Appendix to The March of The Techies: Technology, Trade, and Job Polarization in France, 1994-2007 by James Harrigan, Ariell Reshef, and Farid Toubal
http://people.virginia.edu/~jh4xd/March_of_the_Techies.htm
16 March 2016

A Data Sources

A. 1 The DADS Poste

The annual declaration of social data (DADS) is a mandatory requirement to all businesses with employees, where employers provide information on employees in each of their establishments. The declaration file serves both fiscal and social administrative purposes. For each employee the following information must be declared: the nature of the work and qualification, the occupation in which the paid work has been made, the starting and closing dates of the period of paid work, the number of paid hours, the terms of employment (full time, part time), the amount paid, etc.

All employers and their employees are covered by the DADS declaration with the exception of self-employed and government bodies, domestic services (section 97-98 of NAF rev. 2) and employees in businesses outside French territory (section 99 of NAF rev. 2). However, local authorities and public-employed hospital staff are included since 1992. Public institutions of industrial and commercial nature are also included.

Since 1993, DADS data was revised to allow a comprehensive processing of all employees. In 2002, some data processing improvements were introduced, including:

- An enhanced verification of the sector of activity of the establishment and its location.
- Better codification of the socio-professional category (PCS). This involves an superior processing of the profession headings provided 'in clear text" by the computerised coding systems for survey responses (the SICORE application) developed by INSEE. Failures in the automatic coding process (1 in 12 employees on average) are then partly manually processed.

These improvements cause small breaks, or "jumps", in aggregate occupational share time series between 2001 and 2002. The breaks are miniscule in relative terms for occupations that have large shares of employment, and they do not alter the trends. For smaller occupations the breaks are not completely negligible, but still do not change the overall trends. The breaks are also manifested in relative wages of occupations. As with occupational employment shares, these changes are negligible for large occupations, and not large for smaller occupations. See below in this appendix on how we splice aggregate series.

A. 2 DADS Poste, private and permanent sample

The DADS Poste dataset includes about 3.3 million private and public firms, operating in different years. Each firm is assigned to a particular legal category (catégorie juridique). Category 4 and 7 defines legal entities governed by public law. These firms are Public Industrial and Commercial Establishment such as SNCF, RATP, Banque de France, etc. or all bodies of the public functions: state, local authorities and hospitals and their dependent establishments. Category 9 defines private law associations. We define a private firm as those belonging to any categories other than 4,7 or 9. There are 458,000 "public" firms and about 2.9 million private firms in the DADS poste. We identified 310,713 private firms that are permanently in the sample: they report strictly positive hours in all years from 1994 to 2007. Table 18 reports the number and percentages of hours and firms in the French private and public sectors.

Table 18: Hours and number of firms in the private and public sectors (various years)

	Hours				Firms	
Sector	Year	Number	Percent of total	Number	Percent of total	
Private	1994	21944417107	75.1	1089725	85.8	
	2002	25089302080	77.1	1224084	81.6	
	2007	26419823084	76.2	1320109	82.5	
Public	1994	7286385816	24.9	180009	14.2	
	2002	7441299453	22.9	276468	18.4	
	2007	8253869786	23.8	280534	17.5	

In our dataset, we keep information on all private sector workers. In Table 18, we show that the private sector represents 77% of hours and 82% of firms in 2002 . We do not identify a trend in private sector shares of hours or of firms.

In Table 19 we focus on the private sector sample. We report the number of hours and manufacturing and nonmanufacturing firms in the private sector and in the sample of firms that are permanent. In 2002, the sample of permanent firms represents 25.4% of the total number of private firms and about 50% of the total number paid in the private sector. The share of firms in the permanent sample declines somewhat over the sample, but the share of hours worked in the permanent firm sample is stable. The shares of manufacturing and nonmanufacturing are similar in the permanent firm sample as in the entire private sector, with slightly larger sahes in manufacturing in the permanent sample. The manufacturing sector represents about 15% of the total number of firms and about 30% of the total number of hours paid in 2002.

