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A Convergence of Equilibrium Probabilities

Since we will be considering the properties of a sequence of equilibrium strategies, it is

useful to define equilibrium strategies for the limit case, φ∞, when each agent is playing

against a continuum. We say that σ∗ is a Limit Equilibrium if σ∗R(v, t) > 0 implies that

v · φ∞((R, t),mσ∗) ≥ v · φ∞((R′, t),mσ∗) for all R′ ∈ R. Our next will show that Condition

1 allows for several useful conclusions.

Corollary A.1. Assume that φn satisfies Condition 1 at mσ∗ for some strategy σ∗.

1. If σ∗,n is a sequence BNE such that ‖σ∗,n − σ∗‖F → 0, the strategy σ∗ is a limit

equilibrium.

2. If σ∗ is a limit equilibrium, then for each ε > 0, and large enough n, σ∗R(v, t) > 0

implies that for all R′ ∈ R,

|v · (Eσ∗ [φn((R, t),mn−1)− φn((R′, t),mn−1)]| ≤ ε‖v‖.

The result shows that a convergent sequence of Bayesian Nash Equilibria converge to

a limit equilibrium, and that all limit equilibria are approximate BNE for large enough n.

The result is similar in spirit to Kalai (2004), which shows that equilibria in limit games are

approximate BNE in large games.

Proof. Part 1:

We will show that σ∗R(v, t) > 0 for all v ∈ int(suppFV,T ) only if v · (φ∞((R, t),mσ∗) −
φ∞((R′, t),mσ∗) ≥ 0 for all R′ ∈ R. We treat two strategies as equivalent if they only differ

outside the support of FV,T .
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Fix (v, t) ∈ int(suppFV,T ). Towards a contradiction, suppose that σ∗R(v, t) > 0, and

v · (φ∞((R, t),mσ∗) − φ∞((R′, t),mσ∗)) < −2ε for some R′ ∈ R and ε > 0. Since (v, t) ∈
int(suppFV,T ), there exists a δ > 0, such that for all v′ with ‖v − v′‖ < δ, we have v′ ∈
int(suppFV,T ), and v′ · (φ∞((R, t),mσ∗)− φ∞((R′, t),mσ∗)) < −ε. Let mn−1 be an empirical

measure of n − 1 samples from mσ∗,n . Since |φn((R, t),mn−1) − φ∞((R′, t),mn−1)| p→ 0 (by

Theorem 1), and φn is bounded, there exists an N , such that for all n > N and all R′ ∈ R,

∣∣Eσ∗,n [φn((R′, t),mn−1)]− φ∞((R′, t),mσ∗)
∣∣ ≤ ε

2(‖v‖+ δ)
.

Hence, for all v′ in the δ neighborhood of v, we have that

v′ · (Eσ∗,n [φn((R, t),mn−1)]− Eσ∗,n [φn((R′, t),mn−1)])

≤ v′ · (φ∞((R, t),mσ∗)]− φn((R′, t),mσ∗)) + ε

< 0.

Since σ∗,n is a Bayesian Nash Equilibrium strategy, it must be that for all n > N , σ∗,nR (v′, t) =

0. Therefore, ‖σ∗,n − σ∗‖F → 0 implies that σ∗(v′, t) = 0 for all v′ in the δ neighborhood

of v. This conclusion contradicts the hypothesis that σ∗R(v, t) > 0 for any R such that

v · (φ∞((R, t),mσ∗)− φ∞((R′, t),mσ∗)) < 0. Hence, σ∗ is a limit equilibrium.

Part 2:

For a strategy σ∗, a particular realization of the reports of the other agents is given by

the empirical measure mn−1 from n − 1 iid draws from mσ∗ where mσ∗(R, t) = fT (t) ×∫
σ∗(v, t;R)dFV |T . Condition 1 implies that φn((Ri, ti),m

n−1)
p→ φ∞((Ri, ti),mσ∗). Fix

ε > 0 and pick n0 such that for all n > n0,

P

(
sup
R,t
‖φn((R, t),mn−1)− φ∞((R, t),m)‖∞ >

ε

8|S|

)
<

ε

8|S|
.

Since ‖φn((R, t),mn−1)− φ∞((R, t),m)‖∞ is bounded by 1, we have that

E
[
‖φn((R, t),mn−1)− φ∞((R, t),m)‖∞

]
<

ε

4|S|
.

Note that the choice of n0 did not depend on vi.

Now, we show that no agent of type ti and utility vi can expect a gain of more than
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ε‖vi‖∞ by deviating from σ∗. For n > n0 and each (Ri, ti),

|V n
i (Ri,mσ)− V ∞i (Ri,mσ)| ≤ E

∣∣∣∣∣∑
j

φnj ((Ri, ti), m̂)vij −
∑
j

φ∞j ((Ri, ti),m)vij

∣∣∣∣∣
≤ 2|S|‖vi‖∞ E [‖φn((Ri, ti), m̂)− φ∞((Ri, ti),m)‖∞]

≤ ε

2
‖vi‖∞

Since σ∗ is a limit equilibrium, σ∗(vi, ti;Ri) > 0 implies that for all R′i,

V ∞i (Ri,m
∗
σ) ≥ V ∞i (R′i,m

∗
σ)

⇒ V n
i (Ri,m

∗
σ) ≥ V n

i (R′i,m
∗
σ)− ε‖vi‖∞

for all n > n0.

B Rank Specific Priority + Cutoff Mechanisms

B.1 Existence and (Generic) Uniqueness of Cutoffs

We introduce two definitions before discussing existence and uniqueness. The first definition

is a notion of substitutes in a neighborhood around the market clearing price. This borrows

from the notion of connected substitutes introduced in Berry et al. (2013) and Berry and

Haile (2010) to show conditions when demand is invertible.

Definition B.1. The aggregate demand function satisfies local connected substitutes at

p∗ ∈ [0, 1]J if there exists an ε > 0, such that for all p ∈ [0, 1]J with ‖p − p∗‖ < ε, we have

that

1. for all j ∈ {0, 1, . . . , J} and k 6∈ {1, . . . , J}\{j}, Dj(p) is nondecreasing in pk

2. for all non-empty subsets K ⊂ {1, . . . , J}, there exist k ∈ K and l 6∈ K such that Dl(p)

is strictly increasing in pk

Definition B.2 (Azevedo and Leshno (2013)). The demand function D(p|η) is regular if

the image D(P̄ |η), where

P̄ = {p ∈ [0, 1]J : D(·|η) is not continuously differentiable at p}

has Lebesgue measure 0.
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We now observe that Assumption 1 is satisfied (generically satisfied) if the demand func-

tion satisfies connected substitutes (is regular).

Proposition B.1. Every economy (η, q) admits at least one market clearing cutoff.

Further, for a fixed η, let Q be the set of capacities such that (η, q) has multiple market

clearing cutoffs. Then,

1. Q ∩ {q :
∑J

j=1 qj < η(R× [0, 1]J × T )} has Lebesgue measure zero if η is regular

2. Q is empty if D(p|η) satisfies local connected substitutes for any market clearing cutoff

p∗. In particular, Q is empty if D(p|η) satisfies local connected substitutes at every

cutoff p.

Proof. Existence of cutoffs follows from Corollary A1 and Lemma 1 of Azevedo and Leshno

(2013). Statement 1 is a consequence of Azevedo and Leshno (2013), Theorem 1(2) and

Lemma 1. Statement 2 is a strengthening of Azevedo and Leshno (2013), Theorem 1(1).

By the Lattice Theorem (Azevedo and Leshno, 2013), there exist minimum and maximum

market clearing cutoffs p− ≤ p+. Note that the measure of students matched with program j

at cutoff p is given by Dj(p|η), and the measure of students unmatched is given by D0(p|η).

Hence, by the Rural Hospitals theorem (Azevedo and Leshno, 2013), for all C ⊆ S,∑
j∈C

Dj(p
+|η) =

∑
j∈C

Dj(p
−|η). (1)

Let p∗ be a market clearing cutoff such that D(p|η) satisfies local connected substitutes at

p∗. Let C+ = {j ∈ S : p∗j < p+
j } and C− = {j ∈ S : p∗j > p−j }. We will show that C+ = ∅

i.e. p+ = p∗. The proof to show that C− = ∅ is symmetric and together, these claims imply

that p+ = p− = p∗.

