignment files provide detail on whether the student is pre-assigned and if the student
participated in the school choice process (the Cambridge mechanism) studied in this paper.

We also obtained reports from the school district containing the overall capacity of each
school/program in each year and the numbers assigned through each process. We use these

reports as the primary source for computing the number of seats available at various schools
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and programs in the mechanism. In rare cases, the rank order lists, the random tie-breaker
and the priority codes indicated an inconsistency in the capacity data. We used the knowl-
edge of the mechanism to adjust these capacities and were able to compute the correct
assignment for almost all students with these modified capacities.

The student characteristics file duplicates several of the variables in the registration and
school choice ranking and assignment file. Importantly, it also includes the home address of
the student. The Network Analyst Toolbox in ArcGIS and information in ESRI’s Datamaps
10.1 on the US road network was used to compute the distance by road between the student’s
home and the school address based on brochures from the relevant years. This computation
ignores one-way restrictions because Cambridge uses walking distance to compute proximity
priority.

These files were merged using a unique student identifier.! Schools and programs are also

uniquely identified in the dataset.

B Limits: Equilibrium, Mechanisms and Convergence

B.1 Convergence of Equilibrium Probabilities

Since we will be considering the properties of a sequence of equilibrium strategies, it is useful
to define equilibrium strategies for the limit case, ¢>°, when each agent is playing against a

continuum of other agents. We say that ¢* is a Limit Equilibrium if ¢,(v,t) > 0 implies

*

that v - ¢®((R,t),m°) > v - ¢>®((R,t),m°) for all " € R. Our next will show that

condition 1 allows for several useful conclusions in this section.
Corollary B.1. Assume that ¢" satisfies condition 1 at m® for some strateqy o*.

1. If 0" is a sequence BNE such that ||c*" — o*||p — 0, the strategy o* is a limit

equilibrium.

2. If o* is a limit equilibrium, then for each € > 0, and large enough n, ox(v,t) > 0
implies that for all R € R,

[0 (Bo[¢" (R, ), m"™") = ¢"((R,£),m" )]} | < e]lv]|.

The result shows that a convergent sequence of Bayesian Nash Equilibria converge to

a limit equilibrium, and that all limit equilibria are approximate BNE for large enough n.
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The result is similar in spirit to Kalai (2004), which shows that equilibria in limit games are

approximate BNE in large games.

Proof. Part 1:
We will show that (v, t) > 0 for all (v,t) € int(suppFy.r) only if v - (¢=((R,t),m’" ) —
¢ ((R',t),m°) >0 for all R € R. We treat two strategies as equivalent if they only differ
outside the support of Fy .

Fix (v,t) € int(suppFyr). Towards a contradiction, suppose that oj(v,t) > 0, and
v (¢®((R,t),m?) — ¢>°((R',t),m)) < —2¢ for some R’ € R and € > 0. Since (v,t) €
int(suppFy.r), there exists a 6 > 0, such that for all v" with ||[v — ¢'|| < J, we have v/ €
int(suppFy.7), and v’ - (¢=((R,t),m?" ) — ¢>°((R',t),m? )) < —e. Let m"~! be an empirical
measure of n— 1 samples from m?”". Since |¢"((R,t), m" ") —¢>((R',t),m’")| 2 0 (theorem

1), and ¢" is bounded, there exists an N, such that for all n > N and all R’ € R,

[Egen @™ (R £),m" )] = 6> (R, 1), m”)]| < 2ol +0)

Hence, for all v’ in the § neighborhood of v, we have that

V' (e @ (R ), M) = B 0" (R 1), "))

< U (¢ ((R ), mT )] = o™ ((R£),m” ) +€

o <

<

Since o*" is a Bayesian Nash Equilibrium strategy, it must be that for alln > N, " (v/,t) =
0. Therefore, ||c*™ — o*||p — 0 implies that o*(v',¢) = 0 for all v’ in the J neighborhood
of v. This conclusion contradicts the hypothesis that oj(v,t) > 0 for any R such that
v (¢®((R,t),m? ) — ¢>((R',t),m?)) < 0. Hence, o* is a limit equilibrium.
Part 2:

For a strategy o*, a particular realization of the reports of the other agents is given by
the empirical measure m™~ ! from n — 1 iid draws from m° where m° (R,t) = fr(t) x
[ o*(v,t; R)dFyp. Condition 1 implies that ¢"((R;,t;),m"™") & ¢=((R;,t;),m?"). Fix
€ > 0 and pick ng such that for all n > ng,

£

n n—1\ oo i N
P(gw¢«&mm ) ¢«memk>&ﬂ)<&&.

Since ||¢"((R,t), m" 1) — ¢=((R,t),m" )|« is bounded by 1, we have that

16" ((R. 1), m") = 6™((R, ). m7 ] < g7



Note that the choice of ny did not depend on wv;.
Now, we show that no agent of type t; and utility v; can expect a gain of more than

e||villso by deviating from o*. For n > ng and each (R;,t;), let

‘/;n((Rm tz)a ma) - ]EU

Z ¢n((RZ> ti)v mmn_l)vij]

be the expected utility from report R; given priority type ¢; and type-symmetric strategy
o followed by other agents. For any strategy o such that condition 1 is satisfied at m?, we
have that

|Vzn((Rl7 ti)a mU) - Vzoo((R“ ti)v ma)‘

< E, Z¢?((Ri,tz’),mo’n_l)vij —Zcb?o((Ri,ti),mg)Uij
< 2I8[villoo E [l6" ((Ri ta), m™" 1) = ¢ ((Ry, ti), m7) ||oc ]
< Sl

Since o* is a limit equilibrium, o*(v;, t;; R;) > 0 implies that for all R,

V;oo((Rbti)va*) Z%m((R;7ti)’mo*)
= VM((Ri,t;),m™) = V(R t),m" ) — el|vil|

7

for all n > ny. O

B.2 RSP+C Mechanisms: Existence and (Generic) Uniqueness of
Cutoffs

We introduce two definitions before discussing existence and uniqueness. The first definition
is a notion of substitutes in a neighborhood around the market clearing price. This borrows
from the notion of connected substitutes introduced in Berry et al. (2013) and Berry and

Haile (2010) to show conditions when demand is invertible.

Definition B.1. D;(p|n) satisfies local connected substitutes at p* € [0,1]7 if there
exists an € > 0, such that for all p € [0,1]7 with ||p — p*|| < &, we have that

1. forallj € {0,1,...,J} and k ¢ {1,...,J}\{j}, D,(p|n) is nondecreasing in py

2. for all non-empty subsets K C {1,...,J}, there exist k € K and |l ¢ K such that
Dy(p|n) is strictly increasing in py



Definition B.2 (Azevedo and Leshno (2013)). D(p|n) is regular if the image D(P|n),
where
P={pecl0,1]: D(:|n) is not continuously differentiable at p}

has Lebesgue measure 0.

We now observe that assumption 1.2 is satisfied (generically satisfied) if D;(p|n) satisfies

local connected substitutes at any market clearing cutoff (is regular).

Proposition B.1. Every economy (n,q) admits at least one market clearing cutoff.
Further, for a fized n, let Q be the set of capacities such that (n,q) has multiple market

clearing cutoffs. Then,
1. @n{q: ijl q; <n(R x (0,117 x T)} has Lebesgue measure zero if D;(p|n) is regular

2. Q is empty if D(p|n) satisfies local connected substitutes for any market clearing cutoff

*

p*. In particular, Q is empty if D(p|n) satisfies local connected substitutes at every
cutoff p.