A. 3 The INSEE definitions of "techies" (PCS 38 and PSC 47)

A.3.1 PCS 38, technical managers and engineers

This occupational category includes employees having an executive position and performing a technical activity. These employees are responsibile of management of technical activities and/or of tasks that require in-depth scientific knowledge. The category includes employess who engage in

- Studies, research and development in areas involving exact and natural sciences other than social sciences: agronomy, computers, architecture, urban planning, but not statistical and actuarial calculations.
- Production and product manufacturing, conducting projects.
- The sale of professional equipment, building and civil engineering, intermediate goods and computers.
- Related functions of production which include production planning and scheduling, methods (industrialization), purchasing, logistics, quality control, maintenance of equipment and the environment. In the case of industrial purchases, this PCS category includes only cases in which the activity requires technical skills: industry buyers, construction buyers, and buyers of

Table 19: Private and private permanent samples (various years, percentage in parentheses)

	Private Sample			Permanent Private Sample		
	Total	Manufacturing	Non-Manufacturing	Total	Manufacturing	Non-Manufacturing
Number of firms						
1994	1089725	$\begin{aligned} & 149359 \\ & (13.7) \end{aligned}$	$\begin{aligned} & 940366 \\ & (86.3) \end{aligned}$	$\begin{aligned} & 310713 \\ & (28.5) \end{aligned}$	$\begin{aligned} & 48062 \\ & (15.5) \end{aligned}$	$\begin{aligned} & 262651 \\ & (84.5) \end{aligned}$
2002	1224084	$\begin{aligned} & 150568 \\ & (12.3) \end{aligned}$	$\begin{gathered} 1073516 \\ (87.7) \end{gathered}$	$\begin{aligned} & 310713 \\ & (25.4) \end{aligned}$	$\begin{aligned} & 48062 \\ & (15.5) \end{aligned}$	$\begin{aligned} & 262651 \\ & (84.5) \end{aligned}$
2007	1320109	$\begin{gathered} 143503 \\ (13.7) \end{gathered}$	$\begin{gathered} 1176606 \\ (86.3) \end{gathered}$	$\begin{gathered} 310713 \\ (23.5) \end{gathered}$	$\begin{aligned} & 48062 \\ & (15.5) \end{aligned}$	$\begin{gathered} 262651 \\ (84.5) \end{gathered}$
Number of hours						
1994	21944417107	$\begin{gathered} 6605332784 \\ (30.1) \end{gathered}$	$\begin{gathered} 15339084323 \\ (69.9) \end{gathered}$	$\begin{gathered} 10571272113 \\ (48.2) \end{gathered}$	$\begin{gathered} 3557642396 \\ (33.7) \end{gathered}$	$\begin{gathered} 7013629717 \\ (66.3) \end{gathered}$
2002	25089302080	$\begin{gathered} 6839688425 \\ (27.3) \end{gathered}$	$\begin{gathered} 18249613655 \\ (72.7) \end{gathered}$	$\begin{gathered} 12234985433 \\ (48.8) \end{gathered}$	$\begin{gathered} 3798055460 \\ (31.0) \end{gathered}$	$\begin{gathered} 8436929973 \\ (69.0) \end{gathered}$
2007	26419823084	$\begin{gathered} 6353186775 \\ (24.0) \end{gathered}$	$\begin{gathered} 20066636309 \\ (76.0) \end{gathered}$	$\begin{gathered} 12627277437 \\ (47.8) \end{gathered}$	$\begin{gathered} 3656060865 \\ (29.0) \end{gathered}$	$\begin{gathered} 8971216572 \\ (71.0) \end{gathered}$

Authors' Calculation.
services using heavy equipment. It does not include other buyers, whose function is primarily to optimize their purchases based on commercial considerations (this is allocated to PCS 37).

- IT and telecommunications.
- Transport (technical or specific operating activities).

A.3.2 PCS 47, technicians

This professional category includes workers who apply in their activities knowledge or technological practices of industrial type. These workers do not have an executive position. Only technicians and supervisors defined by the collective agreement belong to this category. Under some collective agreements such as in the chemical and agro-food industries, assistant technicians, laboratory assistants, etc.-which would otherwise be included in PCS 47-are categorised as skilled industrial workers, i.e. PCS 62.

As with the technical managers and engineers in PCS 38, a breakdown is made according to the function performed by the technician. First, the role exercised differentiates technicians foremen and supervisors. While the latter mainly have supervisory responsibilities, technicians have mainly a design role, support, advice or expertise. Some technicians have supervisory responsibilities, but they are secondary to their technological skills. Technicians can participate in the production, operation and maintenance, but their role is in principle distinct from foremen and supervisors. As for technical managers and engineers in PCS 38, PCS 47 covers several functional areas such as

- Studies, research and development, and methods.
- Manufacturing and quality control.
- Functions related to production (scheduling-programming-logistics, maintenance, environment).

