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Appendix: A Analytical Framework

As mentioned in the text, models of reallocation mechanisms among heterogeneous-productivity
producers have found applications in a number of fields, including industrial organization,
trade, and macroeconomics. While these models differ considerably in their specifics, they
share an archetypal mechanism that connects the extent of competition in the market (as
reflected in consumers’ willingness or ability to substitute among producers) to the shape
of the productivity distribution among market producers. Here we sketch out a model with
such a mechanism that fits the specific feature of the healthcare sector that consumers bear
little if any of the financial costs of their firm choice.

We assume hospitals are heterogeneous in two dimensions: quality and costs. These two
dimensions of heterogeneity may be correlated (e.g., higher quality hospitals might tend have
higher costs on average), but this is not necessary for our results. While both quality and
costs are likely to be at least in part affected by hospitals’ choices, we follow the majority of
the productivity literature and assume that they are exogenous and fixed.?

When choosing their hospital, we assume that patients care about quality but, conditional
on quality, do not care about costs. The assumption that patients are not sensitive to hospital
costs is a natural one, given that Medicare and supplemental insurance shields patients from
paying for most of the care they receive, and likely all of the incremental cost associated with
their hospital choice. Of course, while patients do not care about costs, a social planner does.
A benevolent social planner would desire both high quality and low costs. The social planner
would trade off between them based upon the parameters of the social welfare function. Thus
there may be a wedge between the privately and socially optimal hospital choice.

Producers (indexed by h) earn profits which depend positively on their idiosyncratic
quality levels ¢, (higher quality firms earn higher profits because they draw more patients),
negatively on their costs ¢;, and negatively on the number (or mass, in models with a

continuum of firms) of producers in the industry N.3° Hence 7, = 7 (qn, cn, N), with % > 0,

29This model is a more generic and looser version of the type of multidimensional-heterogeneity-producer
model in Foster, Haltiwanger and Syverson (2008).

30Standard presentations of these models consider profit-maximizing firms. Although we keep this termi-
nology to be more familiar relative to the existing literature, we note that in the context of hospitals, it might
be more appropriate to consider firms as earning (and maximizing) “surplus” rather than “profits”. This more
general terminology recognizes that many hospitals are legally structured as nonprofits. All that is required
for the conceptual framework to carry over is for surplus to be increasing in quality (again because all else
equal it increases the patient traffic at a hospital). Nonprofit hospitals are often modeled in the literature
as having an objective function that is a convex combination of profits and other objectives; thus on the
margin they should respond qualitatively the same way as for-profit hospitals to factors like competition.
And indeed a large empirical literature finds essentially no evidence of differential behavior across for-profit
and non-profit hospitals, calling into question whether the non-profit label has any substantive meaning for
behavioral responses (see Sloan, 2000 for a recent review of this literature).
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for any given N, there is locus of critical cutoff quality and cost levels at which hospital

< 0, and g—;{, < 0. The monotonic relationship between quality and profits implies that,

profits are zero. Along this locus, quality is a monotonically increasing function of costs,
because higher costs require a higher quality level for a hospital to earn zero profit.

Call this locus ¢* (¢, N), where we have expressed it as the critical value of quality nec-
essary to earn zero profit as a function of costs and the number of hospitals in the market.
Only producers with quality levels at or above ¢* (¢, V) will operate in equilibrium.

The zero-profit cutoff locus is endogenously determined by a free entry condition, where
ex-ante identical potential entrants consider whether to pay a sunk cost o to take idiosyn-
cratic quality and cost draws from a known joint distribution of ¢ and ¢, G (-), with an upper
bound quality of § and a lower and upper bound costs ¢ and ¢, respectively. The expected

value of entry, which equals zero by the free entry condition, is:

C q
ve—// 7 (¢ e N) g (q,¢) dade — o = 0
c q*(ch)

The expected profits from entry depend upon the equilibrium number of entrants N in
two ways. First, an increase in N shifts upward the zero-profit cutoff quality level ¢* (¢, N),
reducing the probability that the entrant’s quality and cost draws are high and low enough
(respectively) to earn nonnegative profits, and thus making successful entry less likely. Sec-
ond, a higher number of firms N also reduces the producer’s profits if it does enter. Thus
expected profits fall monotonically in N. In equilibrium, the number of firms choosing to
pay the entry cost yields a number of entrants N that, through these two effects, exactly
equates the expected profit from taking a quality and cost draw to the sunk entry cost.

The endogeneity of ¢* (¢, N) means the industry quality and cost distribution observed in
the data is determined in equilibrium. Specifically, it is a truncation of G (+), the underlying
distribution from which potential entrants take quality and cost draws, where the truncation
locus is ¢* (¢, N). Changes in market primitives that shift the equilibrium location of ¢* (¢, N)
therefore shift the observed joint distribution of quality and costs.

The primitive that underlies these results is the extent to which patients are able or
willing to substitute to alternate hospitals in order to obtain higher quality. The specific
mechanism through which primitives map into substitutability may vary from, for example,
the extent of information available to patients or their surrogates, to differences in travel
costs. The particulars of the mechanism aren’t important here; what matters are the effects
on the equilibrium.

This framework has several predictions that we examine empirically. In equilibrium,

if patients have some ability to substitute across alternate producers (hospitals), there is a
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robust prediction that the market will allocate patients to higher quality hospitals on average,
so that there is a correlation between quality and market share at a point in time (“static
allocation”). In addition, over time higher quality hospitals will be more likely to grow in
market share (“dynamic allocation”). Our empirical work in Section 4 focuses on examining
these static and dynamic equilibrium allocations. The model also generates the comparative
static prediction that these static and dynamic equilibrium allocation results will be stronger
where patients have greater ability to substitute to alternate producers. In Section 5 we test
this comparative static prediction by comparing allocation results for patients admitted
through the emergency department and patients admitted as non-emergency transfers from
another hospital. Stratifying on the method of admission to the hospital offers one way to
distinguish among patients with different abilities to substitute to alternate producers.?!
Finally, we note that endogenous selection based on patients’ preferences for quality also
has implications for equilibrium cost levels. Even if quality and cost draws are uncorrelated
in G (+), factors that tend to truncate the equilibrium quality distribution at a higher level
will also raise average observed costs, because hospitals with higher quality can have have
higher costs before becoming unprofitable. Thus when patients are not sensitive to costs
and choose based solely on quality, the equilibrium will tend to allocate toward both higher
quality and higher cost firms. As noted, there may therefore be a wedge between the privately

and socially optimal allocations.

31This model is static, so the effects of changes in competition on equilibrium should be thought of as
comparing two different markets or the same market across different long-run steady states. However,
several of the models in the literature are explicitly dynamic and have similar predictions about the effect
of competition on the productivity of entrants and growth of incumbents (e.g. Hopenhayn, 1992; Asplund
and Nocke, 2006).
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Appendix: B Quality Measures

This section provides details on the definition and construction of each of our four quality

metrics.

B.1 Risk-adjusted survival

Risk-adjusted survival is arguably the key endpoint for emergent conditions and has been the
health outcome of choice for a large economics and medical literature. CMS publicly reports
risk-adjusted survival measures for hospitals for heart attacks, heart failure and pneumonia
for hospitals that treat at least 25 patients with the condition in the 3 year window it uses
for the analysis. We calculate our own risk-adjusted survival scores for these conditions in
order to have control over the regression model (we use a fixed effects linear regression while
CMS uses a random effects logit), shrinkage approach (we use empirical Bayes adjustment
while CMS uses the best linear unbiased predictors, or BLUPs, of the random effects), and
risk adjustment (we test sensitivity to alternative sets of risk-adjusters while CMS only
publishes one approach). The CMS data are also reported as ratios of observed mortality
rates relative to expected mortality rates, which is a nonlinear transformation of the hospital
random effects, and one that is not designed to produce unbiased coefficients when placed
on the right-hand side of our allocation regressions.>?

Mimicking the CMS measure, for each hospital with at least 25 patients with the con-
dition between 2006 and 2008, we estimate a risk-adjusted survival rate — the probability
that a Medicare patient would survive 30 days after being treated for the condition at the
hospital. Specifically, we start with the patient-level sample of initial hospitalizations for
the condition, or index events, from 2006-2008. Then, we regress 30-day survival (counting
from the patient’s hospital admission date) on a rich set of observable information about
the patient, including age/race/sex interactions and indicators for being hospitalized for 25
conditions in the past year, as well as hospital fixed effects.?® The inclusion of risk-adjusters
is standard practice in the literature and is designed to minimize the impact of differences

in patient health across hospitals on survival rates.