Proof. Existence of cutoffs follows from corollary Al and lemma 1 of Azevedo and Leshno
(2013). Statement 1 is a consequence of Azevedo and Leshno (2013), theorem 1(2) and
lemma 1. Statement 2 is a strengthening of Azevedo and Leshno (2013), theorem 1(1).
By the Lattice Theorem (Azevedo and Leshno, 2013), there exist minimum and maximum
market clearing cutoffs p~ < p*. Note that the measure of students matched with program 75
at cutoff p is given by D;(p|n), and the measure of students unmatched is given by Dy(p|n).
Hence, by the Rural Hospitals Theorem (Azevedo and Leshno, 2013), for all C' C S,

> Di(ptIn) =>_ D" In). (B.1)

jel jel

Let p* be a market clearing cutoff such that D(p|n) satisfies local connected substitutes at
p'. Let Ct ={jeS:p;<p/}and C~ ={j€S:p;>p;} We wil show that C* = {)
i.e. p™ = p*. The proof to show that C~ = () is symmetric and together, these claims imply
that p™ = p~ = p*.

Towards a contradiction, assume that C* # (). Since D(p|n) satisfies local connected
substitutes at p* (Definition B.1), there exist ¢ € (0,1), k € C*, and | € C* such that

Dy(p*|n) < Di(p®|n),



where p§, = ep) + (1 — &)p}, for j # k and p; = pj. Hence, we have that

Y D) < > Dl < > DiwtIn),
jeS\C+ jes\C+ jes\c+
where the implication on the summation and the second inequality are implied by the defini-

tion of D(p|n). Since this inequality contradicts equation (B.1), it must be that C* = 0. O

Remark B.1. The condition that D(p|n) satisfies local connected substitutes for all p € [0, 1]

15 testable. Note that local connected substitutes is implied by strict gross substitutes.

B.3 Proof of theorem 2

We begin by showing a few preliminaries.
The first result shows that for any (R, e), and iid draws of the reports and priority types
of the other n — 1 agents from 7, the associated market clearing cutoffs p™(R, e) converge to

the limit market clearing cutoff p for (n, q).

Lemma B.1. Suppose (n,q) satisfies assumption 1. If p"(R,e) is a sequence of market
clearing cutoffs for the market (0", q") where
n—1

n n— 1
N = ——n0"""+ —d(re)
n n

and "1 are a sequence of empirical measures that converges in probability to n and ¢" — q,
then

sup ||p"(R, e) — p*llsc = 0.
(R.e)

Proof. The result is similar in spirit to Azevedo and Leshno (2013), theorem 2. It differs
from their results in that we are considering a sequence of randomly drawn economies.
Define the class B = {{(e;, R;) : e;; > p;, Ri = R} : pj, j, R}. Note that B is a VC class

since it is collection of half-spaces, which are VC classes. Hence, the class of sets

V= {Upj = {(es, Ri) : eij > pj, jRi0} ﬂ ({(es Ri) = jRij"y U (e, Ri) = eije < pyr}) 3])7.7}
J'#i

is a VC-class since it is a subset of finite unions and intersections of sets in B and their



complements. Hence, for any (R, e) and j,

sup | D;(pln) — D (pIn™)l = sup 0™ (vp;) — n(vpy)|
p p
n—1 .4 1
< sup " (V) + =1{(R,e) e V} —n(V)
Vey n n
n—1 4 1
su V) =n(V) |+ =
< s (V) —=n(V) -
20,

by the Glivenko-Cantelli theorem. Hence, D(p|n™) — ¢* 2 D(p|n) — ¢ uniformly in p and
(R, e). Similarly, we also have that D(p|n"~!) — ¢" = D(p|n) — ¢ uniformly in p.
Let the unique market clearing cutoff for (1, q) be p*. Define for each (R, e)

Oulp: Ro¢) = H [ max {z (p|n",¢"),0} ] H
pxz(pn",q"

where * represents the Hadamard product. Note that p"(R, e) is a market clearing cutoff iff
Qn(p; R,e) = 0. Let Qo be the limiting objective function,

p* z(p|n, q)

|| [ max {z(p[n, q), 0} ] H

and note that it does not depend on (R, ). By the continuous mapping theorem, sup,, . |Qn(p; R, €)—
Qo(p)| & 0. Also, Qo(p) is continuous since assumption 1.1 implies that D(p|n) is contin-
uous. Assumption 1.2 implies that Qy(p) is uniquely minimized at p*. For ¢ > 0, let 6. =
inf . |p—pe|>c @o(p). Since Qo is continuous, p is an element of a compact space and Qy(p) = 0
only at p*, 0. > 0. Pick N such that for all n > N, P(sup, g . |Qo(p) — Qn(p; R,e)| > 0.) < ¢
For any market clearing cutoff p"(R, e), Q,(p"(R,€e); R,e) = 0. Note that

|Qo(p" (R, e)) — Qo(p”)|

< |Qo(p"(R,€)) — Qu(p"(R,e); R e)| + |Qu(p" (R, e); R, e) — Qo(p")]
< sup |Qo(p) — Qn(p; R, e)| + 0. (B.2)



Hence, we have that for all n > N,
P (S}gp p"(R,e) — p*| > 6) < P (S;lp |Qo(p"(R, €)) — Qo(p")| > 56)

<P (sup Qo(p) = Qulp: R )| > 65) <

p,R.e

where the first inequality follows from set inclusion, the second from equation (B.2), and the
third by our choice of N. O]

Theorem 2 is a corollary to showing condition 1 for the following simpler class of mech-

anisms.

Definition B.3. A mechanism ¢™ is a random tie-breaker + cutoff mechanism if there

is a measure vy, € A[0,1]7 for each t such that

(Z) d)n((RZv ti)v m(R—i7 t—i)) - f s f D(Rhui)(pn) d7V1\t1 .- 'd,yVn|tn

(i1) p™ are market clearing cutoffs for capacity q" and each profile of reports and random

tie-breakers ((Ry,v1), ..., (Rn,Vn))

Lemma B.2. Suppose (n,q) satisfies assumption 1 where
n({R,v <p}) =Y m(R,D)nu({v <p}).
t

If o™ is a random tie-breaker + cutoff mechanism, then ¢™ satisfies condition 1.

Proof. It is enough to show that ¢7((R,t),m"") LS ¢ ((R,t),m)) for a fixed report R,
priority type t and j since there are finitely many elements in R x T x S. Since ¢" is a

random tie-breaker + cutoff mechanism,

(RO = [B[DI 0 (R R oy

where the expectation is taken with respect to the random draws of the tie-breaker for the

other n — 1 agents conditional on ¢.

Let the unique market clearing cutoff at (1, ¢) be p*. Fixe > 0. Let U = {y :min; |v; — p;| < 4L’S|}7
K

where & is defined in assumption 1.1. Note that assumption 1.1 implies that 7, (U) <



For any j

’(b?((Rv t)? mn71> - Qb;)o((Ra t)? m)‘

< / E[ D4 (R ) - D§R’”)< "1 | o
< sgg E [D V) — D](-R’V)(p*) R,v, mnfl] (1 _’Yult(U))
+w5Ep“% munwaWwRmeﬂmmm
ve
(Ryv) / x n—1 €
< sup E[D R,v)) = D" (p")| R,v,m ] (= %pU)) +5

where the last inequality follows from the fact that

B[ D (R, v)) — D ()

J

R,v,m" 1}

<1
We now show that there exists an N such that for all n > N,

P (sup |2 [0 n(R.0) = DY)

R, v, m"_l]’ > g) < Ee.