Towards a contradiction, assume that C+ 6= ∅. Since D(p|η) satisfies local connected

substitutes at p∗ (Definition B.1), there exist ε ∈ (0, 1), k ∈ C+, and l 6∈ C+ such that

Dl(p
∗|η) < Dl(p

ε|η),

where pεk = εp+
k + (1− ε)p∗k and pεj = p∗j if j 6= k. Hence, we have that∑

j∈S\C+

Dj(p
∗|η) <

∑
j∈S\C+

Dj(p
ε|η) ≤

∑
j∈S\C+

Dj(p
+|η),

where the implication on the summation and the second inequality are implied by the defi-

nition of aggregate demand. Since this inequality contradicts equation (1), it must be that

C+ = ∅.
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Remark B.1. The condition that D(p|η) satisfies local connected substitutes for all p ∈ [0, 1]

is testable. Note that connected substitutes is implied by strict gross substitutes.

B.2 Proof of Theorem 2

We begin by showing a few preliminaries.

The first result shows that for any (R, e), and iid draws of the reports and priority types

of the other n− 1 agents from η, the associated market clearing cutoffs pn(R, e) converge to

the limit market clearing cutoff p for (η, q).

Lemma B.1. Suppose (η, q) satisfies Assumptions 1 and 1. If pn(R, e) is a sequence of

market clearing cutoffs for the market (ηn, qn) where

ηn =
n− 1

n
ηn−1 +

1

n
δ(R,e)

and ηn−1 are a sequence of empirical measures that converges in probability to η and qn → q,

then

sup
(R,e)

‖pn(R, e)− p∗‖∞
p→ 0.

Proof. The result is similar in spirit to Azevedo and Leshno (2013), Theorem 2. It differs

from their results in that we are considering a random sequence of economies.

Define the class B = {{(ei, Ri) : eij ≥ pj, Ri = R} : pj, j, R}. Note that B is a VC class

since it is collection of half-spaces, which are VC classes. Hence, the class of sets

V =

{
vpj = {(ei, Ri) : eij ≥ pj, jRi0}

⋂
j′ 6=j

({(ei, Ri) : jRij
′} ∪ {(ei, Ri) : eij′ < pj′}) : p, j

}

is a VC-class since it is a subset of finite unions and intersections of sets in B and their

complements. Hence, for any (R, e) and j,

sup
p
|Dj(p|η)−Dj (p |ηn )| = sup

p
|ηn(vpj)− η(vpj)|

≤ sup
V ∈V

∣∣∣∣n− 1

n
ηn−1(V ) +

1

n
1{(R, e) ∈ V } − η(V )

∣∣∣∣
≤ sup

V ∈V

∣∣∣∣n− 1

n
ηn−1(V )− η(V )

∣∣∣∣+
1

n
p→ 0.

Hence, D(p|ηn) − qn p→ D(p|η) − q uniformly in p and (R, e). Similarly, we also have that

D(p|ηn−1)− qn p→ D(p|η)− q uniformly in p.
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Let the unique market clearing cutoff for (η, q) be p∗. Define for each (R, e)

Qn(p;R, e) =

∥∥∥∥∥
[

max {z (p |ηn, qn ) , 0}
p� z (p |ηn, qn )

]∥∥∥∥∥ ,
where � represents element-wise multiplication. Note that pn(R, e) is a market clearing

cutoff iff Qn(p;R, e) = 0. Let Q0 be the limiting objective function,

Q0(p) =

∥∥∥∥∥
[

max {z(p|η, q), 0}
p� z(p|η, q)

]∥∥∥∥∥ ,
and note that it does not depend on (R, e). By the continuous mapping theorem, supp,R,e |Qn(p;R, e)−
Q0(p)| p→ 0. Also, Q0(p) is continuous since Assumption 1 implies that D(p|η) is contin-

uous. Assumption 1 implies that Q0(p) is uniquely minimized at p∗. For ε > 0, let δε =

infp:‖p−p∗‖>εQ0(p). Since Q0 is continuous, p is an element of a compact space and Q0(p) = 0

only at p∗, δε > 0. Pick N such that for all n > N , P(supp,R,e |Q0(p)−Qn(p;R, e)| > δε) < ε.

For any market clearing cutoff pn(R, e), Qn(pn(R, e);R, e) = 0. Note that

|Q0(pn(R, e))−Q0(p∗)|

≤ |Q0(pn(R, e))−Qn(pn(R, e);R, e)|+ |Qn(pn(R, e);R, e)−Q0(p∗)|

≤ sup
p,R,e
|Q0(p)−Qn(p;R, e)|+ 0. (2)

Hence, we have that for all n > N ,

P
(

sup
R,e
|pn(R, e)− p∗| > ε

)
≤ P

(
sup
R,e
|Q0(pn(R, e))−Q0(p∗)| > δε

)
≤ P

(
sup
p,R,e
|Q0(p)−Qn(p;R, e)| > δε

)
< ε

where the first inequality follows from set inclusion, the second from equation (2), and the

third by our choice of N .

Theorem 2 is a corollary to showing Condition 1 for the following simpler class of mech-

anisms.

Definition B.3. A mechanism φn is a lottery + cutoff mechanism if there is a measure

γν|t ∈ ∆[0, 1]J for each t such that

(i) φn((Ri, ti),m(R−i, t−i)) =
∫
. . .
∫
D(Ri,νi)(pn) dγν1|t1 . . . dγνn|tn
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(ii) pn are market clearing cutoffs for capacity qn and each profile of reports and lotteries

((R1, ν1), . . . , (Rn, νn))

Lemma B.2. Suppose (η, q) satisfies Assumptions 1 and 1 where

η({R, ν < p}) =
∑
t

m(R, t)γν|t({ν < p}).

If φn is a lottery + cutoff mechanism, then φn satisfies Condition 1.

Proof. It is enough to show that φnj ((R, t),mn−1)
p→ φ∞j ((R, t),m)) for a fixed report R,

priority type t and j since there are finitely many elements in R × T × S. Since φn is a

lottery + cutoff mechanism,

φnj ((R, t),mn−1) =

∫
E
[
D

(R,ν)
j (pn(R, ν))|R, ν,mn−1

]
dγν|t

where the expectation is taken with respect to the lottery draws of the other n − 1 agents

conditional on t.

Let the unique market clearing cutoff at (ν, q) be p∗. Fix ε > 0. Let U =

{
ν : minj |νj − p∗j | ≤

ε

4κ|S|

}
and note that Assumption 1 implies that γν|t(U) ≤ ε

2
. Note that for any j

|φnj ((R, t),mn−1)− φ∞j ((R, t),m)|

=

∣∣∣∣∫ E
[
D

(R,ν)
j (pn(R, ν))−D(R,ν)

j (p∗)
∣∣∣R, ν,mn−1

]
dγν|t

∣∣∣∣
≤

∫ ∣∣∣E [D(R,ν)
j (pn(R, ν))−D(R,ν)

j (p∗)
∣∣∣R, ν,mn−1

]∣∣∣ dγν|t
≤ sup

ν 6∈U

∣∣∣E [D(R,ν)
j (pn(R, ν))−D(R,ν)

j (p∗)
∣∣∣R, ν,mn−1

]∣∣∣ (1− γν|t(U))

+ sup
ν∈U

∣∣∣E [D(R,ν)
j (pn(R, ν))−D(R,ν)

j (p∗)
∣∣∣R, ν,mn−1

]∣∣∣ γν|t(U)

≤ sup
ν 6∈U

∣∣∣E [D(R,ν)
j (pn(R, ν))−D(R,ν)

j (p∗)
∣∣∣R, ν,mn−1

]∣∣∣ (1− γν|t(U)) +
ε

2

where the last inequality follows from the fact that∣∣∣E[D
(R,ν)
j (pn(R, ν))−D(R,ν)

j (p∗)|R, ν,mn−1]
∣∣∣ ≤ 1.
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We now show that there exists an N such that for all n > N ,

P
(

sup
ν 6∈U

∣∣∣E[D
(R,ν)
j (pn(R, ν))−D(R,ν)

j (p∗)|R, ν,mn−1]
∣∣∣ > ε

2

)
< ε.

This would complete the proof since it implies that for all n > N ,

P
(
|φnj ((R, t),mn−1)− φ∞j ((R, t),m)| > ε

)
< ε.

Pick an N such that for all n > N ,

P
(

sup
ν
‖pn(R, ν)− p∗‖∞ >

ε

4κ|S|

)
<
ε2

2
.