32Gince we use different regression models, shrinkage approaches, risk-adjustment approaches, and trans-
formations of hospital effects, we do not expect the correlations between our measures and the CMS measures
to be 100%. Still, in Appendix Table A18, we find that our risk-adjusted survival and readmission measures
are highly correlated with the CMS measures, with correlation coefficients ranging from 0.66 to 0.82.

33The age groups are 66-69, 70-74, 75-79, 80-84, 85-89, 90-94, and 95+. The race and age groups are
white/non-white and male/not male. The risk-adjusters are: heart failure, myocardial infarction, unsta-
ble angina, chronic atherosclerosis, respiratory failure, hypertensive heart disease, valvular heart disease,
arrhythmia, hypertension, stroke, cerebrovascular disease, renal failure disease, dialysis, COPD, pneumo-
nia, diabetes, protein calorie malnutrition, dementia, paralysis and disability, peripheral vascular disease,
metastatic cancer, trauma, substance abuse, major psychiatric disorder, and chronic liver disease.
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We extract the hospital fixed effects, which become the risk-adjusted survival rate esti-
mates for the hospitals for a given condition. Since these estimates include measurement
error, they may produce biased coefficients when included on the right hand side of our
allocation regressions; for example, classical measurement error will cause attenuation bias
toward zero. In Appendix C, we describe the empirical Bayes shrinkage approach we use to
correct for measurement error bias. We discuss and show how the shrinkage method affects
our results in Appendix Section C.5 and Appendix Table A2 — consistent with the presence
of measurement error bias resulting in attenuation, the correction expands nearly all of our
allocation gradients.

In our analyses studying risk-adjusted survival over the long horizon, we calculate the
measure for 1996, 1999, 2002, and 2005 in addition to the baseline 2008 measure. As in the
2008 calculations, we aggregate over three years, e.g. the 1996 measure includes patients
from 1994-1996. Results using this longer sample of risk-adjusted survival rates are presented
in Section 4.2.2.

B.2 Risk-adjusted readmission

This measure, defined and estimated similarly to risk-adjusted survival, indicates the proba-
bility that an average Medicare patient would be readmitted within 30 days after discharge
from her initial hospital stay. It is widely used as a proxy for medical errors and inappro-
priate discharge. Mimicking the CMS measure, the sample of patients is the same as that
for risk-adjusted survival, with the addition of the following exclusion criteria: if the patient
dies during the initial hospital stay, is transferred from her initial hospital to another inpa-
tient facility, or leaves the hospital against medical advice, the patient is removed from the
sample. Per the CMS approach, these exclusions help to remove patients who either could
not be readmitted or whose readmissions might not be due to the index hospital’s quality
of care. We then use the same regression, risk adjustment, and empirical Bayes method
as in risk-adjusted survival. For hip and knee replacement, an indicator for whether the
patient received a hip replacement is also included as a risk-adjuster to allow for differential

readmission rates depending on which joint is being replaced.

B.3 Process of care

Publicly reported “process of care” measures give the shares of eligible patients who received
certain evidence-based interventions. Hospitals report their utilization of these processes

to CMS, which publishes the information online and uses it to adjust hospital payments.3*

34These data can be downloaded at https://data.medicare.gov/data/hospital-compare
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The data pertain to all eligible patients irrespective of their insurer, and are not limited
to patients covered by Medicare. Patients for whom the interventions are contraindicated
are not counted in the numerator or denominator of the shares. We consider the process
measures for specific inpatient conditions that were reliably reported from 2006 through
2008: 6 AMI measures, 4 heart failure measures, and 7 pneumonia measures.

The processes “were identified with respect to published scientific evidence and consis-
tency with established clinical-practice guidelines” (Williams et al., 2005). The AMI mea-
sures have their origins in the Cooperative Cardiovascular Project, a large study of AMI
among Medicare beneficiaries that was conducted in the 1990s; the metrics for heart failure
and pneumonia can be traced back to the practice guidelines of professional organizations
that focus on these conditions (Jencks et al., 2000). The AMI processes cover the ad-
ministering of aspirin (one measure for arrival and another for discharge), ACE inhibitors,
smoking cessation advice, § blockers, and angioplasty (percutaneous coronary intervention,
or PCI).?® The heart failure processes cover providing discharge instructions for care, evalu-
ation of left ventricular systolic dysfunction, ACE inhibitors, and smoking cessation advice.
The pneumonia processes cover providing oxygenation assessments, pneumococcal vaccines,
blood cultures before antibiotics, smoking cessation advice, timely antibiotics, the most ap-
propriate antibiotics for the particular infection, and influenza vaccines.

To reduce the dimensionality of the process measures before including them in our re-
gressions, for each condition we generate a hospital-level composite measure of adherence to
the condition’s processes. We start with the publicly reported hospital-level data from 2006
to 2008; we combine 3 years to reduce measurement error. To further reduce measurement
error in the composite score, we remove any individual process score for which the hospital
had fewer than 50 eligible patients over the 3 year window (since each process has different
contraindications, a hospital may have more than 50 patients in one score for a condition and
fewer than 50 patients in another). We use a higher patient count threshold than for risk-
adjusted survival and readmission because process scores are not empirical-Bayes-adjusted
by CMS to account for measurement error; since the scores have all-payer coverage, the
patient counts tend to be larger than for the risk-adjusted outcomes and this threshold is
therefore less restrictive.

We standardize each process score (among the set of hospitals that reported it for at least
50 patients over the 3 years) to have mean 0 and standard deviation 1. For each condition, we
average together the condition’s individual process standardized scores to create a composite

score, then standardize that composite score. The result is a condition-specific composite

35An additional AMI measure, Thrombolytics at Arrival, was missing for 60-80% of hospitals each year,
and was removed from the analysis.
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score with zero mean and unit variance defined on the set of hospitals that reported 50 or
more patients for at least one process of care for that condition over 2006-2008.

The process of care data are only available at the hospital level so it is not possible to
perform the kind of detailed risk adjustment when generating these quality metrics that we
could for survival or readmission. However, one advantage of these metrics is that they are
designed to measure interventions or experiences that the facility should deliver to essentially
all of its patients; patients who are inappropriate for the intervention are excluded. As a
result, risk adjustment is not obviously relevant or required for the process of care measures
— while it may not be possible for a hospital to prevent all AMI deaths or readmissions,
it is possible in theory for a facility to administer S blockers to all appropriate patients at
discharge. Indeed, the study of processes of care has been motivated by hospitals’ ability
to directly control these measures of quality, since quality scores based on clinical outcomes
include factors like the hospital’s patient population and patient compliance with post-

discharge care that hospitals are less able to influence (Donabedian, 1966).

B.4 Patient satisfaction

Patient satisfaction is measured by the 2008 HCAHPS (Hospital Consumer Assessment of
Healthcare Providers and Systems), which hospitals administer to their patients after dis-
charge.®® The survey is given to a sample of all of the hospital’s patients, not just patients
who were covered by Medicare; unlike our other quality measures, the public data covers
all patients, and is not offered in a condition-specific manner. The survey results are pro-
cessed and reported by CMS; the survey instrument is condensed into ten measures of the
patient’s experience and perceived quality of care. The ten measures are: communication
with nurses, communication with doctors, responsiveness of hospital staff, pain management,
communication about medicines, cleanliness of hospital environment, quietness of hospital
environment, discharge information, overall hospital rating, and recommend the hospital.
The average hospital reports scores for all 10 survey questions. CMS adjusts the results for
interview mode (e.g. mail, telephone, etc.) and a set of patient characteristics. Its adjust-
ment for mode uses data from a randomized trial comparing survey responses by mode, while
the adjustment for patient characteristics comes from a model that is estimated quarterly
from hospitals’ submissions (Giordano et al., 2010; Elliott et al., 2009).