This would complete the proof since it implies that for all n > N,

P (|¢7 (R, t),m"™") — ¢X((R,t),m)| > ¢) <e.

Pick an N such that for all n > N,

B (sup [0 (B 1) = 'l > ——= ) < &
su V) — 9"l —.
i [[p" (R, v) = p =S <3

Such an N exists by lemma B.1. Further, note that for any p, if v & {v : 35, p; Vp; <y <

p; A p;} then DU (p) = DEV) (p*). Hence, if [|p"(R,v) — p*|le < %w and v ¢ U, then
K

<62
.

(Bv) (0 _ p&RwY)
D; (p (R,v)) = D; " (p*). Therefore, for all n > N,

PGwDW%%&m—wmww
vgU



Since | D{™ (p"(R, v)) — D™ (p")

; : < 1, we have that for all n > N,

g [ V) n V) (o %
3 > B |00 (R - 0| 7.
- {sup DY (R, ) — D(p) \R,mn-lﬂ
vgU
> E |suwk | DI (" (R,v)) - D) | R, V,m"1H
LvgU

where the equality follows from the law of iterated expectations, and the weak inequal-
ity follows from a well-known property of expectations and supremums. Finally, Markov’s

inequality implies that

R —

‘R, v, m”‘l] > g) <e,

proving the desired result. O

We now show that theorem 2 is a corollary to lemma B.2 by observing that ¢" is a random
tie-breaker + cutoff mechanism with a distribution ,|, that depends on f. To see this, note
that p™ is a market clearing cutoff for the economy ((R1, f(R1,11)), ..., (Rn, f(Rn,vn))) and
that

O (Rists) m(Roint_))) = / / DUESE) (50 oy,

— /"~/D(R“e”(p”)dnél,eﬂtl(Rl,-)--'dnén,enun(Rn,-)

B.4 Proof of proposition 1

Deferred Acceptance:
Let v; be supremum of the priority scores of the rejected students. We claim that p" = e are
the cutoffs with the desired properties (if a school does not reject any students, set p; = 0).
Let v} be the supremum the priority scores of students that were rejected in round r. Set
e; =0 if no students are rejected. Observe that for each school, v; < y§+1. If the algorithm
terminates in round k, then yf = v;. The algorithm terminates in finitely many rounds for
every n.
Assume that student ¢ is assigned to school j" and consider any school j with jR;j". Let
r be round in which student ¢ was rejected by j. By definition, it must be that v;; < v}.

Therefore, v;; < v; and we have that each student is assigned to DFavi) (pny,

10



Finally, the aggregate demand cannot exceed g; by construction of p”.

Boston Mechanism:

We show that the Boston Mechanism is report-specific priority + cutoff mechanisms for

fj(RvV): 7 7

by constructing market cutoffs p™ for each profile ((Ry,v1),...,(Ry,vy)) such that (i) the
assignment of each agent is given by DWf(Fivi))(pn) and (i) p" clears the market for the
economy ((Ry, f(R1,11)),..., (R, f(RNn,vN))).

Note that if a school rejects a student in round k, then it rejects students in all further
rounds since it is full at the end of that round. Let k; denote that round for school j, and

let v; be supremum of the random priorities of the rejected students in round k;. We claim

that pi =1 — M are the cutoffs with the desired properties (if a school does not reject
any students, set k; = J and p; = 0).

We first show that the assignment of each student in the Boston mechanism is given by
DWW (Bavi)) () - Assume that student 7 is assigned to school 5’ and consider any school j with
jR;j’. Since jR;j’, it must be that the student was rejected at j, and could not have applied
to j before round k;. If student applied to k; after round j, then vy; — #{k : kR;j} < v; —k;
since |vy; — v;| < 1. If #{k : kR;j} = kj, then v; < ;. In either case, f;(R;,vi) < pj.
Therefore, the student is assigned to D:f(Fivi)) (pn),

Next, we show that p” clears the market for economy ((Ry, f(R1,11)), ..., (Ry, f(Rx,vnN)))-
As noted earlier, each agent is assigned to D%/ (Ei))(pm) - By construction of p”, the ag-

gregate demand must be less than ¢;, and pj = 0 if aggregate demand is strictly less than

q;-

Serial Dictatorship:

The Serial Dictatorship Mechanism orders the students according to a single priority and
then assigns the top student to her top ranked choice. The k-th student is then assigned
to her top ranked choice that has remaining seats. It is straightforward to show that this
mechanism is equivalent to a Deferred Acceptance mechanism in which all students have

identical priorities at all schools. Hence, it is a report-specific priority + cutoff mechanism.
First Preferences First:

The First Preferences First mechanism assigns students to their top ranked choice if seats are

available, with tie-breaking according to priorities and a random number. Rejected students

11



are then processed for the remaining seats according to the Deferred Acceptance mechanism.
Arguments identical to the ones above show that the First Priority First mechanism is a

report-specific priority + cutoff mechanism for

vi+ iRy Vj'#j}

fj(R7V): 9

Chinese Parallel (Chen and Kesten, 2013):

The chinese parallel mechanism operates in ¢ rounds, each with ¢.-subchoices. In each round,
rejected students applies to the next ¢. highest choices that have not yet rejected her. Within
each round, the algorithm implements a deferred acceptance procedure in which applications
are held tentatively until no new proposals are made. Assignments are finalized after all
t. choices have been considered. It is straightforward to show that the Chinese Parallel

mechanism is a report-specific priority 4+ cutoff mechanism for

- {#{k:kRij}J V_lJ

EIE

Pan London Admissions (Pennell et al., 2006):
The Pan London Admissions system uses the Student Proposing Deferred Acceptance Mech-

fj(RaV): +

anism except that a subset of schools upgrade the priority of students that rank the school

highly. Suppose school j upgrades students that rank it first. For such schools, we set

vi+ WiRj" Vi # 5}
2 )

fj(R7 I/) =

and f;(R,v) = v otherwise. With this modification, the Pan London Admissions scheme is

a report-specific priority + cutoff mechanism.
B.5 Verifying condition 1 for the Cambridge Mechanism
We first find a representation of the Cambridge Mechanism as a function

" (RXT)x ARXT)— AS

B.5.1 Representation

Priorities and Tie-breakers

12



Each student receives an independent priority draw v; from a uniform [0, 1] distribution.
We modify this random priority by the sibling and proximity priority ¢;. Let f: [0,1] x T —
0, 1]‘], such that for each j =1, ..., J:

Vi + tij

T € [0,1]

eij = fi (i, ti) =
where 7" is the maximum priority points a student can have. In Cambridge, ¢;; = 1 if student
¢ has only proximity priority at program j, ¢;; = 2 if student 7 has only sibling priority at

program j, and ¢;; = 3 if student ¢ has both proximity and sibling priority at program j.

Economy

Let IT be a partition of the programs in Cambridge into a set of schools in Cambridge
and let g € Rf‘m be a vector of program and school capacities. Typically, for any 7 € II,
> jen i < G-

Consider a n-student economy where the vector of capacities is represented by ¢" €

Rfrlnl, the measure of report-priority shares of all but the focal student is given by

—1
1 n
m" = § :5Ri7ti
n—14%
=1

and 1™~ ! includes the realization of random priority draws of the n — 1 students

n—1
1
n—1
U = n—1 E :531',151‘761'
=1

where 7" ! agrees with m"~! on the marginals on R and t.

Sub-Economies in Rounds & € {1,2,3}

With a slight abuse of notation, let | be the program in position £ in report R. We
will use a map s(n, qlk) — (17, ¢’) that takes a measure over reports, priority types, random
priorities, and a capacity in each round and maps it to a measure over remaining reports,
priority-types and random priorities in the next round.