Such an N exists by Lemma B.1. Further, note that for any p, if ν 6∈ {ν : ∃j, pj ∨ p∗j < νj <

pj ∧ p∗j} then D(R,ν)(p) = D(R,ν)(p∗). Hence, if ‖pn(R, ν) − p∗‖∞ <
ε

4κ|S|
and ν 6∈ U , then

D
(R,ν)
j (pn(R, ν)) = D

(R,ν)
j (p∗). Therefore, for all n > N ,

P
(

sup
ν 6∈U

∣∣∣D(R,ν)
j (pn(R, ν))−D(R,ν)

j (p∗)
∣∣∣ 6= 0

)
<
ε2

2
.

Since
∣∣∣D(R,ν)

j (pn(R, ν))−D(R,ν)
j (p∗)

∣∣∣ ≤ 1, we have that for all n > N ,

ε2

2
> E

[
sup
ν 6∈U

∣∣∣D(R,ν)
j (pn(R, ν))−D(R,ν)

j (p∗)
∣∣∣∣∣∣R, ]

= E
[
E
[
sup
ν 6∈U

∣∣∣D(R,ν)
j (pn(R, ν))−D(R,ν)

j (p∗)
∣∣∣∣∣∣R,mn−1

]]
≥ E

[
sup
ν 6∈U

E
[∣∣∣D(R,ν)

j (pn(R, ν))−D(R,ν)
j (p∗)

∣∣∣∣∣∣R, ν,mn−1
]]

where the equality follows from the law of iterated expectations, and the weak inequal-

ity follows from a well-known property of expectations and supremums. Finally, Markov’s

inequality implies that

P
(

sup
ν 6∈U

E
[∣∣∣D(R,ν)

j (pn(R, ν))−D(R,ν)
j (p∗)

∣∣∣∣∣∣R, ν,mn−1
]
>
ε

2

)
< ε,

proving the desired result.

We now show that Theorem 2 is a Corollary to Lemma B.2 by observing that φn is a

lottery + cutoff mechanism. To see this, note that pn is a market clearing cutoff for the
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economy ((R1, f(R1, ν1)), . . . , (Rn, f(Rn, νn))) and that

φnj ((Ri, ti),m(R−i, t−i)) =

∫
. . .

∫
D(Ri,f(Ri,νi))(pn)dγν1|t1 . . . dγνn|tn

=

∫
. . .

∫
D(Ri,ei)(pn)dηfR1,e1|t1(R1, ·) . . . dηfRn,en|tn(Rn, ·)

B.3 Proof of Proposition 1

Deferred Acceptance:

Let νj be supremum of the priority scores of the rejected students. We claim that pn = e are

the cutoffs with the desired properties (if a school does not reject any students, set pj = 0).

Let νrj be the supremum the priority scores of students that were rejected in round r. Set

erj = 0 if no students are rejected. Observe that for each school, νrj ≤ νr+1
j . If the algorithm

terminates in round k, then νkj = νj. The algorithm terminates in finitely many rounds for

every n.

Assume that student i is assigned to school j′ and consider any school j with jRjj
′. Let

r be round in which student i was rejected by j. By definition, it must be that νij < νrj .

Therefore, νij < νj and we have that each student is assigned to D(Ri,νi)(pn).

Finally, the aggregate demand cannot exceed qj by construction of pn.

Boston Mechanism:

We show that the Boston Mechanism is report-specific priority + cutoff mechanisms for

fj(R, ν) =
νj −#{k : kRij}

J
+
J − 1

J

by constructing market cutoffs pn for each profile ((R1, ν1), . . . , (RN , νN)) such that (i) the

assignment of each agent is given by D(Ri,f(Ri,νi))(pn) and (ii) pn clears the market for the

economy ((R1, f(R1, ν1)), . . . , (RN , f(RN , νN))).

Note that if a school rejects a student in round k, then it rejects students in all further

rounds since it is full at the end of that round. Let kj denote that round for school j, and

let νj be supremum of the random priorities of the rejected students in round kj. We claim

that pnj = 1−
kj − νj
J

are the cutoffs with the desired properties (if a school does not reject

any students, set kj = J and pj = 0).

We first show that the assignment of each student in the Boston mechanism is given by

D(Ri,f(Ri,νi))(pn). Assume that student i is assigned to school j′ and consider any school j with

jRij
′. Since jRij

′, it must be that the student was rejected at j, and could not have applied

to j before round kj. If student applied to kj after round j, then νij−#{k : kRij} < νj−kj
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since |νij − νj| ≤ 1. If #{k : kRij} = kj, then νij < νj. In either case, fj(Ri, νi) < pj.

Therefore, the student is assigned to D(Ri,f(Ri,νi))(pn).

Next, we show that pn clears the market for economy ((R1, f(R1, ν1)), . . . , (RN , f(RN , νN))).

As noted earlier, each agent is assigned to D(Ri,f(Ri,νi))(pn). By construction of pn, the ag-

gregate demand must be less than qj, and pnj = 0 if aggregate demand is strictly less than

qj.

Serial Dictatorship:

The Serial Dictatorship Mechanism orders the students according to a single priority and

then assigns the top student to her top ranked choice. The k-th student is then assigned

to her top ranked choice that has remaining seats. It is straightforward to show that this

mechanism is equivalent to a Deferred Acceptance mechanism in which all students have

identical priorities at all schools. Hence, it is a report-specific priority + cutoff mechanism.

First Priority First:

The First Priority First mechanism assigns students to their top ranked choice if seats

are available, with tie-breaking according to priorities and lotteries. Rejected students are

then processed for the remaining seats according to the Deferred Acceptance mechanism.

Arguments identical to the ones above show that the First Priority First mechanism is a

report-specific priority + cutoff mechanism for

fj(R, ν) =
νj + 1{jRj′ ∀j′ 6= j}

2
.

Chinese Parallel (Chen and Kesten, 2013):

The chinese parallel mechanism operates in t rounds, each with tc-subchoices. In each round,

rejected students applies to the next tc highest choices that have not yet rejected her. Within

each round, the algorithm implements a deferred acceptance procedure in which applications

are held tentatively until no new proposals are made. Assignments are finalized after all

tc choices have been considered. It is straightforward to show that the Chinese Parallel

mechanism is a report-specific priority + cutoff mechanism for

fj(R, ν) =

νj −
⌊

#{k : kRij}
tc

⌋
⌊
J

tc

⌋ +

⌊
J − 1

tc

⌋
⌊
J

tc

⌋ .
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Pan London Admissions (Pennell et al., 2006):

The Pan London Admissions system uses the Student Proposing Deferred Acceptance Mech-

anism except that a subset of schools upgrade the priority of students that rank the school

highly. Suppose school j upgrades students that rank it first. For such schools, we set

fj(R, ν) =
νj + 1{jRj′ ∀j′ 6= j}

2
,

and fj(R, ν) = ν otherwise. With this modification, the Pan London Admissions scheme is

a report-specific priority + cutoff mechanism.

C Identification

C.1 Equilibrium Behavior and Testable Restrictions

Our empirical methods are based on the assumption that agent behavior is described by

equilibrium play. This section discusses whether this assumption is testable in principle and

types of mechanisms for which it may be rejected.

Assumption C.1. The map σi(vi, ti) → ∆Ri that generates the data is a symmetric limit

Bayesian Nash Equilibrium.

This assumption implies that students have consistent beliefs of the probability that they

are assigned to each school in Sb as a function of their report R ∈ R. Further, Condition

1 implies that φ∞b ((R, t),mb) is identified and can be consistently estimated with knowledge

of the mechanism and a large sample from the measure mb. Therefore, a student’s choice

set can be treated as known to the econometrician. This reformulation therefore transforms

the problem of an student playing against a distribution of other students to a single agent

problem choosing from a known set of options.

A student with utility vector v maximizes expected utility by picking lottery LR if and

only if LR · v ≥ L · v for all L ∈ L. The set of students that choose lottery LR therefore have

utilities that belong to the normal cone to L at LR:

NL (LR) =
{
v ∈ RJ : ∀L ∈ L, v · (LR − L) ≥ 0

}
.

This observation immediately yields the result that agents maximize their utility by picking

lotteries that are extremal in the set of lotteries.
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Proposition C.1. Let the distribution of indirect utilities admit a density. If L is not an

extreme point of the convex hull of L, the set of utilities v such that v · L ≥ v · L′ for all

L′ ∈ L has measure zero.

Proof. If L is not an extreme point of the convex hull of L, then NL(L) has Lebesgue-measure

zero. Since v admits a density,
∫

1{v ∈ NL(L)}dFV = 0.