We generate a composite score of hospital performance on the patient survey by aggre-
gating together the 10 questions into a measure with mean zero and unit variance. For all of

the questions but one, the publicly reported data indicates the share of patients responding

36For an overview of the design and implementation of HCAHPS, see Giordano et al., 2010.
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that the hospital provided high, medium or low quality. One question (discharge informa-
tion) is reported as the shares of patients responding yes or no. We assign these responses
to numeric values (3/2/1 for the three-level questions or 1/0 for the yes/no question, with
higher values always better) and compute an average response for each hospital. Then, fol-
lowing the same method we use for process of care, we generate standardized scores for each

question, average together the standardized scores, and standardize the result.
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Appendix: C Empirical Bayes Adjustment

In this appendix we describe the empirical Bayes (EB) procedure we use to adjust our esti-
mates of risk-adjusted survival, risk-adjusted readmission, risk-adjusted inputs, and input-
adjusted risk-adjusted survival (which we call productivity) for measurement error. This
procedure is based on Morris (1983). For another example see Jacob and Lefgren (2007).
For hospital h, its quality measure (risk-adjusted survival, risk-adjusted readmission,
or input-adjusted risk adjusted survival; we also will refer to risk-adjusted inputs in this
manner) is called ¢,. These objects are the “true” quality values and their distribution is
the “underlying” distribution of quality. We denote by ¢; the estimate of quality; it equals

quality plus an error term 7p,:

Gnh = qn + 1

The goal of the EB procedure is to adjust the estimates of quality so that the presence of
the error term does not introduce bias when the quality estimates are included as regressors
in our allocation regressions (see equations 1 and 2). The procedure adjusts the estimates
by shrinking them toward the mean of the true, underlying distribution. True quality is
not observable, but we show in this appendix that its distribution is estimable. We also
show how this shrinkage estimator fixes the attenuation bias that measurement error could
otherwise introduce into our regressions.

In this appendix we use bold lowercase greek and roman letters to refer to vectors and

uppercase greek and roman letters for matrices. Non-bold lowercase letters refer to scalars.

C.1 Background on Empirical Bayes Procedure
C.1.1 Statistical Background

We start with an overview of the EB procedure assuming that all parameters of the distribu-
tions are known, and refer to the EB-adjusted estimated quality as ¢/’?. We then describe
the feasible EB-adjusted estimate, which we denote q,];;B(f ),

Suppose that the estimated quality is independently normally distributed around the

true quality with known variance 73:
5 2 2\ -
anlan, 7 ~ N (gn, ;) independently

One can think of 77 as the variance of the measurement error of the estimate.

We also assume that the true quality ¢ is independently normal with underlying mean
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x}, A (a known, linear function of the hospital’s covariates) and underlying variance o (known
and common across hospitals).
The prior distribution of quality ¢, — the distribution before conditioning on the estimated

quality — is therefore:
an|Xn, A, 0% ~ N (x},A, 0°) independently
Conditioning on the estimated quality ¢, produces the posterior distribution of qy:
anldn, Xn, X, 0”75 ~ N (g%, 7 (1 — by,)) (A1)

qFP denotes the EB-adjusted quality. This object is the expected value of g, conditional

on the estimated value ¢, and the parameters A, 02, and 77 and is given by the formula:

@ = (1=bn)Gn+ brxi A (A2)

by = m/ (7 +0°) (A3)

The adjustment amounts to attenuating the estimate ¢, toward the prior mean xj A. As
the variance of the measurement error 77 rises, the EB correction increasingly disregards the

value of the estimate and closes in on the prior mean.

C.1.2 Feasible Version of Procedure

This section describes how we implement the EB procedure when parameters must be esti-
mated.

The value ¢, is the estimated hospital fixed effect from the regression used to estimate
quality (see Appendix B for a description of the regressions used to estimate risk-adjusted
survival and readmission; see equation 9 for the regression used to estimate input-adjusted
risk-adjusted survival, a.k.a. “productivity”). We estimate a standard error for the fixed
effect assuming homoscedastic disturbances in the first-step patient-level regression; under
the homoscedasticity assumption, the standard error is our estimate of the standard deviation
of the asymptotic distribution of g,. We estimate 77 by squaring the standard error and call
this value 72.

We estimate the underlying parameters of the quality distribution, A and o2, using the
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method outlined in section 5 of Morris (1983). We fix yearly estimates:

A= (X'WX)TIXWQ
S Wi { (i) (@0 — x50 = 2

= max<{ 0,
> n Wh
1
W = ~9 . ~o
T 402

where X is the stacked x}, W is a diagonal matrix of the wy,, and @ is the stacked ¢, for
year t. ny is the number of hospitals, or equivalently the number of ¢,. nx is the number
of regressors, i.e. the dimensionality of xj.

X isa WLS regression of the gy, on x,. 6 is the weighted average of the squared deviations
of g, from X;lj\ less the weighted average of #7. The weights are wy, giving more weight to

2

observations with less measurement error. The max operator ensures that &% is always

nonnegative in finite samples.
X and 62 are simultaneously determined in these equations, so they are estimated by the
following iterative procedure. We start by fixing w;, = 1V h, then iterate the following to

convergence:

1. Compute A and then a new estimate 62

2. If this is the second or greater iteration and 62 has converged, exit. Otherwise, fix new

weights wy, and return to step 1

The (feasible) best estimate of the posterior mean qu(f ) is given in Morris (1983) by the

formula of equations (A2) and (A3) with a degrees of freedom adjustment :

qu(f) _ (1 _ l}h) Gn + BhXZS‘

~ nH—nX—Q 7AT}2L
b = P
Nng —Nx T, + 0

The variance of the quality distribution unconditional on covariates, called ¢2, is given

by the following formula:

Son{ (725 @ — @) - 72}
> h Wh

_ > Whdn
q9 = ﬁ (AD)
h

(A4)

¢ = max< 0,
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Where ¢ is the weighted mean quality.

C.2 Implementation of Empirical Bayes Adjustment

We assume that the underlying mean of quality is equal to a market fixed effect, i.e. xj A =
v, Where M indexes markets. Thus x;, becomes a vector of 306 indicators for whether
hospital h was in each of the 306 markets and A\ is a vector of the 306 market fixed effects.
We then perform the EB procedure, producing estimates of the underlying market means A
and conditional — i.e. within-market — variance 6. Running the procedure also yields EB-

") and also can be used to produce the unconditional

adjusted estimated quality measures qu
— i.e. national — estimated variance ¢?, as described above. When we compute quality
metrics for multiple years, for example in the case of Appendix Table A12, we preform the
EB adjustment separately for each year. That is, we allow each year to have its own market
means X and conditional variance 2.

Our procedure ensures that when the EB-adjusted quality is used in our main regressions
(equations 1 and 2 in the main text), which have market fixed effects, all regressors are

orthogonal to the measurement error term.

C.3 Reported Statistics Involving Quality Metrics
C.3.1 Standard Deviation

To estimate the standard deviation of quality in Table 1b, we rely on the estimates of the
underlying national variance of quality ¢? that the procedure computes.®” The root of these
estimates is taken, forming <.

The EB adjustment produces ¢? by taking the weighted empirical variance of the ¢
and subtracting the weighted average squared standard error 77 (see equations A4 and A5).
Hospitals with larger standard errors receive lower weights. In effect, this process takes the
variance of the noisy quality estimates and subtracts off the variance due to measurement

eITror.

C.3.2 Correlations

In Table 2 and Appendix Table A4, we report correlations adjusted for measurement error.

The raw correlation between two quality measures potentially suffers from two sources of

3TWhile it might seem natural to instead estimate the standard deviation of the EB-adjusted values, this
would cause us to erroneously under-estimate dispersion. True quality is composed of a best prediction (the
EB-adjusted quality) and the prediction error. These two components are orthogonal. The variance of true
quality is thus strictly greater than the variance of EB-adjusted quality (see Jacob and Lefgren, 2007).
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bias. First, the variance terms in the denominator are upward-biased if either quality measure
was estimated with measurement error, e.g. the fixed effects approach that we use for risk-
adjusted survival and readmission. Second, the covariance term in the numerator may also
be biased if the two quality metrics were estimated using the same samples of patients (e.g.
risk-adjusted survival and readmission for the same condition), since sampling variance in
one fixed effect may be correlated with the sampling variance in the other.

Our empirical correlation estimate corrects for these two sources of bias, and is calculated

as the following:

Covi, (Gan, dB.n)
\/\farh (CjAJL) V%Lrh ((jB,h)

Covi, (Gan, dBn) = Covy, (C]A,h,CjB,h)—fEh [T AB.p)

Cory, (Gan, Gpn) =

Vary, (Gxn) = Vary, (Gx.n) — Ey, [Wg(,h}

Where ¢4 5, is one quality score for hospital h and ¢p , is another, m4p ), is the estimate of
the measurement error covariance between the two quality scores, and 7@(7,1 is the estimate of
the measurement error variance for measure X € {A, B}. Tildes indicate estimates that have
been adjusted for measurement error and hats indicate raw sample averages and variances. In
other words, we take the covariance of the two raw quality scores and subtract the average
covariance of the measurement error, and we take the variance of each quality score and
subtract its average measurement error variance.