To define s(n, ¢|k), we introduce some additional notation. Let

Dy (pln) = n ({(R,e) : Ry = jie; > p})

be the measure of types that ranked school j in the k-th round and have eligibility score of

at least p in that round. Note that D, (p|n) is non-increasing. Define the excess capacity

13



z;j for school j at eligibility score p as:

Z (pyn,qlk) = q; — Djx (p|n)

Ze, (pimyalk) = qn, —q;— > min{g, Dy (pn)}
lem;/4}

2 (pin.qlk) = Z (p;m,qlk) + min (0, Z, (p;n, qlk)) .

Note that z; is non-decreasing in p.
In the Cambridge mechanism, a student is not assigned to a school in round k if the
measure of students that have (weakly) higher eligibility exceeds the school or the program’s

capacity. Therefore, the set of students that are not assigned in step k£ can be written as

r(n,qlk) = {(R,e) : R = R(k), zra) (ergwin, qlk) < 0}.

Define 7" as the restriction of n to r (n, q|k).

The capacities that remain after step k, are given by:

q; = max {q; — D;jx (0n),0}

since all students, i.e. measure D;, (0|n), are assigned if there are seats available.

Cambridge Mechanism

Let (n1,q1) = (n,q) and (g, qx) = S (Mk—1, gx—1|k). Define the function,

v+t c
owry (vin, g, k) =1 { (R, T) €1 (M qrlk)” Nwrar (Uk/,Qk'|k,)} -

This function returns 1 if a student that reports R and has priority (v,t) is assigned to
program R(k) when the measure over reports and priorities is given by v and the vector of
capacities is q.

For a fixed student priority-type, report and draw of the tie-breaker, (R, ¢,v) define

[(n=1)n""" + Opae] -

=3
I
SARS

14



Note that the finite economy and limit economy mechanisms are given by

¢7{(}g) ((R> t) ) mnila qn) =

/]E (vin", q", k)| m"~", v] dv
¢(I)%o(k) ((R7t>7mJQ) - /@Rt) vin,q, )d

where the limit measure 7 is given by
T
n({R,e < p}) :Zm (R,t) mm (p;T —t;). (B.3)
=0

B.5.2 Main Result: Condition 1 for the Cambridge Mechanism
We make the following assumption about the genericity of vacancies:

Assumption B.1 (Generic Vacancies). For k = 1,2,3, let my be the marginal of ni on
R x T where (Mg, qr) = S(Mk—1, -1k — 1) and (n1,q1) = (n,q). If m (R, t) =0 then for each
k,

Qr.R(E) — 2R mk<{REk] = R(k), tRfk] > LRk }),

min )
Qk,mry — Zz@rR[k] min {qk,l, ZR,# mk({REk] = l,tRfk] > tR(k)})}

£0

For each (R,t), there is no open set in [0, 1]/F" such that every ¢ in that set violates
assumption B.1. Fix a ¢ such that this assumption is satisfied. We now show that condition

1 is satisfied for the Cambridge Mechanism.

Proposition B.2. Assume that (m,q) satisfies assumption B.1 above. If m"' ¢" are em-

pirical sequences such that m"* 5 m, and ¢* 5 q, then for each k € {1,2,3} and (R,t)

gb?ll%(k) ((R7 t) 7mn717 qn) l> gb?%o(lc) ((R7 t) ) T, Q) :

The proof requires two preliminary results. Let A be the symmetric difference operator.
Consider the VC class of sets

V={V:3(Rpk) eRx[0,1] x{1,2,3},V=v(Rpk)},

where v (R, p,k) = {(R.€) : ega) < p}-

Lemma B.3. Ifsupyy, [n" (V) —n (V)] 50, sup; |q§‘ — g 20 and D; 1.(p|n) is continuous
i p for all j and k, then

(i) sup, ;. |D;r(pIn™) — Dju(pln)| = 0,
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(ii) sup, ;. |2 (vit,n", q"k) — z; (vit,m, q|k)| B0 where each z; (vit,n, q|k) is continuous

and non-decreasing in v,
(iii) v(n, q|k) = Uper Vr where each Vg €V,
(iv) 17" (r(", q"|k) A r(n. qlk)) = 0, and

(v) if ' is the restriction of n to r(n,q|lk) then D;(p|n’) is continuous in p for all j and
k.

Proof. Parts (i - iii): For every p € [0, 1],

Dk (pln) = n({(R,e): R(k) =j,e; > p})
= > n(R0,k)—n(v(Rpk)).

R:R(k)=j

Hence, part (i) follows from uniform convergence in probability of n™ over sets in V. Part
(ii) follows from the continuous mapping theorem: z; (-;7,¢|k) is continuous with respect
to functions Dy (+|n), where both types of functions belong to vector spaces endowed
with the sup-norm. Continuity of z; (v;t,n,q|k) follows directly continuity of the min
function and of D,y (:|n) for every [. Part (iii) is easily verified noting that r(n,qlk) =
Uj UR:R(k):j v (R, p;, k) where p; = 0 if 2; (0;7,q|k) > 0 and otherwise,

pj =sup{e € [0,1] : 2 (e57, g[k) < 0}
Part (iv): The definitions of (7, ¢|k) and r(n™, ¢"|k) imply:

n" (r(n", q"k) A r(n, qlk))
Zn ({R(k) =7,(e; <p; Vzi(esn™,q"|k) > 0)A(ej >p; Vzi(esn,q" k) < 0)B.4)

where V and A are logical AND and OR respectively. It is enough to show convergence in
probability for each term in the summation.
Pick an N such that for all n > N with probability greater than 1 — ¢,

DO ™

sup |zj (esm,qlk) — 25 (e;0", ¢"|k)| <

and
g
sup 77n ({(R,t, V) . R = R/7p1 S 6]' S pg}) S T ’pl —p2| + é (B6)

plSPQ:R/
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Existence of such an N is guaranteed by part (ii) of the lemma above and since

sup n({(R,t,v): R=R'p1 <e; <p}) <Tlp1 —pl|.
p1<p2,R’

We first show that equation (B.6) implies that
: n £
" ({B(k) = J, 2 (", alk) € [a,0]}) < 7 +b—a. (B.7)

Let e, = inf {e: z; (e;n", ¢q|k) > a}, &, =sup{e: z; (e;n™, ¢|k) < b}. We have that

n" ({R(k) = j,z (e;n",¢"|k) € [a,b]})
< 7" ({R(k) = j,e € [e,,€n]})
= n"({R(k)=j,e € (e, en)}) + 0" ({R(k) = j,e € {€n,E}})
< lim Dy (eln™ )—grén Djk (eln™) +n" ({R(k) = j,e € {en,€n}})
< lim Djx (eln™) — liTr,n Djye (eln”) + 4
n n 6
= ygglnza (esn", q"[k) = lim Z; (el ", ¢"|) + 5
< liTrp zj (esn", q"|k) — 1ifn zj (el:n", q"|k) + Z
< b—a+ c

4

where the first inequality follows by the definition of e,, and €,; the second inequality follows
from the definition of D;;, (e|n™) and because it is decreasing; the third inequality follows from
equation (B.6); the last inequality follows from the definition of Z; and the final inequality
follows from the fact that for all e € (e,,€,), 2; (¢;1",¢"|k) € (a,b) and that z; (e;n", ¢"|k)
is monotonically increasing.

Now consider the term corresponding to program j in the summation in equation (B.4).