The result leverages the fact that ties in expected utility for any two lotteries are non-

generic, agents whose behavior is consistent with limit-BNE play (typically) pick extremal

lotteries. Proposition C.1 also indicates that the fraction of students with behavior that is

not consistent with equilibrium play can be identified. This suggests that Assumption C.1 is

testable. This ability promises a chance to validate this strong restriction on agent behavior

as well as answer a question of independent interest. However, we have not yet exploited

the structure of assignment probabilities that result from typical assignment mechanisms in

discussing testability. We now present a general sufficient condition under which observed

behavior can be rationalized as equilibrium play.

Consider a ranking mechanism in which reports correspond to rank-orders over the

available options. Therefore, a report is a function R : {1, . . . , K} → S such that (i) for all

k, k′ ∈ {1, . . . , K}, R(k) = R(k′) 6= 0 ⇒ k = k′ and (ii) R(k) = 0 =⇒ R(k′) = 0 if k′ > k.

Let R be the space of such functions.

Definition C.1. The ranking mechanism φ∞ is rank-monotonic for type t at m, if for

all R,R′ ∈ R and k ≤ K we have that (R(1), . . . , R(k− 1)) = (R′(1), . . . , R′(k− 1)) implies

φ∞R(k)((R, t),m) ≥ φ∞R(k)((R
′, t),m).

Further, φ∞ is strictly rank-monotonic for t at m if the last inequality is strict if and

only if R(k) 6= R′(k), and φ∞R(k)((R, t),m) > 0

Rank-monotonicity is a natural condition that should be satisfied by many single-unit

assignment mechanisms. Specifically, it requires that the assignment probability at the k-

th ranked school does not depend on schools ranked below it, and that ranking a school

higher weakly increases a student’s chances of getting assigned to it. Under strict rank-

monotonicity, ranking a school higher strictly increases the assignment probability unless

this probability is zero.

We now show that in all strictly rank-monotonic ranking mechanisms, all agents that

pick a report that gives them a positive probability of assignment at each of their options

12



are behaving in a manner consistent with a limit equilibrium.1

Theorem C.1. Assume that the ranking mechanism φ∞ is strictly rank-monotonic at m for

priority type t. The report R ∈ R corresponds to an extremal lottery LR ∈ {φ∞((R, t),m) :

R ∈ R} if φ∞R(k) ((R, t) ,m) > 0 for all k such that
∑

k′<k φ
∞
R(k′) ((R, t) ,m) < 1.

Proof. See Appendix C.2.

The result implies that every report is rationalizable as an optimal report for a priority

type if the mechanism is strictly rank-monotonic. Intuitively, this is the case because upgrad-

ing any school in the reported rank-order list strictly increases the probability of assignment

and there exists a utility vector for which such a report is optimal.

There are two ways to interpret this result. On the one hand, it indicates that our

ability to test Assumption C.1 is restricted to special cases where we have non-monotonic

mechanisms or when agents rank schools where they have zero chances of getting accepted.

On the other hand, this result also indicates that it is quite likely that we can rationalize

the behavior of most agents as optimal.

Although the model has testable predictions, we do not develop a statistical test for the

null hypothesis that play is consistent with optimal behavior. The technical challenge arises

from testing a parameter describing the fraction of agents with non-rationalizable reports on

the boundary. The statistical test would have to account for uncertainty in estimating the

lotteries. We leave this for future research.

C.2 Proof of Theorem C.1

Consider a report R ∈ R such that for any k = 1, 2, .., K,
∑

k′<k φ
∞
R(k′) ((R, t) ,m) < 1 and

φ∞R(k) ((R, t) ,m) > 0. With a slight abuse of notation, let R[k] denote the k-th ranked school.

Take any vector of coefficients λ such that:

λR̃ ≥ 0 for every R̃ ∈ R∑
R̃∈R

λR̃ = 1

φ∞ ((R, t) ,m) =
∑
R̃∈R

λR̃φ
∞
((
R̃, t
)
,m
)
.

The proof follows by induction. Consider some report R̃ where R[1] 6= R̃[1]. Strict rank-

monotonicity and our assumption on R imply λR̃ = 0. We have shown that for k = 1,

1Strict-rank monotonicity does not rule out that two different reports result in the same lottery, e.g.,
R1 = (A,B,C) and R2 = (A,B,D) both result in φ∞A = 1− φ∞B , and φ∞C = φ∞D = 0.
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R[k′] 6= R̃[k′] for any k′ ≤ k =⇒ λR̃ = 0. Suppose that this statement is true for all l ≤ k−1

and that
∑

l<k φ
∞
R[l] ((R, t) ,m) < 1. Take any report R̃ where R[l] 6= R̃[l] for some l ≤ k.

If l < k, λR̃ = 0 by the inductive hypothesis. If l = k, Strict rank-monotonicity and our

assumption on R imply λR̃ = 0. By induction, R[l] 6= R̃[l] and
∑

l<k φ
∞
R[l]

((R, t) ,m) < 1 =⇒
λR̃ = 0.

Suppose that there is a j ∈ S and R̃ ∈ R such that φ∞j ((R, t) ,m) 6= φ∞j

((
R̃, t
)
,m
)

; we

will show that λR̃ = 0. Let k̃ be the minimum k such that R[k] 6= R̃[k]. Rank-monotonicity

and the fact that either φ∞j ((R, t) ,m) > 0 or φ∞j

((
R̃, t
)
,m
)
> 0 imply that

∑
l<k̃

φ∞R[l]

((
R̃, t
)
,m
)

=
∑
l<k̃

φ∞R[l]
((R, t) ,m) < 1.

Thus, our previous results imply that λR̃ = 0.

C.3 Characterization of Partially Identified Set

Consider the collection of markets

T (ξ, z) = {Γib = (ξb, zib, tib,mb, φ
∞
b ) : (ξb, zib) = (ξ, z)}.

We will consider results that fix (ξ, z) and therefore drop this from the notation. As a

reminder, conditioning on z is without loss since it is observed, but this implies that the

researcher assumes that the variation considered holds school unobservables ξ fixed.

The next result characterizes what can be learned about FV (v) from observing data from

several large markets in T . LetN = {int(NLΓ
(L))}Γ∈T ,L∈LΓ

be the collection of (the interiors

of) normal cones to lotteries faced by agents in the markets T . For a collection of sets N ,

let D(N ) be the smallest collection of subsets of RJ such that

1. RJ ∈ D(N ) and N ⊂ D(N )

2. For all N ∈ D(N ), N c ∈ D(N )

3. For all countable sequences of sets Nk ∈ D(N ) such that Nk1∩Nk2 = ∅,
⋃
kNk ∈ D(N )

The collection D(N ) is sometimes called the minimal Dynkin system containing N .

Theorem C.2. Given P (L ∈ LΓ|Γ) for each Γ ∈ T and L ∈ LΓ, the quantity

hD =

∫
1{v ∈ D}dFV (v)

is identified for each D ∈ D(N ).
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Proof. The identified set of conditional distributions FV (v) is given by

FI =

{
FV ∈ F : ∀L ∈ LΓ and Γ ∈ T , P (L ∈ LΓ|Γ) =

∫
1{v ∈ NLΓ

(L)}dFV (v)

}
.

Note that for any two distributions FV and F̃V in F , the collection of sets

L (FV , F̃V ) =

{
A ∈ F :

∫
1{v ∈ A}dFV (v) =

∫
1{v ∈ A}dF̃V (v)

}
is a Dynkin system for the Borel σ-algebra F . Since D(N ) is the minimal Dynkin system

where all elements of FI agree, D(N ) ⊆ L (FV , F̃V ) for any two elements FV and F̃V . Hence,

for all D ∈ D(N ), we have that

hD =

∫
1{v ∈ D}dFV (v) =

∫
1{v ∈ D}dF̃V (v)

is identified.

The result follows from basic measure theory and characterizes the features of FV (v) that

are identified under such variation in choice environments without any further restrictions. In

particular, with the free normalization ‖vi‖ = 1, the result implies that the mass accumulated

on the projection of the sets in D(N ) on the J − 1 dimensional sphere, SJ , is identified.

Typically, this implies only partial identification of FV (v), but extensive variation in the

lotteries could result in point identification.2

C.4 Non-Simplicial Cones

In this section, we consider the case when the cone CR is not spanned by linearly independent

vectors. We need that there exists a report for which the normal cone satisfies the following

property:

Definition C.2. A cone C is salient if v ∈ C =⇒ −v 6∈ C for all v 6= 0.