When the two quality scores come from the same patient sample, map ) is derived by
making a homoscedasticity assumption on the covariance of the error terms in the two first-
step regressions that produce the quality measures. Each pair of patient error terms, one
for each regression, is assumed to be drawn from a distribution with a common variance-
covariance matrix; error terms across patients are uncorrelated. We then estimate the
variance-covariance matrix of the two hospital fixed effects and map ) is set to the covari-
ance. If the two quality scores are derived from different patient samples (i.e. risk-adjusted
survival for AMI and heart failure) or if only one is estimated by us from patient data (i.e.
risk-adjusted survival for AMI and process of care for AMI) w4, is set to 0.

7r§(’ , 1s the squared standard error of the fixed effect for measure X, described in Appendix
Section C.1.2. It is set to 0 if the measure is not estimated by us from patient data, like for

process of care scores or the patient survey.
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C.3.3 Static and Dynamic Allocation Regressions

The allocation metrics use noisy estimates of quality on the right-hand side of regressions,
and they rely on EB adjustment to correct for measurement error. Jacob and Lefgren (2007)
show that with the adjustment, these regressions are estimated consistently.
Suppose that there is a relationship between growth Aj,, market fixed effects v,;, and
quality qp:
Ap =vm +qn + €

where E [e;|zh, qn] = 0 (2, is a vector of indicators for the markets — the design matrix
for the market fixed effects.) The left-hand side variable could alternatively be the number
of patients as in the static allocation regression.

Since we do not observe true quality g, we use the estimate ¢, = g, + nn, where 7, is

measurement, error. Then substituting into the equation:
Ah = TM + (5th + <€h — 577}1)

This regression generally produces a biased estimate of § due to the correlation between
Gn and 7y, in the error term. We use the EB-adjusted quality ¢7 to eliminate this correlation.
Equation (A1) implies:

E [Qh‘thaxha )\7 027 7T}21,j| = Q}];JB

We represent the prediction error of the EB procedure as vy,:
an = qi,” + v

By construction the prediction error is orthogonal to ¢F'® and any regressor included in

xp, — 1.e. the market fixed effects:
E [vh|qu,xh,)\,02,7T}ﬂ =0

(Gnt is replaced by ¢FP because given the parameters, knowing one determines the other)
The regression of A, on market effects and ¢ adds only dvy, to the original error term
€n:
Ay =y + 0P8 + (e, — up)

Therefore there is no correlation between any of the regressors and the new error term. The

unbiasedness of § follows.

A15



C.4 Multivariate Empirical Bayes Procedure

In some cases we run regressions with multiple imprecisely measured quality metrics on
the right-hand side, each estimated from the same sample of patients. In these cases, the
measurement error across the quality metrics is likely to be correlated, making the univariate
EB procedure insufficient to restore unbiasedness to the regression estimates — one univariate
EB-adjusted quality metric is uncorrelated with its own prediction error, but it may be
correlated with the prediction error of the other EB-adjusted quality metric. For these
regressions, the quality metrics must be EB-adjusted jointly.

Let q; be the “true” vector of quality for hospital A and let q; be the estimate of the
vector. The multivariate method assumes that the two quality estimates are distributed

jointly normal around true quality with covariance matrix IIj,:
an|qn, I, ~ N (qp, I1,) independently (A6)

The underlying, or prior, distribution of quality is also jointly normal:

an|xn, A, ¥ ~ N (Axy, ¥) independently (A7)

Conditioning on the estimated quality vector yields the posterior distribution (we present

the formula given in Murphy, 2007 after some algebraic manipulation):

anlan, xn, A, X ~ N (q?, (I — By) 1) (A8)
Where:
EB _ N
qh = ([ — Bh) qn + BhAXh (Ag)
By = T (I,+%)"" (A10)

One can think of q;, as the hyperparameter for the mean of q;. The above formulas give the

posterior distribution of the hyperparameter after conditioning on realization qp,.

C.4.1 Feasible Version of Procedure

To implement the EB adjustment, we begin by fixing values of ;. As in the univariate
approach, each member of the vector equals the estimated fixed effect from a patient-level
quality regression, e.g. ¢a could be hospital h’s fixed effect from the risk-adjusted survival

patient-level regression while ¢p; could be the fixed effect from the readmission regression.
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To construct 11, (the estimate of II,), as in the univariate approach, we assume ho-
moscedastic disturbances in each first-step quality regression, but we extend the assump-
tions to account for multiple measures. We treat the set of first-step regressions as a SUR
and assume that each patient’s disturbances are drawn from a distribution with a common
covariance matrix. That is, we allow a patient’s disturbance term in one quality regression
to be correlated with her disturbance term in another. Disturbances across patients are
assumed to be uncorrelated. (We make the same assumption in Appendix Section C.3.2 to
estimate correlations between quality measures.)

Under these assumptions, we extract hospital-level estimates of the covariance of the
measurement error between the quality measures, for example between the hospital’s risk-
adjusted survival score and its risk-adjusted readmission score. These estimates become the
off diagonal values of II,. We also estimate standard errors on the hospital fixed effects in
each regression — under our homoscedasticity assumption these standard errors are the same
as in the univariate approach. The squared standard errors are estimates of the variance of
the measurement error of each quality metric; these values become the diagonals of I1,..

Next we must estimate ¥ and A. Combining equations (A6) and (A7) we have the distri-

bution of g, unconditional on qy, (in Bayesian terms called the prior predictive distribution):

an|xn, A, 2, 11, ~ N (Axy,, ¥ + I1;,) independently

The full vector of measured quality q — the stacked q;, — therefore follows a multivariate
normal distribution as well. We now show how to represent this joint distribution so that
we can build its likelihood function.

For the simultaneous EB adjustment of k quality measures at once, we define X as the
stacked I ® x},, A as the rows of A transposed to column vectors and stacked to create one
vector of coefficients, and II as the block diagonal matrix formed with II; on the diagonals.
Then q is distributed:

alX, A, 5,10~ N (XA, L, ®3+1I)

In our model, the number of parameters in A is large relative to the sample size — 306
market fixed effects per quality measure and about 3,000 hospitals per measure. An ML
estimate of ¥ would therefore have significant bias in finite samples due to the loss of degrees
of freedom from estimating A. We estimate ¥ by REML instead of MLE to avoid this bias.

The REML likelihood function is:*®

38This likelihood function is derived and given in Diggle et al. (2002). The MLE likelihood function is
defined identically but omits the %ln ’X ‘01X ‘ term. Maximizing this likelihood would yield unbiased
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% (i; H> - —%m (é‘ . %m }X’é*lxl — % (q _ XX)'@*1 (q — XS\) (A11)
A (é) - (X’é‘1X>_1 X614 (A12)
6 (z n) = I, @541 (A13)

> is the maximizer of the likelihood function (with unknown II replaced by the known
I1) and X is given by equation (A12):

S = args max.Z (i, f[)
5 = A(6(sn)
The feasible estimate of the posterior quality vector is given by equations (A9) and (A10)

with unknown parameters replaced by their estimates (A is constructed from A by splicing

the vector back into matrix form):

q; " = (I - Eh) an + Buhxy,
. N\ -1

B, = I, (Hh + z)

C.4.2 Implementation

We perform bivariate EB adjustment in two cases. The first is our multivariate allocation

regressions, where we regress hospital size and growth on risk-adjusted survival and read-

mission simultaneously (see the discussion of Section 4.1 and Appendix Table A5). The

second is our regressions that study allocation with respect to productivity decomposed into

risk-adjusted survival and risk-adjusted spending (see Section 4.3 and Table 6). In these

cases, we allow the underlying mean of each quality measure to equal a market fixed effect,
1

T™m

so e.g. Ax; = . As in the univariate approach, x; is a vector a 306 indicators for

™
whether a hospital is in each of the 306 markets.