If z; (pj;n", ¢"|k) < 0, this term is bounded by

n" ({e; > pj, 2 (ejsn"™, ¢"k) € [z (pj; 0™, q"|k) . 0]}) .

If z; (pj;n™, ¢"|k) > 0, the term is bounded by

n" ({e; < pj, 2z (esn", q"|k) € [0, 2 (0™, q"|k)]}) .
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Hence, equations (B.7) and (B.5) imply that

n" ({R(k) = j,(e; <p; Vzi(esn",q"|k) > 0)A(e; > p; Vzi (e;1",¢"|k) <0)})

n _.n 6

S\%%mmm—%@m,M@Hﬂxz
< e

Since equations (B.5) and (B.6) (consequently, equation (B.7)), hold for all n > N with
probability at least 1 — ¢, we have the desired result.

Part (v): Follows because

Dix(pln') = #GR%%=$q2pD

n
_ ) Diwlpln) = Dj(psln) if p; <p
0 if pj > p

and D; (p|n) is continuous. O

If ((ry) (vin,q, k) > 0 both terms are positive. Program R(k) could enroll every unassigned

Before stating the second preliminary result, we first define the function

v+ tR(k)

Cuiﬂ(VQWaQ7k)::InH1{ZR“ﬂ (-——7fr——;nknk STk Gk

v+ tR(k’)
T

k), — maxzpp
P R R(E")

R““) without

student that ranked it in position k& and that has a priority score higher than 2
exhausting program or school capacity. At the same time, if for some k&’ < k, program R(k’)
had enrolled every unassigned student that ranked it in position &’ and had a priority score
higher than = ;(’“ ) it would have exceeded the total program or school capacity. Therefore
a student with report and priority (R,t,v) such that (g (v;n,q,k) > 0 is assigned to
school Ry in round k. Notice that (g (v5m,¢,k) > 0 implies pry4 (v31,¢,k) = 1 and

Cryy (V3m, q, k) < 0 implies @gy (v31, ¢, k) = 0.

Lemma B.4. If supyy, [ (V) —n (V)| 2 0 and sup; |q;1 — g 20, where 0 is defined as
in (B.3), then sup, g}, }C(R,t) (vsn™, q" k) — Crye) (Vin, q, k)’ 2.

Proof. We first show that if D, x(p|n) is continuous in p for all j and &, then

W)~ <v>|} ),

Is(r™, q"1k) — s (n, gk —max{sup\qj 4.
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Since ¢; is jointly continuous in g; and Dj (0[n), T q; by the continuous mapping

J
theorem. Consider,

sup " (V) =5/ (V)]
Vvey
= sup "™ (r(n",q"|k) N V) =n(r(n,qlk) N V)|
c
sup In"™ (r(n,qlk) N V) =n(r(n,qlk) N V)|

+ sup In"™ (r(n",q"|k) N V) =" (r(n,qlk) N V).

IN

The first term converges in probability to zero because 7(n, q|k) € V (lemma B.3, part iii)
since V is closed under finite intersections. The second term is bounded by: 0™ (r(n", ¢"|k) & r(n, q|k)),
which is shown to converge in probability to zero (lemma B.3, part iv). Moreover, for all j
and k, D;x(p|n') is continuous in p (lemma B.3, part v).
Notice that D, (p|n) is continuous in p for all j and k. By mathematical induction,
SUPy ey |7},’€‘71 (V) — mk—q (V)‘ 20 and sup; |q}§717j — ka—l,j‘ 2 0 implies that for all k = 2, 3,
we have supycy, |78 (V) —nx (V)| 2 0, sup; }q,’{},j — Qi 20 and D;4(p|n) is continuous in
p. The result now follows from the the continuous mapping theorem and lemma B.3, part

ii, since ((ry) (371, ¢, k) is continuous in z; (-, q|k) for all ¢, 5, k. O
We are now ready for the main result

Proof. For each (R,t), there is no open set in [0, 17+ such that every ¢ in that set violates
assumption B.1. Fix a ¢ such that this assumption is satisfied. For this ¢, it is enough to
show the result for fixed (R, t, k) since it belongs to a finite set.

Let

{V CRt VUCL _O}

where j = R(k). We first show that || < 2. Since

1% —|— tR(k) v+ tR(k’)
—_— k), — Max zree) | 3

T s Nies Gk

C(R,t) (V§ n, 4, k) = min {ZR(k) ( T

where both components inside the min are monotonic, continuous functions of v, it is easy
to show that & is the union of at most two convex sets. Further, & is closed since

Cry) (V51m,q, k) is continuous in v. Suppose that there is there is a k£ and an open in-

terval (v,7) C &. Then, for all v € (v,7), D; (V;tj

m (R, t) = 0, which implies a contradtiction as it violates assumption B.1 at g. Since & C R,

77) is constant. This only occurs if

we have that |&| < 2 and |Uk/€{1mk}5k/| < 00.
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Fix € > 0. Construct an open set U that covers Upecgi,. x)& and has Lebesgue measure

less than £. Consider the difference,

Py (B, 1),m" 1) = o35y (R 1) ,m)

= ’/ ey (VN q" k) — oy Win, ¢ k)| m" ¢ v] dv

IA

/E (o (e:n™ q" k) — ory (vin, ¢, k)| | m" ™, ¢, v] dv

SZ‘EE HSO(R,t) (V;nnaqnv k) — P(R,) (V;n7q7 k)” mn—17qn’ V] P(U g U)

IN

+supE [|ory in™ " k) = oy (vin, @ k)||m" ™", ¢",v] P (v € U)

A\

n n n— n €
SZ‘EEHSD(R,IE)(an »q 7k)_§0(R,t)(V;n7qvk)Hm 17q ,I/]—{—§
where the last inequality follows from the fact that P (v € U) < § and

SlelgE[let vin™ 4" k) — oy (vin, ¢ k)| m" " v] <1

We now show that there exists N such that for all n > N:

IP’(S;(;])EH@M vin®,q" k) — )(y;n,q,k)Hm .q", 1/] %)<5. (B.8)

This would complete the proof as it implies that

P (’Qb?%(k) ((R7 t) 7mn—1) - gb%o(k) ((R’ t) ’m)l > 5) <é&.

Let (. = inf, ¢y |C(R,t) (v;m,q, k)| Note that (. > 0, since !C(R,t) (v;m,q, k)’ > 0 for all
v € U and ((ry) (V51,q, k) is continuous with respect to v. By lemma B.4, there exists IV
such that for all n > N,

2
n n 8
P (825 [Cry im, 4, k) = Cray (vim™, " k)| > Cs) <3

Note that for all v € U, |¢ (v;n, q, k)| > (.. Therefore for all v € U,

lory (V50" 4" k) — ey (Vin, . k) | # 0= [C(vsn"™,q", k) = C(vin,q, k)| > ¢

since the antecedent requires (g (v; 0", ¢", k) > 0and {ry (v;n,¢, k) < =C or (ryy (vs0", ¢ k) <
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0 and (ry) (v;n,q, k) > (.. By set inclusion, for all n > N,
2
P (SEB [ ora (0", q" k) = o (i, ¢, k)| # 0) <3

Since sup, ¢y |90(R,t) (vsn™,q", k) — oy (Vin, q, k:)} € {0,1}, the above inequality implies
that for all n > NV,
2

5 > E|:S;[I?|90(R,t) (™, 4", k) — o) (V;n,q,k)}l

= E (E {sgg [y (vin™ d", k) = e (i, ¢, k)l‘ m" ! q”D

> E (SEBE [y ™, q" k) = o (vin, g, k)| m" ™, q”}) :
where the equality follows from the law of iterated expectations and the weak inequality is

well-known property of expectations of supremums. Markov inequality implies:
n n n— n 8
P(SEEE oy win™ q" k) — @erey (vin, g, k)||m" ™, ¢"] > 5) <e

which is exactly equation (B.8). O

C Identification

C.1 Equilibrium Behavior and Testable Restrictions

Our empirical methods are based on the assumption that agent behavior is described by
equilibrium play. This section discusses whether this assumption is testable in principle and

types of mechanisms for which it may be rejected.