Our results require that the tails of the distribution of utilities are light. Formally, assume

that for some c > 0, the density of u belongs to the set

Gc ≡ {g ∈ L1(RJ) : ec|u|g(u) ∈ L1(RJ)}.
2Specifically, the π − λ theorem implies that FV (v) is identified if and only if the Dynkin-system D(N )

contains a π-system that generates the Borel σ-algebra.
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Theorem C.3. Assume that g ∈ Gc and there is a lottery L such that NL (L) is a salient

convex cone with a non-empty interior. If ζ = RJ , then the distribution of utilities FV (v|z1)

is identified from

hNL(L)

(
z1
)

= P (L ∈ L|z1).

The key insight is that Fourier transform of an exponential density restricted to any

salient cone is non-zero on any open set. We first show a preliminary which specializes

results in De Carli (1992, 2012).

Lemma C.1. Let fε,Γ (x) = χΓ (x) e−2π〈ε,x〉 for some polygonal, full-dimensional, salient,

convex cone Γ and ε ∈ int(Γo), and let f̂ε,Γ (ξ) be its Fourier Transform. f̂ε,Γ is an entire

function. Further, there is no non-empty open subset of RJ where f̂ε,Γ is zero.

Proof. Let {Γ1...ΓQ} be a simplicial triangulation of Γ. Let Vq be a matrix [vq1, vq2 , ..., vqn]

with the linear independent vectors that span cone Γq arranged as column vectors. x ∈
Γq ⇐⇒ x = Vqα for some 0 ≤ α ∈ RJ ⇐⇒ V −1

q x ≥ 0. Normalize Vq so that |detVq| = 1.

Let fε,Γ (x) = χΓ (x) e−2π〈ε,x〉. This is an integrable function (if ε is in the dual of the cone

Γ). Consider its Fourier transform:

f̂ε,Γ (ξ) =

∫
Γ

exp (−2πi 〈ξ − iε, x〉) dx

=
∑
Q

∫
Γq

exp (−2πi 〈ξ − iε, x〉) dx

=
∑
Q

∫
RJ

χ[x:V −1
q x≥0] exp (−2πi 〈ξ − iε, x〉) dx

=
∑
Q

∫
RJ

+

exp (−2πi 〈ξ − iε, Vqa〉) da

=
∑
Q

∫
RJ

+

exp
(
−2πi

〈
V ′q ξ − iV ′qε, a

〉)
da

=
∑
q=1..Q

∏
j=1..J

∫
R+

exp
(
−2πi

(
v′qjξ − iv′qjε

)
a
)
da

=
∑
q=1..Q

∏
j=1..J

∫
R+

exp
(
−a
[
2π
(
v′qjε

)
+ 2πi

(
v′qjξ

)])
da

=
∑
q=1..Q

∏
j=1..J

1

2π

1[(
v′qjε

)
+ i
(
v′qjξ

)] ,
where the last equality follows from the fact that −a2π(v′qjε) < 0. Note that the closed-form

expression implies that f̂ε,Γ (ξ) is an entire function for every ε ∈ Γo/ {0}. Therefore, if it is

zero in an open subset of RJ is zero everywhere.
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We now show that f̂ε,Γ (ξ) is non-zero on a non-empty open set. Let K be a full-

dimensional simplicial convex cone such that Γ ⊂ K. K exists because Γ is salient. Let

VK be the corresponding matrix for K. κqj = V −1
K vqj > 0 for all q ∈ {1, . . . , Q} and

j ∈ {1, . . . , J}. Consider ξ =
(
V −1
K

)′
α,

f̂ε,Γ

((
V −1
K

)′
α
)

=

(
1

2πi

)J ∑
q=1,...,Q

∏
j=1,...,J

1[(
κ′qjα

)
− i
(
v′qjε

)]
=

(
1

2πi

)J ∑
q=1,...,Q

∏
j=1,...,J

(
κ′qjα

)
+
(
v′qjε

)
i[(

κ′qjα
)2

+
(
v′qjε

)2
]

Each term in the summation has a positive denominator and a numerator that is a

polynomial function of α with positive coefficients. It follows that it is not zero everywhere,

and therefore there is no open subset of RJ where f̂ε,Γ is zero.

We are now ready to prove the main result.

Proof. For a fixed lottery L such that NL(L) is salient, define the linear operator A:

Ag(z) =

∫
NL(L)

g (v + z) dv.

We need to show that if A(g′ − g′′) = 0 a.e. then, g = (g′ − g′′) = 0 a.e. The proof is by

contradiction.

Since the cone NL (L) is salient, its dual TL (L) has a nonempty interior. Let ε ∈
int(TL(L)), with |ε| sufficiently small so that gε(u) = g(u)e2π〈ε,u〉 ∈ L1. Note that 1{u ∈
NL(L)}e−2π〈ε,u〉 ∈ L1 for every ε ∈ int(TL) because 〈ε, u〉 > 0.

Since A(g′ − g′′) = 0 a.e., and ζ = RJ , we have that for almost all z ∈ RJ ,

Ag(z) = e−2π〈ε,z〉
∫

1 (v ∈ NL (L)) e−2π〈ε,v〉e2π〈ε,v+z〉g(v + z)dv = 0.

Since e−2π〈ε,z〉 > 0, Ag = 0 for almost all z ⇐⇒ f̂ε,NL(L)(ξ) · ĝε(ξ) = 0, where f̂ε,NL(L) is

the Fourier Transform of fε,NL(L) (x) = 1{x ∈ NL(L)}e−2π〈ε,x〉 and ĝε is the conjugate of the

Fourier Transform of gε (x), both continuous functions in L1. Since ĝε is continuous, the

set where ĝε 6= 0 is open. Further, since g 6= 0, the support of ĝε is non-empty. It follows

that there is an open Zε where ĝε is different from zero, and therefore, f̂ε,NL(L)(ξ) = 0 for all

ξ ∈ Zε. This contradicts the fact that f̂ε,NL(L) is an entire function, as shown in Lemma C.1

below.
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Finally, since g(u) is known for almost all u, we have that FV (v|z1) =
∫ v−z1

−∞ g(u)du is

identified.

D Estimation Appendix

D.1 Consistency of Two-Step Estimation

Theorem D.1 (Consistency). Suppose there exists a function Q0 such that (i) θ and φ

are elements of a compact set (ii) ‖φ̂(R, t) − φ∞((R, t),m)‖∞
p→ 0 (iii) supθ,φ |Qn(θ, φ) −

Q0(θ, φ)| p→ 0 (iv) Q0(θ, φ) is jointly continuous in θ and φ (v) Q0(θ, φ0) is uniquely mini-

mized at θ0, then θ̂
p→ θ0.

Proof. Hypotheses 1-4 and the continuous mapping theorem imply that supθ∈Θ |Qn(θ, φ̂) −
Q0(θ, φ0)| p→ 0. The conclusion follows by 1, 5, and Newey and McFadden (1994), Theorem

2.1.

D.2 Gibbs’ Sampler: Implementation Details

We specify a Multivariate Probit Model following McCulloch and Rossi (1994) (Section 4.3).

The utility of student i for school j is given by

vij =
K∑
k=1

δjkxijk − dij + εij (3)

and the utility of the outside option is normalized to zero: vi0 = 0. dij is the road distance

between student i’s home and school j; xijk student-school specific covariates; δkj are school

specific parameters to be estimated. The normalization of vi0 = 0 is without loss of generality,

and the scale normalization is embedded in the assumption that the coefficient on dij is −1.

The vector of error terms is distributed multivariate normal:

εi = (εi1, . . . , εiJ) ∼ N(0,Σ).

While utilities are unobserved, they are related to the observed action of student i trough

the requirement that the utility vector lies in the cone associated with the chosen report:

yi = R =⇒ vi ∈ NL (LR) .

Let Xi be a J ×KJ block-diagonal matrix that is constructed placing the K-row vector

covariates xij = [xijk]
K
k=1 in each of the J blocks; δ = vec ({δjk}), a KJ-column vector; and
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Di a J × J diagonal matrix with dij in the j-th position. The system 3 is:

vi = Xiδ −Di + εi

The unobserved utilities vi are treated as unknown parameters along with δ and Σ. We

specify independent prior distributions for δ and Σ:

p(δ,Σ) = p(δ)p(Σ),

δ ∼ N(δ, A−1),

Σ ∼ IW (ν0, V0),

where IW is the inverse Wishart distribution.