We perform the EB procedure, extracting the matrix of underlying market means A
and underlying variance f), then producing EB-adjusted quality vectors qu(f ). The qu(f )

become regressors in the multivariate allocation and decomposed productivity regressions

estimates of \ but not X.
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replacing the noisy estimates qj,. By the result given in section C.3.3 (replacing scalars g,
and ny, with vectors q; and 1), the EB adjustment restores consistency to the coefficients

of interest in these regressions.

C.5 Comparison of estimates

We run all of our baseline regression analyses with the EB-adjusted productivities qu(f ),

Appendix Table A2 explores the impact of the EB correction on our main results, reproducing
the EB-adjusted main results from Table 3 without the EB correction.

To produce the uncorrected allocation metrics, we use the estimates ¢, rather than qu(f )
in our regressions. Due to measurement error in the estimates, we generally expect the
allocation metrics computed without the EB correction to be attenuated. The attenuation
result is well-known under classical measurement error, though when measurement error is
non-classical it is possible for coefficients to be expanded rather than attenuated. Our EB
approach allows each hospital’s measurement error to be different (based on the squared
standard error of the hospital fixed effect from the first-step regression) and so it is robust
to this violation of the classical measurement error assumption.

The results show that the EB correction has a substantial effect on our baseline estimates,
and our findings are consistent with measurement error causing attenuation. Comparing
our baseline (EB-adjusted) estimates the un-adjusted versions, we see that the allocation
gradients are substantially greater with the correction. For example, in column 1 of Appendix
Table A2, a 1 percentage point rise in risk-adjusted AMI survival is associated with 17%
more patients when the EB correction is used, but only 7% more patients when we use the
raw quality metric. The expansion of the coefficient is more substantial for some of the other
metrics — e.g. a 1 percentage point fall in risk-adjusted HF readmission is associated with
10% more patients in our baseline analysis, but only 1% more patients when we drop the
EB correction.

A quantitatively large impact of the EB correction (i.e. a large amount of measurement
error, to the extent that it is classical) is not surprising in light of results from other applica-
tions. For example, looking at estimates of teacher fixed effects in value added regressions,
Jacob and Lefgren (2007) estimate a ratio of the unadjusted standard deviation to the EB-
adjusted estimate of the standard deviation of about 1.3 to 1.6. We find ratios ranging from
1.5 to 2.1.
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Table A2 - Sensitivity of Allocation Results to Empirical Bayes Adjustment

n 0 @ O G  © @O ©
Static Allocation Dynamic Allocation
Condition AMI HF Pneu  Hip/Knee AMI HF Pneu Hip/Knee
Panel A - Risk-Adjusted Survival
Baseline (EB-Adjusted) 17.496 15.360 5.140 1.533 0.774 1.220
(0.995)  (1.320) (0.777) (0.379)  (0.501) (0.354)
Raw (No EB Adjustment)  6.833  3.761 1.957 0.645  0.084  0.340
(0.342)  (0.425)  (0.403) (0.175)  (0.199)  (0.175)
Hospitals 2,890 4,023 4,325 2,890 4,023 4,325
Raw SD / Corrected SD 1.597 1.788 1.547 1.597 1.788 1.547

Panel B - Risk-Adjusted Readmission

- Baseline (EB-Adjusted) ~ -9.162  -10.346  0.499  -21.037  -1.428 2300 -1.138 -1.112
(1.621) (1.782) (1.575) (2.027) (0.611) (0.651) (0.679) (0.836)
Raw (No EB Adjustment) -1.699  -1.043 0.755 -6.492 -0.307 -0.217  -0.189  -0.431
(0.395) (0.346) (0.427) (0.727) (0.197)  (0.162) (0.195) (0.382)
Hospitals 2,322 3,904 4,264 2,632 2,322 3,904 4,264 2,632
Raw SD / Corrected SD 1.870 2.132 1.864 1.794 1.870 2.132 1.864 1.794

This table shows the sensitivity of the allocation results of Table 3 to the empirical Bayes adjustment procedure. In
each panel, we first repeat the baseline allocation results in which the quality metric is empirical-Bayes-adjusted. We
then show the same allocation models using the raw quality metric without empirical Bayes adjustment. Lastly, we
show the ratio of the raw standard deviation of the quality measure to its standard deviation after correcting for
measurement error (see Appendix Section C.3.1). Standard errors are bootstrapped with 300 replications and are
clustered at the market level.

Table A3 - Distance Traveled across Conditions

(1) (2) (3) (5)
Condition AMI Heart Failure Pneumonia Hip Fracture
Median miles traveled 7.0 5.4 5.2 9.1
Mean miles traveled 45.0 33.7 35.8 419
Share treated at nearest hospital 0.43 0.52 0.56 0.38
Share staying in market 0.87 0.89 0.90 0.84
Index Events 190,189 308,122 354,319 267,557
Hospitals 2,890 4,023 4,325 2,632

Distances are miles from the centroid of the patient's zipcode to the centroid of the hospital's
zipcode. The sample is patients in 2008 at hospitals that had a valid risk-adjusted survival rate
(risk-adjusted readmission for hip/knee replacement).
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Table A4 - Correlation of Measures Across Conditions

(1) (2) (3) (4) (5) (6) ()
Risk-Adjusted Survival Risk-Adjusted Readmission
Condition AMI HF Pneu AMI HF Pneu Hip/Knee
AMI 1.00 1.00
[2,890] [2,322]
HF 0.58 1.00 0.76 1.00
[2,888]  [4,023] [2,320]  [3,904]
Pneumonia 0.45 0.70 1.00 0.66 0.94 1.00
[2,883] [4,006] [4,325] [2,313] [3,880] [4,264]
Hip/Knee Replacement 0.44 0.51 0.44 1.00

[2,020] [2.524] [2.544] [2.632]

Process of Care

Condition AMI HF Pneu
AMI 1.00

[2,398]
HF 0.59 1.00

[2,397] [3,666]
Pneumonia 0.44 0.63 1.00

[2,386] [3.637]  [3,920]

Hospitals used to calculate correlation in brackets. Correlations involving survival or readmission are
adjusted for measurement error (see Appendix Section C.3.2).
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Table A5 - Allocation across Conditions - Multivariate Approach

(1) ) (3) (4) () (6) () (8)
Static Allocation Dynamic Allocation

Measure \ Condition AMI HF Pneu  Hip/Knee AMI HF Pneu Hip/Knee
Risk-Adjusted Survival 12.866 17.839 4.237 0.217 1.827 1.269

(1.421) (1.902) (0.764) (0.600) (0.586) (0.357)
Risk-Adjusted Readmission  -6.108  -14.155 -1.120  -20.716 -0.814  -2.264  -0.580  -0.757

(1.983) (2.214) (1.552) (2.108) (0.745)  (0.668) (0.644) (0.845)
Process of Care Z-Score 0.196 0.188 0.196 0.036 0.014 0.015

(0.027)  (0.022) (0.014) (0.011) (0.010) (0.009)
Patient Survey Z-Score -0.113  -0.292  -0.166  -0.022 0.002 -0.014  -0.004 0.025

(0.040) (0.028) (0.022) (0.034) (0.013)  (0.009) (0.009) (0.016)
Hospitals 2,193 3,316 3,454 2,542 2,193 3,316 3,454 2,542

This table repeats the analysis of Table 3 but uses all available quality measures for the condition at once (plus the
patient survey, which is not condition-specific), making these multivariate regressions. The allocation sample for
each regression is all hospitals with the displayed quality measures and at least one patient in 2008. Standard errors
are bootstrapped with 300 replications and are clustered at the market level.
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Table A6 - Allocation across Conditions - Constant Sample

(1) (2) (3) (4) (5) (6) (7) (8)
Static Allocation Dynamic Allocation

Measure \ Condition AMI HF Pneu  Hip/Knee AMI HF Pneu Hip/Knee
Risk-Adjusted Survival 12.082 13.870 4.192 0.526 1.364 1.170

(0.929)  (1.296)  (0.745) (0.401) (0.452) (0.323)
Hospitals 2,193 3,316 3,454 2,193 3,316 3,454
Risk-Adjusted Readmission  -9.909  -10.519  -1.372  -20.742 -1.127  -1.969  -0.733  -0.988

(1.600) (1.686) (1.562) (2.097) (0.567) (0.531) (0.561) (0.835)
Hospitals 2,193 3,316 3,454 2,542 2,193 3,316 3,454 2,542
Process of Care Z-Score 0.327 0.300 0.185 0.045 0.030 0.018