Assumption C.1. The map o;(v;,t;) — AR, that generates the data is a symmetric limit
Bayesian Nash Equilibrium.

This assumption implies that students have consistent beliefs of the probability that they
are assigned to each school in S as a function of their report R € R. Further, condition
1 implies that ¢>((R,t), m) is identified and can be consistently estimated with knowledge
of the mechanism and a large sample from the measure m. Therefore, a student’s choice
set can be treated as known to the econometrician. This reformulation therefore transforms
the problem of an student playing against a distribution of other students to a single agent

problem choosing from a known set of options.
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A student with utility vector v maximizes expected utility by picking lottery Lg if and
only ifv-Lgr > v+ Lg for all Ly € L. The set of students that choose lottery Lg therefore

have utilities that belong to the normal cone to £ at Lg:
Cr = {UERJ:VLR/ Eﬁ,v'(LR—LR/) ZO}

This observation immediately yields the result that agents maximize their utility by picking

lotteries that are extremal in the set of lotteries.

Proposition C.1. Let the distribution of indirect utilities admait a density. If Lg is not an
extreme point of the convex hull of L, the set of utilities v such that v - Lr > v - Lg for all

Lr € L has measure zero.

Proof. If Ly is not an extreme point of the convex hull of £, then Cg has Lebesgue-measure
zero. Since v admits a density, [ 1{v € Cr}dFy = 0. O

The result leverages the fact that ties in expected utility for any two lotteries are non-
generic, agents whose behavior is consistent with limit-BNE play (typically) pick extremal
lotteries. Proposition C.1 also indicates that the fraction of students with behavior that is
not consistent with equilibrium play can be identified. This suggests that assumption C.1
is testable. However, we have not yet exploited the structure of assignment probabilities
that result from typical assignment mechanisms in discussing testability. We now present a
general sufficient condition under which observed behavior can be rationalized as equilibrium
play.

Consider a ranking mechanism in which reports correspond to rank-orders over the
available options. Therefore, a report is a function R : {1,..., K} — S such that (i) for all
kk'e{l,....,K}, R(k) = R(K)#0=k=1F and (ii) R(k) =0 = R(K')=0if k' > k.
Let R be the space of such functions.

Definition C.1. The ranking mechanism ¢* is rank-monotonic for type t at m, if for

al R,R € R and k < K we have that (R(1),...,R(k—1)) = (R'(1),...,R'(k—1)) implies

¢ORo(k) ((R7 t), m) = ¢ORO(k)((R,7 t)v m)

Further, ¢ is strictly rank-monotonic for priority-type t at m if the inequality above
is strict if and only if R(k) # R'(k), and ¢, ((R,t),m) >0

Rank-monotonicity is a natural condition that should be satisfied by many single-unit
assignment mechanisms. Specifically, it requires that the assignment probability at the k-

th ranked school does not depend on schools ranked below it, and that ranking a school
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higher weakly increases a student’s chances of getting assigned to it. Under strict rank-
monotonicity, ranking a school higher strictly increases the assignment probability unless
this probability is zero.

We now show that in all strictly rank-monotonic ranking mechanisms, all agents that
pick a report that gives them a positive probability of assignment at each of their options

are behaving in a manner consistent with a limit equilibrium.?

Theorem C.1. Assume that the ranking mechanism ¢ is strictly rank-monotonic at m for
priority type t. The report R € R corresponds to an extremal lottery Ly € {¢*((R,t),m) :
R e R} if ¢ (R 1) ,m) >0 for all k such that 3\ ¢ (R, 1) ,m) < 1.

Proof. Consider a report R € R such that for any k = 1,2,.., K, >, _, i) (R,t),m) <1
and ¢, ((R,t),m) > 0.

Take any vector of coefficients A\ such that:

Ap > 0for everyRGR

ZAR = 1
o< ((Rt).m) = 3 apo™ ((Rt) ,m).

ReR

We will show that A = 1. The proof follows by induction. Consider some report R
where R(1) # R(1). Strict rank-monotonicity and our assumption on R imply A 7=0. We
have shown that for k = 1, R(K') # R(K') for any k' <k == Xz = 0. Suppose that this
statement is tl“Ele for all | < k —1 and that }7,_, ¢%, ((R,t),m) < 1. Take any report R
where R(l) # R(l) for some [ < k. If [ < k, Az = 0 by the inductive hypothesis. If | = £,
Strict rank-monotonicity and our assumption on R imply Az = 0. By induction, R(l) # R(1)
and 37, 6% (R.1),m) <1 = Ap=0.

Suppose that thereis a j € S and R € R such that ¢ ((R,t),m) # ¢5° ((R, t) ,m); we
will show that Az = 0. Let k be the minimum k such that R(k) # R(k). Rank-monotonicity
and the fact that either ¢2° ((R,t),m) > 0 or ¢° ((R, t) ,m) > 0 imply that

Z(ﬁ%‘o(” ((é’t> ’m> = Z‘ﬁ%z) (R,t),m) < 1.

<k <k

Thus, our previous results imply that Az = 0.

2Strict-rank monotonicity does not rule out that two different reports result in the same lottery, e.g.,
Ry = (A,B,C) and Ry = (A, B, D) both result in ¢ =1 — ¢%¥, and ¢F = ¢% = 0.
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]

The result implies that every report with non-zero assignment probabilities is rational-
izable as an optimal report for a priority type if the mechanism is strictly rank-monotonic.
Intuitively, this is the case because upgrading any school in the reported rank-order list
strictly increases the probability of assignment and there exists a utility vector for which
such a report is optimal.

Although the model has testable predictions, we do not develop a statistical test for the
null hypothesis that play is consistent with optimal behavior. The technical challenge arises
from testing a parameter describing the fraction of agents with non-rationalizable reports on
the boundary. The statistical test would have to account for uncertainty in estimating the

lotteries. We leave this for future research.

C.2 Characterization of Partially Identified Set

Consider the collection of markets

T(£7 Z) = {Flb = (&77 Ziby Liby M, ¢lc;o) : (gba Zib) = (57 Z)}

The dependence of the distribution of reports m and the mechanism ¢ on the market index
b indicates that we allow variation to be useful in the present exercise. We will consider
results that fix (£, z) and therefore drop this from the notation. As a reminder, conditioning
on z is without loss since it is observed, but this implies that the researcher assumes that
the variation considered holds school unobservables ¢ fixed.

The next result characterizes what can be learned about Fy (v) from observing data from
several large markets in 7. Let Ny (L) = {v € R/ :v- (L — L) > 0forall L’ € Lr} be
the normal cone to L € Lr corresponding to the set Lr. (We switch notation from using
Ck for lottery Lg for clarity since this section uses different sets Lr, which are not explicitly
referred to in the relatively compact notation, Cg.) Further, let N = {int(Nz. (L)) }re7 recr
be the collection of (the interiors of ) normal cones to lotteries faced by agents in the markets
T . For a collection of sets NV, let D(N) be the smallest collection of subsets of R/ such that

1. R € DIN) and N’ C D(N)
2. For all N € D(N), N¢ € D(N)
3. For all countable sequences of sets Ny, € D(N) such that Ny, "Ny, =0, J, Nk € D(N)

The collection D(N) is sometimes called the minimal Dynkin system containing A .
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Theorem C.2. Given P(L € Lp|I") for each T" € T and L € Ly, the quantity
hp = / 1{"0 € D}dFv(U)

is identified for each D € D(N).