The Gibbs sampler proceeds as follows:

• Start with initial values Σ0 and v0 = {v0
i }

N
i=1 so that v0

i ∈ intNL
(
LR(i)

)
for all i = 1...N .

• Draw δ1|v0,Σ0 from a N
(
δ̃, V

)
,

V = (X∗′X∗ + A)
−1
, δ̃ = V

(
X∗′v∗ + Aδ

)
X∗ =

 X∗1

...

X∗S


X∗′i = C ′Xi, v

∗
i = C ′v0

i

Σ0 = C ′C

• Draw Σ1|v0, δ1 from a IW (ν0 +N, V0 + S)

S =
n∑
i=1

εiε
′
i,

εi = v0
i −Xiδ

1

• Draw v1|δ1,Σ1, y iterating over students and schools. Take student i and the cone

associated with the report i chose:

NL (Lyi) =
{
v ∈ RJ : Γiv ≥ 0

}
where Γi = (L′yi−L

′
R1
, . . . , L′yi−LR′|R|)

′.3 For each school j = 1...J , draw v1
ij| {v1

ik}
j−1
k=1 , {v0

ik}
J
k=j+1 , δ

1,Σ1

3For the specification that assumes truthful reporting, Γi takes the form of a J × J matrix constructed
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from a truncated normal TN
(
µij, σ

2
ij, aij, bij

)
, where

µij =
K∑
k=1

δ1
jkxijk − dij

σ2
ij = Σ1

jj − Σ1
j(−j)

[
Σ1

(−j)(−j)
]−1

Σ1
(−j)j

and the truncation points aij and bij guarantee the draw v1
ij is such that u =

[
{v1

ik}
j−1
k=1 , v

1
ij, {v0

ik}
J
k=j+1

]′
lies in the interior of NL

(
LR(i)

)
. To calculate these truncation points, define Aji as ma-

trix Γi with its jth row removed, Bj
i as its jth row and uj =

[
{v1

ik}
j−1
k=1 , {v0

ik}
J
k=j+1

]′
.

aij = max
j∈{j:Bj

i>0}
−Ajiuj

Bj
i

bij = min
j∈{j:Bj

i<0}
−Ajiuj

Bj
i

• Set Σ0 = Σ1 and v0 = v1, store, and repeat the previous step as necessary.

D.3 Priors

We use very diffuse priors to minimize their influence on our estimates and as a reflection

of our prior uncertainty about the values of the parameters of the model. We set the prior

distribution of δ ∼ N(δ, A−1)

δ = 0

A−1 = 100× I

and the prior of Σ ∼ IW (ν0, V0)

ν0 = 100

V0 = I.

as follows: i) Set r = 1 and Γi = 0. ii) Pick the school that student i ranked in the r-th position: j (r). iii)
Write a one in the (j (r) , j (r)) entry of Γi. iv) If there is a school ranked in position r + 1, write a minus
one in the (j (r) , j (r + 1)) entry of Γi, set r = r + 1, and repeat steps ii-iv; else continue. v) Let K be the
set of the indices of the schools that were not ranked. If r = 3, write a one in the (k, j (3)) entry of Γi for all
k ∈ K. vi) Write a minus one in the (k, k) entry of Γi for all K. This ensures that if a student with utilities
vi reports its true ordinal preferences Γivi ≥ 0.
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We experimented with more diffuse priors (A−1 = 200× I, ν0 = 50) without noticeable changes

in our main results.

D.4 Diagnosis

The Gibbs sampler produces a chain whose distribution converges to the posterior distri-

bution of the parameters. In practice, however, the chain must be run over a finite period

and the distribution of the generated chain may be quite different from the distribution of

the posterior. It may be that the initial conditions have an unduly effect on the chain. In

order to avoid this effect, we burn-in a large number of initial draws and we keep only the

latter draws. It may also be the case that the sampler navigates the parameter space too

slowly and the generated chain will only cover a small subset of the support of the posterior

distribution. Unfortunately, there is no other solution to this problem than running the

chain for long enough. There are several methods devised to diagnose the convergence of the

Gibbs sampler that test whether different sections of the chain share the same distributional

features.

E Data Appendix

F Verifying Condition 1 for the Cambridge Mechanism

We first find a representation of the Cambridge Mechanism as a function

φn : (R× T )×∆ (R× T )→ ∆S

F.1 Representation

F.1.1 Priorities and Lotteries

Each student receives an independent priority draw νi from a uniform [0, 1] distribution. We

modify this random priority by the sibling and proximity priority ti. Let f : [0, 1] × T →
[0, 1]J , such that for each j = 1, ..., J :

eij = fj (νi, ti) =
νi + tij
T

∈ [0, 1]

where T is the maximum priority points a student can have. In Cambridge, tij = 1 if student

i has only proximity priority at program j, tij = 2 if student i has only sibling priority at

program j, and tij = 3 if student i has both proximity and sibling priority at program j.
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F.1.2 Economy

Let Π be a partition of the programs in Cambridge into a set of schools in Cambridge and

let q ∈ RJ+|Π|
+ be a vector of program and school capacities. Typically, for any π ∈ Π,∑

j∈π qj < qπ.

Consider a n-student economy where the vacancies are represented by nqn ∈ RJ+|Π|
+ , the

measure of report-priority shares of all but the focal student is given by

mn−1 =
1

n− 1

n−1∑
i=1

δRi,ti

and ηn−1 includes the realization of random priority draws of the n− 1 students

ηn−1 =
1

n− 1

n−1∑
i=1

δRi,ti,ei

where ηn−1 agrees with mn−1 on the marginals on R and t.

F.1.3 Sub-Economies in Rounds k ∈ {1, 2, 3}

With a slight abuse of notation, let R[k] be the program in position k in report R. We will

use a map s(η, q|k) 7→ (η′, q′) that takes a measure over reports, priority types, random

priorities, and a capacity in each round and maps it to a measure over remaining reports,

priority-types and random priorities in the next round.

To define s(η, q|k), we introduce some additional notation. Let

Dj,k (p|η) = η
({

(R, e) : R[k] = j, ej ≥ p
})

be the measure of types that ranked school j in the k-th round and have eligibility at least

p in that round. Note that Dj,k (p|η) is non-increasing. Define the excess capacity zj for

school j at eligibility p as:

z̃j (p; η, q|k) = qj −Dj,k (p| η)

z̃πj (p; η, q|k) = qπj − qj −
∑

l∈πj/{j}

min {ql, Dl,k (p| η)}

zj (p; η, q|k) = z̃j (p; η, q|k) + min
(
0, z̃πj (p; η, q|k)

)
.

Note that zj is non-decreasing in p.

A student is not assigned to a school if the measure of students that have (weakly) higher
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eligibility exceeds the school or the program’s capacity. Therefore, the set of students that

are not assigned in step k can be written as

r (η, q|k) =
{

(R, e) : R = R[k], zR[k]

(
eR[k]

; η, q|k
)
< 0
}

.

Define η′ as the restriction of η to r (η, q|k).

The capacities that remain after step k, are given by:

q′j = max {qj −Dj,k (0|η) , 0}

since all students, i.e. measure Dj,k (0|η), are assigned if there are seats available.

F.1.4 Cambridge Mechanism

Let (η1, q1) = (η, q) and (ηk, qk) = s (ηk−1, qk−1|k). Define the function,

ϕ(R,t) (ν; η, q, k) = 1

{(
R,

ν + t

T

)
∈ r (ηk, qk|k)c ∩k′<k r (ηk′ , qk′|k′)

}
.

This function returns 1 if a student that reports R and has priority (ν, t) is assigned to

program R[k] when the measure over reports and priorities is given by ν and the vector of

capacities is q.

For a fixed student priority-type, report and lottery-draw, (R, t, ν) define

ηn =
1

n

[
(n− 1) ηn−1 + δR,t,e

]
.

Note that the finite economy and limit economy mechanisms are given by

φnR[k]

(
(R, t) ,mn−1, qn

)
=

∫
E
[
ϕ(R,t) (ν; ηn, qn, k)

∣∣mn−1, ν
]
dν

φ∞R[k]
((R, t) ,m, q) =

∫
ϕ(R,t) (ν; η, q, k) dν

where the limit measure η if given by

η ({R, e < p}) =
T∑
t=0

m (R, t) min
j

(pjT − tj) . (4)

F.2 Main Results

We make the following assumption about the genericity of vacancies:
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Assumption F.1 (Generic Vacancies). For k = 1, 2, 3, let mk be the marginal of ηk on

R× T where (ηk, qk) = s(ηk−1, qk−1|k− 1) and (η1, q1) = (η, q). If m (R, t) = 0 then for each

k,

min

 qk,R[k]
−
∑

R′,t′mk({R′[k] = R[k], tR′
[k]
> tR[k]

}),
qk,πR[k]

−
∑

l∈π
R[k]

min
{
qk,l,

∑
R′,t′mk({R′[k] = l, tR′

[k]
> tR[k]

})
}  6= 0

For each (R, t), there is no open set in [0, 1]J+|Π| such that every q in that set violates

Assumption F.1. Fix a q such that this assumption is satisfied. We now show that Condition

1 is satisfied for the Cambridge Mechanism.