(0.023) (0.018) (0.015) (0.009)  (0.008)  (0.008)
Hospitals 2,193 3,316 3,454 2,193 3,316 3,454
Patient Survey Z-Score 0.074 -0.172  -0.121 0.068 0.017 0.004 0.004 0.029

(0.030) (0.031) (0.028) (0.035) (0.012)  (0.007) (0.008) (0.015)
Hospitals 2,193 3,316 3,454 2,542 2,193 3,316 3,454 2,542

This table repeats the analysis of Table 3 but uses a constant sample of hospitals across the quality metrics. The
allocation sample for each regression is all hospitals with a risk-adjusted survival rate (if calculated for that
condition), risk-adjusted readmission rate, process of care score (if calculated for that condition), patient survey
score, and at least one patient in 2008. Standard errors are bootstrapped with 300 replications and are clustered at
the market level.
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Table A7 - Allocation with Respect to All Condition-Specific Quality Measures

o @ 6 5 © O O
Static Allocation Dynamic Allocation
Measure \ Condition AMI HF Pneu  Hip/Knee AMI HF Pneu Hip/Knee
Risk-Adjusted Survival Z-Score
AMI 0.553 0.335 0.183 0.048 0.014 0.031
(0.030) (0.022)  (0.021) (0.014) (0.009) (0.010)
HF 0.198 0.124 0.031 -0.001 0.010 0.004
(0.036) (0.030) (0.026) (0.017) (0.011) (0.012)
Pneumonia 0.034 0.080 0.052 0.014 0.010 0.032
(0.034) (0.024) (0.019) (0.014) (0.013) (0.011)
Hospitals 2,882 2,882 2,882 2,882 2,882 2,882
Risk-Adjusted Readmission Z-Score
AMI -0.171  -0.112  -0.122  -0.265 -0.031  -0.035  -0.018  -0.001
(0.047) (0.038) (0.035) (0.056) (0.019) (0.014) (0.015) (0.023)
HF -0.215  -0.146  -0.086  -0.282 -0.027  -0.043  -0.028  -0.007
(0.044)  (0.031) (0.030) (0.054) (0.019) (0.017) (0.015) (0.021)
Pneumonia 0.104 0.084 0.041 -0.055 -0.006  -0.014  -0.018  -0.008
(0.042) (0.031) (0.027) (0.050) (0.019) (0.017) (0.015) (0.024)
Hip/Knee Replacement -0.079  -0.067  -0.086  -0.284 -0.010  -0.016 0.002 -0.024
(0.034) (0.024) (0.021) (0.041) (0.013) (0.012) (0.012) (0.016)
Hospitals 2,018 2,018 2,018 2,018 2,018 2,018 2,018 2,018
Process of Care Z-Score
AMI 0.336 0.209 0.165 0.058 0.046 0.014
(0.031) (0.021)  (0.020) (0.013) (0.011) (0.011)
HF -0.054  -0.103  -0.219 -0.061  -0.027 0.001
(0.049) (0.040) (0.042) (0.025) (0.020) (0.018)
Pneumonia 0.001 0.094 0.205 0.036 0.026 0.025
(0.051) (0.041) (0.037) (0.020) (0.020) (0.016)
Hospitals 2,386 2,389 2,390 2,386 2,389 2,390

This table repeats the analyses of Table 3 but rather than using the one (non-standardized, except for process of

care) quality measure for the left-hand side condition, it uses Z-scores of all condition specific quality measures.

Each column in a panel represents one regression, e.g. the top panel of column (1) regresses hospital size for AMI

on risk-adjusted survival Z-scores for AMI, HF, and pneumonia. Standard errors are analytic and clustered at the

market level.
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Table A8 - Sensitivity of Static Allocation to Poisson Regression Model

(1) (2) 3) (4) () (6) (7) (8)
Condition AMI HF Pneumonia Hip/Knee Rpl
Measure \ Method Baseline  Poisson Baseline  Poisson Baseline  Poisson Baseline  Poisson
Risk-Adjusted Survival 17.496  18.631 15.360  17.532 5.140 6.478
(0.995) (1.109) (1.320) (1.504) (0.777)  (0.829)
Hospitals 2,890 2,881 4,023 4,023 4,325 4,325

Risk-Adjusted Readmission  -9.162  -10.685  -10.346 -13.145 0499  -1.922 -21.037 -25.811
(1.621) (2.086)  (1.782) (2.175)  (1.575) (1.756)  (2.027) (3.466)

Hospitals 2322 2304 3004 3,903 4264 4264 2632 2,626
Process of Care Z-Score 0319  0.422 0332 0332 0211  0.199
(0.026) (0.024)  (0.016) (0.020)  (0.015) (0.014)
Hospitals 2398 2,379 3,666 3,665 3020 3,920
Patient Survey Z-Score 0321 -0.131 0252 -0.123  -0210 -0.114 0.057  0.130
(0.052) (0.035)  (0.038) (0.030)  (0.030) (0.023)  (0.051) (0.057)
Hospitals 3498 3,498 3508 3,508 3610 3,610 3,061 3,059

This table shows the baseline static allocation results of Table 3 in comparison to the same model run as a fixed
effects poisson regression. To make the models analogous, the poisson regressand is the count of patients, not its
logarithm. Standard errors are bootstrapped with 300 replications and are clustered at the market level.

The baseline sample is used; hospital counts can be smaller for the poisson models because they exclude markets with
only one hospital.
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Table A9 - Sensitivity of Allocation Results to Risk Adjustment

(1) (2) 3) (4) (5) (6) (7) (8)
Static Allocation Dynamic Allocation
Condition AMI HF Pneu Hip/Knee AMI HF Pneu Hip/Knee
Panel A - Risk-Adjusted Survival
Baseline Risk-Adjustment 17.496 15.360 5.140 1.533 0.774 1.220
(0.995) (1.320) (0.777) (0.379) (0.501) (0.354)
Age/Race/Sex Only 16.898  14.798  3.209 1.565 0.654 1.065
(0.847) (1.377) (0.764) (0.337) (0.508) (0.361)
No Risk Adjustment 14896  13.763 3.625 1.520 0.765 1.315
(0.571) (1.192) (0.713) (0.241) (0.420) (0.332)
Hospitals 2,890 4,023 4,325 2,890 4,023 4,325
Panel B - Risk-Adjusted Readmission
Baseline Risk-Adjustment -9.162  -10.346 0.499 -21.037 -1.428 -2.300 -1.138 -1.112
(1.621) (1.782) (1.575) (2.027) (0.611) (0.651) (0.679) (0.836)
Age/Race/Sex Only -10.358  -6.466 3.152  -20.023 -1.556  -1.621  -0.547  -1.048
(1.212) (1.457) (1.280) (1.859) (0.475) (0.528) (0.482) (0.767)
No Risk Adjustment -10.909 -5.596  2.753  -20.710 -1.601  -1514  -0.585  -1.140
(1.096) (1.441) (1.272) (1.819) (0.435) (0.511) (0.465) (0.732)
Hospitals 2,322 3,904 4,264 2,632 2,322 3,904 4,264 2,632

This table shows the sensitivity of the allocation results of Table 3 to the risk-adjustment procedure. In each panel, we
repeat the baseline allocation results with full risk adjustment, followed by identical specifications under two alternative
measures. First, we risk-adjust using only age-race-sex interactions. Second, we perform no risk-adjustment. Standard errors
are bootstrapped with 300 replications and are clustered at the market level.
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Table A10 - Static Allocation Restricted to Patients Treated in Market of Residence (Choice Model Subsample)

(1) (2) (4) (5) (7) (8) (10) (11)
Condition AMI Heart Failure Pneumonia Hip/Knee Rpl
Sample Baseline Choice Baseline Choice Baseline Choice Baseline Choice
Share Baseline Patients in Sample ~ 1.00 0.87 1.00 0.89 1.00 0.90 1.00 0.84
Risk-Adjusted Survival 17.496 16769 15360 15.184 5.140  5.402
(0.995) (0.988)  (1.320) (1.341)  (0.777) (0.808)
Hospitals 2,800 2,889 4,023 4,023 4,325 4,324
Risk-Adjusted Readmission -9.162 -9.447  -10.346 -10561  0.499 -0.233  -21.037 -20.794
(1.621) (1.600)  (1.782) (1.823)  (1.575) (1.590)  (2.027) (2.014)
Hospitals 2,322 2,322 3,904 3,904 4264 4,263 2,632 2,632
Process of Care Z-Score 0319  0.317 0332 0.332 0.211 0.210
(0.026) (0.026)  (0.016) (0.016)  (0.015) (0.016)
Hospitals 2,398 2,397 3,666 3,662 3,920 3,918
Patient Survey Z-Score -0.321  -0.316 -0.252  -0.261 0210 -0.217 0.057  0.041
(0.052) (0.051)  (0.038) (0.039)  (0.030) (0.030)  (0.051) (0.048)
Hospitals 3,498 3,480 3,598 3,594 3,610 3,608 3,061 3,046