Proof. The identified set of conditional distributions Fy (v) is given by
y[ = {FV €% :VL e Lrand I € T, P(L € ﬁp‘r) = /1{’(} € N£F<L)}dFv(U)} .
Note that for any two distributions Fy and FV in .%, the collection of sets

L(Fy, Fy) = {A eF: /l{v e AYdFy(v) = /1{v € A}dﬁv(v)}

is a Dynkin system for the Borel o-algebra F. Since D(N) is the minimal Dynkin system
where all elements of .%; agree, D(N) C Z(Fy, Fy) for any two elements Fy, and Fy,. Hence,
for all D € D(N), we have that

hp = / H{v e D}dFy(v) = /1{1} € D}dFy(v)

is therefore identified. O

The result follows from basic measure theory and characterizes the features of Fy (v) that
are identified under such variation in choice environments without any further restrictions. In
particular, with the free normalization ||v;|| = 1, the result implies that the mass accumulated
on the projection of the sets in D(A) on the J — 1 dimensional sphere, S”, is identified.
Typically, this implies only partial identification of Fy (v), but extensive variation in the

lotteries could result in point identification.?

C.3 Non-Simplicial Cones

In this section, we consider the case when the cone C’g is not spanned by linearly independent

vectors. We need that there exists a report for which the normal cone satisfies the following

property:

Definition C.2. A cone C is salient ifve C = —v & C for all v # 0.

3Specifically, the m — A theorem implies that Fy (v) is identified if and only if the Dynkin-system D(N)
contains a 7-system that generates the Borel o-algebra.
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Our results require that the tails of the distribution of utilities are light. Formally, assume

that for some ¢ > 0, the density of u belongs to the set
G. = {g e L'(RY) : elg(u) € LYR”)},

where L! is the space of Lebesgue integrable functions.

Theorem C.3. Assume that g € G. and there is a lottery Lr such that Cr is a salient
convex cone with a non-empty interior. If ( = R’ then the distribution of utilities Fy (v|z')
18 identified from

hey (2') = P(Lg € L]2").

The key insight is that Fourier transform of an exponential density restricted to any
salient cone is non-zero on any open set. We first show a preliminary which specializes
results in De Carli (1992, 2012).

Lemma C.1. Let f.r (z) = xr (z)e 2™ for some polygonal, full-dimensional, salient,
convex cone T and e € int(T°), and let for (€) be its Fourier Transform. f.p is an entire

function. Further, there is no non-empty open subset of R? where j;p s zero.

Proof. Let {I';...'g} be a simplicial triangulation of I". Let V, be a matrix [vg1, gy, -, Ugn)
with the linear independent vectors that span cone I'y arranged as column vectors. z €
Iy < 2=V, forsome 0 <o € R <= V, 'z > 0. Normalize V, so that |det V| = 1.

Let f.r (z) = xr (z) e"?&*) This is an integrable function (if ¢ is in the dual of the cone
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I'). Consider its Fourier transform:
fur(© = [ ew(-2mitg —ie) da
r
_ z@:/r exp (—2mi (€ — i, ) dar
- %/}RJ X[a:v; tw0] XD (=2mi (£ —ie, x))dx
- %:/Ri exp (—2mi (£ —ie, Vya)) da
= xp (—2mi (V)€ —iV]e,a)) d
Z/RJe p( 7rz< WSt q€a>) a
= Z H / exp (—2mi (v),;€ — ivje) a) da

¢=1..Q j=1..J

= / eXp 27r (v 6)+27TZ( qu)Dda
q= 1@] 1. /R

- X I g ima

where the last equality follows from the fact that —a2m(v;;e) < 0. Note that the closed-form
expression implies that f.r (§) is an entire function for every ¢ € I'°/ {0}. Therefore, if it is
zero in an open subset of R” is zero everywhere.

We now show that j;p (€) is non-zero on a non-empty open set. Let K be a full-
dimensional simplicial convex cone such that I' C K. K exists because I' is salient. Let
Vk be the corresponding matrix for K. k., = Vi'vg; > 0 for all ¢ € {1,...,Q} and
je{l,...,J}. Consider £ = (Vgl)/a,

e (0 0) = (%) I z(v;jzs)]

Q@ j=1,..

¢=1,..,Q j=1,...,.J [“ O‘) + (vqjg)ﬁ

Each term in the summation has a positive denominator and a numerator that is a
polynomial function of o with positive coefficients. It follows that it is not zero everywhere,

and therefore there is no open subset of R’ where f;’[‘ is zero. O

We are now ready to prove the main result.
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Proof. For a fixed lottery Ly such that Cg is salient, define the linear operator A:

Ag(z) = /c g (v + 2)dv.

We need to show that if A(¢" — ¢"”) = 0 a.e. Then, g = (¢’ — ¢”) = 0 a.e. The proof is by
contradiction.

Since the cone Cp is salient, its dual T has a nonempty interior. Let e € int(Tg), with
|e| sufficiently small so that g.(u) = g(u)e?=® € L', Note that 1{u € Crle 27" ¢ L! for
every ¢ € int(Tg) because (g,u) > 0.

Since A(g' — ¢”) = 0 a.e., and ¢ = R/, we have that for almost all 2 € R’,

Ag(z) = e & / 1{v € Cp}e e 2mEvt2) g (4 4 2)dv = 0.

Since e 2™=2) > 0, Ag = 0 for almost all z <= f.¢.(€) - §.(€) = 0, where f. ¢, is the
Fourier Transform of f. o, (z) = 1{x € Cr}e 2™&*) and g, is the conjugate of the Fourier
Transform of g. (x), both continuous functions in IL'. Since g. is continuous, the set where
g- # 0 is open. Further, since g # 0, the support of g. is non-empty. It follows that there is
an open Z, where g, is different from zero, and therefore, fs,CR (&) =0 for all £ € Z,.. This
contradicts the fact that j;CR is an entire function, as shown in lemma C.1 below.

Finally, since g(u) is known for almost all u, we have that Fy(v|z!) = ffle g(u)du is

[e.e]

identified. O

D Estimation Appendix

D.1 Consistency of Two-Step Estimation

Theorem D.1 (Consistency). Suppose there exists a function Qo such that (i) 6 and ¢
are elements of a compact set (ii) ||(R,t) — ¢ ((R,t),m)|oe = 0 (iii) supg 4 |Qn (0, ®) —
Qo(0,0)| 2 0 (iv) Qo(6,¢) is jointly continuous in 6 and ¢ (v) Qo(0, do) is uniquely mini-
mized at 6y, then N 0.

Proof. Hypotheses (i) - (iv) and the continuous mapping theorem imply that supgeg |@n (6, c;AS)—
Qo(0, ¢o)| 2 0. The conclusion follows by (i), (v), and Newey and McFadden (1994), theorem
2.1. O
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D.2 Gibbs’ Sampler: Implementation Details

We specify a multivariate probit model following McCulloch and Rossi (1994) (section 4.3).
The utility of student ¢ for school j is given by

K
Vij = Z 5jkxijk — dij + Eij (Dg)

k=1

and the utility of the outside option is normalized to zero: vy = 0. d;; is the road distance
between student ¢’s home and school j; x;;, student-school specific covariates; d; are school
specific parameters to be estimated. The normalization of v;y = 0 is without loss of generality,
and the scale normalization is embedded in the assumption that the coefficient on d;; is —1.