Proposition F.1. Assume that (m, q) satisfies Assumption F.1 above. If mn−1, qn are em-

pirical sequences such that mn−1 p→ m, and qn
p→ q, then for each k ∈ {1, 2, 3} and (R, t)

φnR[k]

(
(R, t) ,mn−1, qn

) p→ φ∞R[k]
((R, t) ,m, q) .

The proof requires two preliminary results. Let 4 be the symmetric difference operator.

Consider the VC class of sets

V =
{
V : ∃ (R, p, k) ∈ R× [0, 1]J × {1, 2, 3} , V = v (R, p, k)

}
,

where v (R, p, k) =
{

(R, e) : eR[k] < p
}

.

Lemma F.1. If supV ∈V |ηn (V )− η (V )| p→ 0, supj
∣∣qnj − qj∣∣ p→ 0 and Dj,k(p|η) is continuous

in p for all j and k, then (i) supp,j,k |Dj,k(p|ηn)−Dj,k(p|η)| p→ 0, (ii) supν,j,k |zj (ν; t, ηn, qn|k)− zj (ν; t, η, q|k)| p→
0 where each zj (ν; t, η, q|k) is continuous and non-decreasing in ν, (iii) r(η, q|k) =

⋃
R∈R VR

where each VR ∈ V, (iv) ηn (r(ηn, qn|k)4 r(η, q|k))
p→ 0, and (v) if η′ is the restriction of η

to r (η, q|k) then Dj,k(p|η′) is continuous in p for all j and k.

Proof. Parts (i - iii): For every p ∈ [0, 1],

Dj,k (p|η) = η
({

(R, e) : R[k] = j, ej ≥ p
})

=
∑

R:R[k]=j

η (v (R, 0, k))− η (v (R, p, k)) .

Hence, part (i) follows from uniform convergence of ηn over sets in V . Part (ii) follows

from the continuous mapping theorem: zj (·; η, q|k) is continuous with respect to functions

Dl,k ( ·| η), where both types of functions belong to vector spaces endowed with the sup-norm.

Continuity of zj (ν; t, η, q|k) follows directly continuity of the min function and of Dl,k ( ·| η)

for every l. Part (iii) is easily verified noting that r(η, q|k) =
⋃
j

⋃
R:R[k]=j

v (R, pj, k) where
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pj = 0 if zj (0; η, q|k) ≥ 0 and otherwise,

pj = sup {e ∈ [0, 1] : zj (e; η, q|k) < 0} .

Part (iv): The definitions of r(η, q|k) and r(ηn, qn|k) imply:

ηn (r(ηn, qn|k)4 r(η, q|k))

=
∑
j

ηn
({
R[k] = j, (ej < pj ∨ zj (e; ηn, qn|k) ≥ 0) ∧ (ej ≥ pj ∨ zj (e; ηn, qn|k) < 0)

})
,(5)

where ∨ and ∧ are logical AND and OR respectively. It is enough to show convergence in

probability for each term in the summation.

Pick an N such that for all n > N with probability greater than 1− ε,

sup
k,e
|zj (e; η, q|k)− zj (e; ηn, qn|k)| ≤ ε

2
(6)

and

sup
p1≤p2,R′

ηn ({(R, t, ν) : R = R′, p1 ≤ ej ≤ p2}) ≤ T |p1 − p2|+
ε

8
. (7)

Existence of such an N is guaranteed by part (ii) of the Lemma above and since

sup
p1≤p2,R′

η ({(R, t, ν) : R = R′, p1 ≤ ej ≤ p2}) ≤ T |p1 − p| .

We first show that equation (7) implies that

ηn
({
R[k] = j, zj (e; ηn, q|k) ∈ [a, b]

})
≤ ε

4
+ b− a. (8)
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Let en = inf {e : zj (e; ηn, q|k) > a}, en = sup {e : zj (e; ηn, q|k) < b}. We have that

ηn
({
R[k] = j, zj (e; ηn, qn|k) ∈ [a, b]

})
≤ ηn

({
R[k] = j, e ∈ [en, en]

})
= ηn

({
R[k] = j, e ∈ (en, en)

})
+ ηn

({
R[k] = j, e ∈ {en, en}

})
≤ lim

e↓en
Dj,k (e|ηn)− lim

e↑ēn
Dj,k (e|ηn) + ηn

({
R[k] = j, e ∈ {en, en}

})
≤ lim

e↓en
Dj,k (e|ηn)− lim

e↑ēn
Dj,k (e|ηn) +

ε

4

= lim
e↑ēn

z̃j (e; ηn, qn|k)− lim
e↓en

z̃j (e|; ηn, qn|k) +
ε

4

≤ lim
e↑ēn

zj (e; ηn, qn|k)− lim
e↓en

zj (e|; ηn, qn|k) +
ε

4

≤ b− a+
ε

4

where the first inequality follows by the definition of en and en; the second inequality follows

from the definition of Dj,k (e|ηn) and because it is decreasing; the third inequality follows

from equation (7); the last inequality follows from the definition of z̃j and the final inequality

follows from the fact that for all e ∈ (en, en), zj (e; ηn, qn|k) ∈ (a, b) and that zj (e; ηn, qn|k)

is monotonically increasing.

Now consider a term in the summation in equation (5). If zj (pj; η
n, qn|k) < 0, this term

is bounded by

ηn ({ej ≥ pj, zj (ej; η
n, qn|k) ∈ [zj (pj; η

n, qn|k) , 0]}) .

If zj (pj; η
n, qn|k) ≥ 0, the term is bounded by

ηn ({ej < pj, zj (e; ηn, qn|k) ∈ [0, zj (pj; η
n, qn|k)]}) .

Hence, equations (8) and (6) imply that

ηn
({
R[k] = j, (ej < pj ∨ zj (e; ηn, qn|k) ≥ 0) ∧ (ej ≥ pj ∨ zj (e; ηn, qn|k) < 0)

})
≤ |zj (pj; η, q|k)− zj (pj; η

n, qn|k)|+ 2× ε

4
≤ ε.

Since equations (6) and (7) (consequently, equation (8)), hold for all n > N with probability

at least 1− ε, we have the desired result.
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Part (v): Follows because

Dj,k(p|η′) = η′
({
R[k] = j, ej ≥ p

})
= η

({
R[k] = j, ej ≥ p

}
∩ r(η, q|k)

)
= η

({
R[k] = j, pj > ej ≥ p

})
=

{
Dj,k(p|η)−Dj,k(pj|η) if pj < p

0 if pj ≥ p

and Dj,k(p|η) is continuous.

To state the second preliminary result, define the function

ζ(R,t) (ν; η, q, k) = min

{
zR[k]

(
ν + tR[k]

T
; ηk, qk

∣∣∣∣ k) ,−max
k′<k

zR[k′]

(
ν + tR[k′]

T
; ηk′ , qk′

∣∣∣∣∣ k′
)}

.

If ζ(R,t) (ν; η, q, k) > 0 both terms are positive. Program R[k] could enroll every unassigned

student that ranked it in position k and that has a priority score higher than
ν+tR[k]

T
without

exhausting program or school capacity. At the same time, if for some k′ < k, program R[k′]

had enrolled every unassigned student that ranked it in position k′ and had a priority score

higher than
ν+tR[k′]

T
, it would have exceeded the total program or school capacity. Therefore

a student with report and priority (R, t, ν) such that ζ(R,t) (ν; η, q, k) > 0 is assigned to

school R[k] in round k. Notice that ζ(R,t) (ν; η, q, k) > 0 implies ϕ(R,t) (ν; η, q, k) = 1 and

ζ(R,t) (ν; η, q, k) < 0 implies ϕ(R,t) (ν; η, q, k) = 0.