This table repeats the static allocation analysis of Table 3 and shows how it is affected by restricting to patients who
were treated in their market of residence, which is the patients who were included in the choice model. For each
condition, the left column (Baseline) repeats our baseline results. The right column (Choice) runs the same regression but
only counts patients residing in the hospital's market. Standard errors are bootstrapped with 300 replications and are

clustered at the market level.
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Table A11 - Choice Model of Patient Allocation - Raw Logit Coefficients

(1) (2) 3) (4) (5) (6) () (8)
Condition AMI AMI AMI AMI HF HF HF HF
Mean miles to chosen hospital 12.48 12.67 12.65 12.45 8.27 8.27 8.30 8.35
SD miles to chosen hospital 20.06 20.27 20.27 20.31 13.25 13.25 13.27 13.33
Distance -0.111 -0.128 -0.137 -0.099 -0.159 -0.163 -0.160 -0.159
(0.006)  (0.007)  (0.007)  (0.005)  (0.006)  (0.007)  (0.007)  (0.007)
Distance® 0.00019  0.00032  0.00034  0.00012  0.00018  0.00026  0.00013  0.00013
(0.00003) (0.00003) (0.00003) (0.00001) (0.00001) (0.00002) (0.00001) (0.00001)
Risk-Adjusted Survival 19.004 16.041
(1.147) (1.728)
Risk-Adjusted Readmission -13.626 -16.491
(2.007) (1.808)
Process of Care Z-Score 0.568 0.353
(0.036) (0.028)
Patient Survey Z-Score -0.031 0.015
(0.037) (0.032)
Patients 165,005 158,086 158,032 167,429 275,671 274,667 270,773 266,915

Observations
Avg Hospital Choices/Patient

2,869,091 2,321,684 2,427,869

17.39 14.69

15.36

3,359,387 6,241,586 6,103,120 5,811,375 5,532,403
20.06 22.64 22.22 21.46 20.73

This table shows the raw logit coefficients (log odds ratios) from the models of Table 4. See that table for sample restrictions. Standard
errors are analytic and clustered at the market level.
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Table A11 Continued - Choice Model of Patient Allocation - Raw Logit Coefficients

(9) (10) (11) (12) (13) (14)

Condition Pneu Pneu Pneu Pneu Hip/Knee Hip/Knee
Mean miles to chosen hospital 7.49 7.49 7.50 7.54 13.16 13.09
SD miles to chosen hospital 11.92 11.91 11.77 11.77 18.85 18.80
Distance -0.178 -0.178 -0.181 -0.185 -0.105 -0.101
(0.006) (0.006) (0.006) (0.007) (0.004) (0.004)
Distance? 0.00013 0.00013 0.00013 0.00013 0.00017 0.00012

Risk-Adjusted Survival
Risk-Adjusted Readmission
Process of Care Z-Score
Patient Survey Z-Score
Patients

Observations
Avg Hospital Choices/Patient

(0.00001) (0.00001) (0.00001) (0.00001) (0.00002) (0.00001)
6.647
(0.962)
-7.927 -24.001
(1.979) (2.570)
0.238
(0.018)
-0.007 0.157
(0.028) (0.039)
317,004 317,374 309,623 208,185 222673 224451
7,766,357 7,666,146 6,997,264 6,233,133 3,422,003 4,017,558
24.43 24.15 22.60 20.90 15.37 17.90

This table shows the raw logit coefficients (log odds ratios) from the models of Table 4. See that table for sample
restrictions. Standard errors are analytic and clustered at the market level.
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Table A13 - Allocation for Non-ED Non-Transfer Patients across Conditions

(1) (2) 3) (4) (5) (6)
Static Allocation Dynamic Allocation
Measure \ Condition AMI HF Pneu AMI HF Pneu
Risk-Adjusted Survival 14.840  19.870 3.440 5.381 -0.125 0.637
(1.215)  (2.093)  (1.159) (1.071)  (0.993)  (0.720)
Hospitals 2,879 4,023 4,325 2,320 3,924 4,246
Risk-Adjusted Readmission  -6.086 -17.273  -3.285 -6.180  -0.828  0.330
(3.831)  (2.469) (1.900) (1.695) (1.324) (1.173)
Hospitals 2,302 3,903 4,264 1,953 3,811 4,191
Process of Care Z-Score 0.317 0.173 0.015 0.151 0.038 0.023
(0.046)  (0.018)  (0.017) (0.028)  (0.015)  (0.012)
Hospitals 2,377 3,665 3,920 1,944 3,541 3,819
Patient Survey Z-Score -0.039 -0.057 0.001 -0.103 0.001 -0.001
(0.037)  (0.027)  (0.023) (0.035)  (0.020)  (0.018)
Hospitals 3,498 3,598 3,610 2,653 3,472 3,613

This table repeats the analysis of Table 3 but considers hospital size and growth counting only
non-ED non-transfer patients (the omitted category of patients from the analysis of Table 7b,
which looked at allocation of ED patients and non-ED transfer patients). Static allocation uses
the poisson model (see Table 4b) and the baseline allocation sample. Dynamic allocation uses
the subset of hospitals with at least one non-ED non-transfer patient in 2008. Standard errors
are bootstrapped with 300 replications and are clustered at the market level.
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Table Al4 - Sensitivity of ED and Non-ED Transfer Patient Static Allocation to Poisson Regression Model

Condition

Source of admission

(1) ()
AMI

©) 4)

Heart Failure

(5) (6)

Pneumonia

ED Transfer

ED Transfer

ED Transfer

Risk-Adjusted Survival
Baseline Static Allocation

P-value of test for equality
Hospitals

Poisson Static Allocation
P-value of test for equality
Hospitals

Risk-Adjusted Readmission
Baseline Static Allocation
P-value of test for equality
Hospitals

Poisson Static Allocation
P-value of test for equality
Hospitals

Process of Care Z-Score
Baseline Static Allocation
P-value of test for equality
Hospitals

Poisson Static Allocation
P-value of test for equality
Hospitals

Patient Survey Z-Score
Baseline Static Allocation
P-value of test for equality
Hospitals

Poisson Static Allocation

P-value of test for equality
Hospitals

14377 29.264
(0.878)  (2.184)
0.000
2,742 1,408

14489 42532
(1.022)  (2.609)
0.000
2,881 2,881

7903 -13.315
(1.295)  (3.904)
0.109
2,276 1,361

-8.128  -25.550
(1.730)  (5.921)
0.001
2,304 2,304

0.272 0.874
(0.023)  (0.062)
0.000

2,369 1,376
0.326 1.179
(0.021)  (0.090)
0.000
2,379 2,379

0234 0232
(0.049)  (0.067)
0.000
3,116 1,438

-0.157  -0.034
(0.035)  (0.072)
0.051
3,498 3,498

15254  24.036
(1.693)  (2.566)
0.001
3,329 1,563

15.727  50.673
(1.586)  (4.664)
0.000
4,023 4,011

-10.600  -16.527
(1.775)  (3.483)
0.062
3,277 1,550

-11.265 -37.988
(2.320)  (6.744)
0.000
3,003 3,892

0.370 0.325
(0.024)  (0.036)
0.233

3,245 1,520
0.377 0.754
(0.025)  (0.058)
0.000
3,665 3,653

0227  0.045
(0.041)  (0.046)
0.000

3214 1,496

0141 -0.090

(0.032)  (0.060)
0.349

3,508 3,586

7.720 5.658
(1.387)  (1.658)
0.222
3,513 1,601

7.168  14.049
(0.983)  (2.941)
0.009
4325 4,275

0.204 2.008
(2314)  (3.107)
0.585
3,488 1,592

-1.647 1.089
(2.021)  (6.252)
0.653
4,264 4214

0.307 0.078
(0.030)  (0.035)
0.000

3,389 1,548
0.262 0.214
(0.018)  (0.043)
0.261
3,920 3,869

0218 -0.087
(0.041)  (0.039)
0.008

3,257 1,484

0137 -0.203

(0.028)  (0.057)
0.170

3,610 3,559

This table shows the static allocation results for ED and non-ED transferred patients using poisson
regression (as in Table 7b) and linear regression. The left hand side of these regressions considers hospital

size counting only ED patients in the odd-numbered columns and only non-ED transferred patients in the

even-numbered columns. To make the linear and poisson models analogous, the poisson regressand is the

count of patients, not its logarithm. Both approaches include market fixed effects. Hospital counts can be

smaller for the poisson models because they exclude markets with only one hospital. In addition, in the
poisson models, hospital counts may differ between ED and non-ED transfers for the same condition and

quality measure because the counts also exclude markets with no variation in the outcome (e.g. all zeroes).