The vector of error terms is distributed multivariate normal:
g = (81'1, R ,&TU) ~ N(O,E)

While utilities are unobserved, they are related to the observed action of student ¢ through

the requirement that the utility vector lies in the cone associated with the chosen report:
Y = R — v, € CR.

Let X; be a J x (K x J) block-diagonal matrix that is constructed placing the K-row
vector covariates x;; = [xijk]szl in each of the J blocks; 0 = vec ({0,1}), a K J-column vector;
and D; a J x J diagonal matrix with d;; in the j-th position. The system in equation (D.9)
can be compactly written as:

v = X;0 — D; +¢

The unobserved utilities v; are treated as unknown parameters along with § and ». We

specify independent prior distributions for ¢ and X:

p(6,%) = p(d)p(¥),
§ ~ N@,A™,
S o~ IW (v, Vo),

where IW is the inverse Wishart distribution.

The Gibbs sampler proceeds as follows:

0. Start with initial values £° and v° = {v9}" | so that v0 € Cg, for all i = 1...N.
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1. Draw 6'v°, 0 from a N <5, V),

Vo= (XYX 4+ A=V (X0 + A9)

X7
X* =

X3
X7 = O'X;,vf =C"
= C'C

2. Draw X![0% 6t from a IW (vy + N, Vy + 5)

n

/

S = E Ei€i
=1

g, = U?—Xi51

3. Draw v!|6%, X1 y iterating over students and schools. Take student i and the cone

associated with the report y;:
Cyi:{UGR‘JiFiUZO}

where Ty = (L), — Ly, ..., L, — LR\,R\)/A For each school j = 1...J, draw

- ;
Vil {vi oy AV Sy 05 2

from a truncated normal TN (p;;, o, aij, bi;), where

K
pii = Y onaik — di

k=1
2 1 1 1 11
Oij = X~ Lj—j) [E(—j)(—j)} X j

and the truncation points a;; and b;; guarantee the draw vilj is such that

1-1 1 0/ '
v = [{U@k k=1 Vij» {Uik}k:j-&-l}

4For the specification that assumes truthful reporting, I';, is a matrix that encodes the inequalities implied
by the rank order list R; = (R;(1),...,R;(K)). Hence, T';u; > 0 if and only if v;r, 1) > vir,2) > ... >
ViR, (K)» Vio < Vir, (k) and vi; < vig(r) if § € R;.
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lies in the interior of C,,. To calculate these truncation points, define A7 as matrix T';

) ) . /
with its jth row removed, B/ as its jth row and v/ = [{v}k}izll , {U?k},f:jﬂ] .

—Adpi

a;; = max ;
je{i:B]>0} B

—Adpi

bi; = min L

je{j:Bl<0} Bf

4. Set % = ¥ and v° = v!, store, and repeat the steps 1-3 to obtain (6%, X% v*) given
(6%t ¥t vkE=1) and the priors.

D.3 Gibbs’ Sampler for the Naive-Sophisticate Mixture Model

We extend the Gibbs’ sampler described earlier to allow for two types of agents. The model
assumes that naiie agents report truthfully while sophisticates pick the report that maximizes
their expected utility. For a rank-order list R = (R(1), R(2), ..., R(K)) of length K, let Cx
be the region in utility space such that v; € C‘R = V(1) > ViRr(2) > --- > Vir(k) > vj; for
all j € R;, and v;g(x) > vio. Note that C’R is a convex cone in R’. Let 7; be an indicator for
whether a student is naive. Therefore, the model specifies the observed report of the agent

given v; and m; as follows:

yi:R,ﬂ'i:O — UZ'ECR
yi:R,ﬂ'i:1 — UieéR.
Our Gibb’s sampler uses data augmentation on 7; in addition to v;. Let @ be the fraction
of nave agents in the economy. We let 7 be a vector to allow for free-lunch and paid-

lunch students to have differing proportions of naive and sophisticated agents. We specify

independent prior distributions for ¢, 7 and X:

p(0,X) = p(&)p(m)p(X),

§ ~ N(5,AY,
T~ Beta(ao, o)
~ IW(”Oa%)a

where IW is the inverse Wishart distribution and [ € {Paid Lunch, Free Lunch}. The Gibbs’
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sampler proceeds as follows:

0. Start with initial values X0, 70 = {79} and v° = {09}Y, so that 00 € Cp, for all

1=1...N.
1-2. Update (%, 6) according to steps 1-2 in Appendix D.2.

3. Update 7!|7%. For [ € {Paid Lunch, Free Lunch}, draw 7; from

Beta (ao—Fl/\fz\ —ZWE>50+Z7T?> )

ieN ieN
where N is the set of students in paid/free-lunch group I.

4. Draw v!|§!, X 71y iterating over students and schools. For the observed report y; for

student ¢, consider the cones

C’yi = {1} e R’: Uy(1) = Uyy(2) = -+ - > Uyy(K) > Vij for all j € {0, RN J}\Ri}
c, = {UERJ:FZ@ZO},

Yi

where I'; = (L, — Lg,,..., L}, — LRTRl)/' Let 7} = 7, for [ equal to the paid lunch

status of 7. For each school j = 1...J, draw
1 11 07 syl =l
0351 {Uik}k:1 ) {Uik}k:jﬂ 00, 20, T

from a mixture of two truncated normals T'N (uij, o, dij, BU> and TN (i, 07, aij, bij)
with weights 7} and (1 — 7). iy, 02-2]-, a;; and b;; are defined as in step 3 in Appendix
D.2. The truncation points <&i]~, %) guarantee that draws from T'N (uij, 07, g, l;w>

lay in the interior of Oyr

5. Update 7!|v!, #!. For each student i, draw 7} from a binomial distribution with pa-
rameter 7} if v} € Cgr, N Cr,. If v} € Cr\Chr,, set 7} = 0. If v} € Cg,\Ch,, set

K3
7 =1
6. Repeat steps 1-5 to obtain (6%, 2% v 7F 7%) given (§F~1, Sk-1 oF=1 gh=1 zh-1),

i )

We parametrize v; as in Appendix D.2 and assume identical distributions for naives are

sophisticates.
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D.4 Priors

We use very diffuse priors to minimize their influence on our estimates and as a reflection
of our prior uncertainty about the values of the parameters of the model. We set the prior
distribution of § ~ N (5, A1)

A™h = 100 x 1
and the prior of ¥ ~ IW (v, V)

vy = 100
Vo = 1.

1'=200 x I,y = 50) without noticeable changes

We experimented with more diffuse priors (A~
in our main results.

For the mixture model, we set the prior of 7, = Beta (v, o), with ag = o = 1 for | €
{Paid Lunch, Free Lunch}.

D.5 Convergence Diagnosis

The Gibbs’ sampler produces a markov chain with the posterior distribution of the param-
eters as its invariant distribution. Since the chain is ergodic, it ultimately converges to this
distribution irrespective of the starting point. However, it is essential to burn-in a large set
of initial draws since they are influenced by the starting point, and to check that the chains
have converged. To ensure mixing, we simulate three chains of length 400,000, burn-in the
first half. We monitor convergence by examining the trace plots of the various co-efficients
and use Geweke’s means test across and within the chains to ensure mixing. Finally, we use
the Raftery-Lewis Diagnosis Test to check that the chain has been simulated for long enough
to ensure that the 2.5th percentile of the vast majority of parameters are estimated within
a tolerance of 0.005 with 95% probability.
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