Lemma F.2. If supV ∈V |ηn (V )− η (V )| p→ 0 and supj
∣∣qnj − qj∣∣ p→ 0, where η is defined as

in (4), then supν,R,t,k
∣∣ζ(R,t) (ν; ηn, qn, k)− ζ(R,t) (ν; η, q, k)

∣∣ p→ 0.

Proof. We first show that if Dj,k(p|η) is continuous in p for all j and k, then

‖s(ηn, qn|k)− s (η, q|k)‖∞ = max

{
sup
j

∣∣q′nj − q′j∣∣ , sup
V ∈V
|η′n (V )− η′ (V )|

}
p→ 0.

Since q′j is jointly continuous in qj and Dj,k (0|η), q′,nj
p→ q′j by the continuous mapping

27



theorem.

sup
V ∈V
|η′n (V )− η′ (V )|

= sup
V ∈V
|ηn (r(ηn, qn|k) ∩ V )− η (r(η, q|k) ∩ V )|

≤ sup
V ∈V
|ηn (r(η, q|k) ∩ V )− η (r(η, q|k) ∩ V )|

+ sup
V ∈V
|ηn (r(ηn, qn|k) ∩ V )− ηn (r(η, q|k) ∩ V )|

The first term converges in probability to zero because r(η, q|k) ∈ V (Lemma F.1, part iii) and

V is closed under finite intersections. The second term is bounded by: ηn (r(ηn, qn|k)4 r(η, q|k)),

which is shown to converge in probability to zero (Lemma F.1, part iv). Moreover, for all j

and k, Dj,k(p|η′) is continuous in p (Lemma F.1, part v).

Notice that Dj,k(p|η1) is continuous in p for all j and k. By mathematical induction,

supV ∈V
∣∣ηnk−1 (V )− ηk−1 (V )

∣∣ p→ 0 and supj
∣∣qnk−1,j − qk−1,j

∣∣ p→ 0 implies that for all k = 2, 3:

supV ∈V |ηnk (V )− ηk (V )| p→ 0, supj
∣∣qnk,j − qk,j∣∣ p→ 0 and Dj,k(p|ηk) is continuous in p. The

result now follows from the the continuous mapping theorem and Lemma F.1, part ii, since

ζ(R,t) (·; η, q, k) is continuous in zj (·; η, q|k) for all t, j, k.

We are now ready for the main result

Proof. For each (R, t), there is no open set in [0, 1]J+|Π| such that every q in that set violates

Assumption F.1. Fix a q such that this assumption is satisfied. For this q, it is enough to

show the result for fixed (R, t, k) since it belongs to a finite set.

Let

Ek =
{
ν : ζ(R,t) (ν; η, q, k) = 0

}
,

where j = R[k]. We first show that |Ek| ≤ 2. Since

ζ(R,t) (ν; η, q, k) = min

{
zR[k]

(
ν + tR[k]

T
; ηk, qk

∣∣∣∣ k) ,−max
k′<k

zR[k′]

(
ν + tR[k′]

T
; ηk′ , qk′

∣∣∣∣∣ k′
)}

,

where both components inside the min are monotonic, continuous functions of ν, it is easy

to show that Ek is the union of at most two convex sets. Further, Ek is closed since

ζ(R,t) (ν; η, q, k) is continuous in ν. Suppose that there is there is a k and an open inter-

val (ν, ν) ⊆ Ek. Then, for all ν ∈ (ν, ν), Dj

(
ν+tj
T

∣∣∣ η) is constant. This only occurs if

m (R, t) = 0, which implies a violation of the generic vacancies condition. Since Ek ⊆ R, we

have that |Ek| ≤ 2 and
∣∣∪k′∈{1,..,k}Ek′∣∣ <∞.

Fix ε > 0. Construct an open set U that covers ∪k′∈{1,..,k}Ek′ and has Lebesgue measure
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less than ε
2
. Consider the difference,∣∣∣φnR[k]

(
(R, t) ,mn−1

)
− φ∞R[k]

((R, t) ,m)
∣∣∣

=

∣∣∣∣∫ E
[
ϕ(R,t) (ν; ηn, qn, k)− ϕ(R,t) (ν; η, q, k)

∣∣mn−1, qn, ν
]
dν

∣∣∣∣
≤

∫
E
[∣∣ϕ(R,t) (e; ηn, qn, k)− ϕ(R,t) (ν; η, q, k)

∣∣∣∣mn−1, qn, ν
]
dν

≤ sup
ν 6∈U

E
[∣∣ϕ(R,t) (ν; ηn, qn, k)− ϕ(R,t) (ν; η, q, k)

∣∣∣∣mn−1, qn, ν
]
P (ν 6∈ U)

+ sup
ν∈U

E
[∣∣ϕ(R,t) (ν; ηn, qn, k)− ϕ(R,t) (ν; η, q, k)

∣∣∣∣mn−1, qn, ν
]
P (ν ∈ U)

< sup
ν 6∈U

E
[∣∣ϕ(R,t) (ν; ηn, qn, k)− ϕ(R,t) (ν; η, q, k)

∣∣∣∣mn−1, qn, ν
]

+
ε

2

where the last inequality follows from the fact that P (ν ∈ U) < ε
2

and

sup
ν∈U

E
[∣∣ϕ(R,t) (ν; ηn, qn, k)− ϕ(R,t) (ν; η, q, k)

∣∣∣∣mn−1qn, ν
]
≤ 1.

We now show that there exists N such that for all n > N :

P
(

sup
ν 6∈U

E
[∣∣ϕ(R,t) (ν; ηn, qn, k)− ϕ(R,t) (ν; η, q, k)

∣∣∣∣mn−1, qn, ν
]
≥ ε

2

)
< ε. (9)

This would complete the proof as it implies that

P
(∣∣∣φnR[k]

(
(R, t) ,mn−1

)
− φ∞R[k]

((R, t) ,m)
∣∣∣ > ε

)
< ε.

Let ζε = infν 6∈U
∣∣ζ(R,t) (ν; η, q, k)

∣∣ . Note that ζε > 0, since
∣∣ζ(R,t) (ν; η, q, k)

∣∣ > 0 for all

ν 6∈ U and ζ(R,t) (ν; η, q, k) is continuous with respect to ν. By Lemma F.2, there exists N

such that for all n > N ,

P
(

sup
ν 6∈U

∣∣ζ(R,t) (ν; η, q, k)− ζ(R,t) (ν; ηn, qn, k)
∣∣ > ζε

)
<
ε2

2
.

Note that for all ν 6∈ U , |ζ (ν; η, q, k)| ≥ ζε. Therefore for all ν 6∈ U ,

|ϕ(R,t) (ν; ηn, qn, k)− ϕ(R,t) (ν; η, q, k) | 6= 0⇒ |ζ (ν; ηn, qn, k)− ζ (ν; η, q, k)| > ζε

since the antecedent requires ζ(R,t) (ν; ηn, qn, k) ≥ 0 and ζ(R,t) (ν; η, q, k) < −ζε or ζ(R,t) (ν; ηn, qn, k) ≤
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0 and ζ(R,t) (ν; η, q, k) > ζε. By set inclusion, for all n > N,

P
(

sup
ν 6∈U

∣∣ϕ(R,t) (ν; ηn, qn, k)− ϕ(R,t) (ν; η, q, k)
∣∣ 6= 0

)
<
ε2

2
.

Since supν 6∈U
∣∣ϕ(R,t) (ν; ηn, qn, k)− ϕ(R,t) (ν; η, q, k)

∣∣ ∈ {0, 1}, the above inequality implies

that for all n > N ,

ε2

2
> E

[
sup
ν 6∈U

∣∣ϕ(R,t) (ν; ηn, qn, k)− ϕ(R,t) (ν; η, q, k)
∣∣]

= E
(
E
[

sup
ν 6∈U

∣∣ϕ(R,t) (ν; ηn, qn, k)− ϕ(R,t) (ν; η, q, k)
∣∣∣∣∣∣mn−1, qn

])
≥ E

(
sup
ν 6∈U

E
[∣∣ϕ(R,t) (ν; ηn, qn, k)− ϕ(R,t) (ν; η, q, k)

∣∣∣∣mn−1, qn
])

,

where the equality follows from the law of iterated expectations and the weak inequality is

well-known property of expectations of supremums. Markov inequality implies:

P
(

sup
ν 6∈U

E
[∣∣ϕ(R,t) (ν; ηn, qn, k)− ϕ(R,t) (ν; η, q, k)

∣∣∣∣mn−1, qn
]
≥ ε

2

)
< ε

which is exactly equation (9).
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