Standard errors are bootstrapped with 300 replications and are clustered at the market level.
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Table A15 - Choice Model of Patient Allocation for ED and Non-ED Transfer Patients across Conditions

Condition

(1) (2)
AMI

(3) (4)

Heart Failure

(5) (6)

Pneumonia

ED Transfer

ED Transfer

ED Transfer

Share of patients in 2008
Median miles to chosen hospital
Mean miles to chosen hospital
Share treated at nearest hospital

Risk-Adjusted Survival

MRS(1 pp risk-adjusted survival, miles)
P-value of test for equality

Patients

Risk-Adjusted Readmission

MRS(1 pp risk-adjusted readmission, miles)
P-value of test for equality

Patients

Process of Care Z-Score

MRS(1 SD process of care, miles)
P-value of test for equality

Patients

Patient Survey Z-Score

MRS(1 SD patient survey, miles)
P-value of test for equality

Patients

Mean MRSs were evaluated at

0.79 0.14
47 29.8
8.2 36.8
0.57 0.04
0744 -16.061
(0.075)  (1.423)
0.000
120,880 23,185

0.527 10.818

(0.086)  (2.097)
0.000
124,707 22,947
2024 -36.431
(0.191)  (3.468)
0.000
124,980 22,913
0.052  0.090
(0.217)  (3.591)
0.968
131,603 23,281

12.48 12.48

0.76 0.02
44 26.3
7.1 323
0.58 0.09
0623 -16.642
(0.103)  (1.601)
0.000

209,094 6,130

0734 12,774
(0.104)  (2.193)
0.000
208,842 6,115

1712 -25.332
(0212)  (2.521)
0.000

208,503 6,083

0179 2178
(0.172)  (2.092)
0.250

207,472 6,059

8.27 8.27

0.77 0.01
4.4 21.1
7.1 27.7
0.60 0.15
0317  -4.014
(0.054)  (0.777)
0.000

244,358 4,097

0.410 1.303
(0.102)  (1.713)
0.598
244181 4,088

1392 -6.321
(0.122)  (1.545)
0.001

243,368 4,025

0024  4.896
(0.144)  (1.682)
0.002

241,158 3,948

7.49 7.49

These regressions repeat the conditional logit choice models of Table 4 but are restricted to ED patients (in odd
columns) and non-ED transfer patients (in even columns). Standard errors are analytic and clustered at the market

level.

The calculation and interpretation of the MRSs are described in the notes of Table 4. All MRSs are evaluated at mean
distance of the risk-adjusted survival conditional logit (risk-adjusted readmission for hip fracture) of that table, given

in the bottom row here.

The sample is ED patients (odd columns) or non-ED transfer patients (even columns) with the condition in 2008 who
stayed in their market of residence for treatment. The choice set for a patient is all hospitals in his market that treated
at least one patient in 2008 and for which the quality measure exists. Patients who were treated outside their market
of residence or who chose hospitals that lacked the quality measure are excluded from the regressions.
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Table A16 - Static Allocation with Patients Mechanically Allocated to Nearest Hospital

(1) () (3) (4) (5) (6) (7) (8)

Condition AMI HF Pneumonia Hip/Knee Rpl
Measure \ Method Baseline  Mech Baseline  Mech Baseline  Mech Baseline  Mech
Share truly going to closest 0.44 0.52 0.56 0.38
Risk-Adjusted Survival 17.496  2.309 15.360  2.507 5.140  0.685

(0.995) (0.577)  (1.320) (1.115)  (0.777) (0.653)
Hospitals 2,890 2,888 4,023 4,021 4,325 4,322

Risk-Adjusted Readmission -9.162 -0.470  -10.346 -0.660 0.499 -0.328  -21.037 -2.783
(1.621) (1.111)  (1.782) (1.305)  (1.575) (1.130)  (2.027) (1.140)
Hospitals 2322 2320 3,904 3,902 4264 4,261 2,632 2,630

Process of Care Z-Score 0319 0018 0332 0158 0211  0.099
(0.026) (0.015)  (0.016) (0.012)  (0.015) (0.010)

Hospitals 2398 2396 3666 3,664 3,920 3018

Patient Survey Z-Score 0321 -0203  -0252 -0238  -0.210 -0.182  0.057 -0.101
(0.052) (0.024)  (0.038) (0.023)  (0.030) (0.021)  (0.051) (0.018)

Hospitals 3498 3496 3598 3,505 3,610 3,607 3061 3,058

This table shows our baseline static allocation results from Table 3 in comparison to an alternative allocation
constructed by mechanically assigning each patient to his closest hospital. Only hospitals that actually treated
at least one patient with the condition in 2008 are eligible for mechanical assignment. Distance is from the
ZIP code centroid of the patient's residence to the ZIP code centroid of the hospital. The sample for each
regression is all hospitals with the relevant quality measure and at least one mechanically allocated patient in
2008. Standard errors are bootstrapped with 300 replications and are clustered at the market level.
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Table A17 - Dynamic Allocation with Patients Mechanically Allocated to Nearest Hospital

(1) (2) (3) (4) (5) (6) (7) (8)

Condition AMI HF Pneumonia Hip/Knee Rpl
Measure \ Method Baseline  Mech Baseline  Mech Baseline  Mech Baseline  Mech
Share truly going to closest 0.44 0.52 0.56 0.38
Risk-Adjusted Survival 1.533  -0.297 0.774  0.378 1.220 0.842

(0.379) (0.250)  (0.501) (0.497) (0.354) (0.356)
Hospitals 2,890 2,888 4,023 4,021 4,325 4,322
Risk-Adjusted Readmission  -1.428 -0.076 ~ -2.300 -1.358  -1.138 -0.988  -1.112 -0.378

(0.611) (0.585)  (0.651) (0.565)  (0.679) (0.562)  (0.836) (0.747)
Hospitals 2,322 2,320 3,004 3,902 4,264 4,261 2,632 2,630
Process of Care Z-Score 0.048  0.015 0.043  0.027 0.026  0.019

(0.010) (0.010)  (0.009) (0.008)  (0.009) (0.009)
Hospitals 2,398 2,396 3,666 3,664 3,920 3,918
Patient Survey Z-Score -0.065 -0.041 -0.003  0.000 0.007  -0.004 0.037 0.014

(0.015) (0.012)  (0.011) (0.009)  (0.011) (0.008)  (0.022) (0.016)
Hospitals 3,498 3,496 3,598 3,595 3,610 3,607 3,061 3,058

This table shows our baseline dynamic allocation results from Table 3 in comparison to an alternative

allocation constructed by mechanically assigning each patient to his closest hospital. Only hospitals that

actually treated at least one patient with the condition in 2008 are eligible for mechanical assignment.

Distance is from the ZIP code centroid of the patient's residence to the ZIP code centroid of the hospital.

The sample for each regression is all hospitals with the relevant quality measure and at least one mechanically

allocated patient in 2008. Standard errors are bootstrapped with 300 replications and are clustered at the

market level.
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Table A18 - Correlation with CMS Quality Measures

(1) () 3)
Measure \ Condition AMI HF Pneu

Risk-Adjusted Mortality 0.79 0.73 0.82
[2,802] [3,788]  [3,994]

Risk-Adjusted Readmission 0.66 0.67 0.71
[2,254] [3,681] [3,924]

Each cell shows the correlation between our 2008 empirical-
Bayes-adjusted quality measure and the CMS 2008 risk-
standardized quality measure. We produce our risk-adjusted
survival measure as risk-adjusted mortality to match the
CMS measure. Hospitals used to calculate correlation in
brackets.
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