B Matching DADS with the Custom Data

The French customs dataset and the DADS database are matched on an annual basis using the SIREN identifier of the French firm. The SIREN number is issued by INSEE when a firm registers its business in France. It is a simple serial number, made up of 9 digits (except in the case of public bodies). It does not reflect the nature of the company. It is assigned only once and is not removed from the register until the moment when the legal entity ceases to exist (death or cessation of all activity for an individual, cessation of activity for a corporate body).

Table 20: Share of the value of trade that is matched with the DADS Poste dataset

	Permanent Private Sample	Private Sample		
year	Export	Import	Export	Import
1994	43	43	91	93
1995	44	44	91	93
1996	44	44	90	92
1997	44	43	90	92
1998	44	43	89	91
1999	44	45	88	91
2000	45	45	88	90
2001	44	46	88	89
2002	45	47	88	88
2003	46	48	87	87
2004	47	48	87	88
2005	48	48	85	86
2006	47	47	85	85
2007	47	47	85	86
Average 1994-2007	45.1	45.6	88.0	89.4

Authors' computations
Table 20 shows that our matched sample of private firms covers 88% of imports and 89.4% of exports. Since some private firms are registered abroad, they are not required to declare to the DADS Poste. This explains the imperfect match between the two datasets. The permanent private sample, which represents less than 11% of the total number of firms contribute to 45% of the share of imports and exports.

C Splicing around 2001/2002 break

We splice the series x for some occupation from 2001 backwards in two steps. Define the change in some series x for some occupation in 2000-2001 as Δ_{00-01}; the change in the series for some
occupation in 2002-2003 is Δ_{02-03}; and the average of the two is $\Delta=\left(\Delta_{00-01}+\Delta_{02-03}\right) / 2$. The first step is

$$
x_{t}^{\text {splice }}=\left\{\begin{array}{cc}
x_{t}-x_{2001}+x_{2002}-\Delta & \text { for } \quad t \leq 2001 \tag{11}\\
x_{t} & \text { for } \quad t \geq 2002
\end{array} .\right.
$$

The first step (equation 11) does not take into account the fact that the sum of employment shares or wage bill shares may not be exactly 1 in $t \leq 2001$. To correct for this in the second step we divide each spliced share series by the total of spliced shares in each year: $x_{o t}^{\text {splice,correct }}=x_{o t}^{\text {splice }} / \sum_{o} x_{o t}^{\text {splice }}$. In the case of splicing relative wages, (11) does not maintain the following property, that the weighted average of relative wages equals exactly one, i.e. $\bar{\omega}_{t}=\sum_{o} S_{o t} \omega_{o t}=1$. To correct for this in the second step we divide the spliced relative wage by the weighted average of spliced relative wages, in each year: $\omega_{o t}^{\text {splice,correct }}=\omega_{o t}^{\text {splice }} / \sum_{o} S_{o t}^{\text {splice,correct }} \omega_{o t}^{\text {splice }}$.

D Contribution of polarization to occupational inequality

We measure occupational inequality - wage inequality across occupations - in year t by the weighted standard deviation of relative occupational wages:

$$
\begin{equation*}
\sigma_{t}=\sqrt{\sum_{o} S_{o t}\left(\omega_{o t}-\bar{\omega}_{t}\right)^{2}}=\sqrt{\sum_{o} S_{o t}\left(\omega_{o t}-1\right)^{2}} \tag{12}
\end{equation*}
$$

where $S_{o t}$ is the employment share of occupation $o, \omega_{o t}$ is the wage of occupation o divided by the overall average wage, and $\bar{\omega}_{t}$ is the weighted average of relative wages, which is, by construction, always equal to 1 . This measure is equivalent to the (weighted) coefficient of variation, and has the virtue of being scale independent, and thus invariant to general trends in nominal wages (see Cowell (2008)).

We compute $\omega_{o t}$ as the ratio of the wage bill of occupation o to the employment share of occupation o. We splice these share series around the 2001/2002 break in the series, which is caused by data reclassification in 2002. In an alternative procedure we splice the relative wage series and the employment share series; this does not alter the results significantly. We describe the splicing procedure below.

Thus computed, occupational inequality (12) increased from 0.485 in 1994 to 0.514 in 2007. The increase occurs until 2001, after which occupational inequality is relatively stable. The change in σ_{t} from 1994 to 2007 is due to both changes in relative wages and employment shares. To gauge the contribution of occupational polarization (more generally, changes in occupational employment shares) to occupation inequality we can follow two calculations.

1. Fix wages, let employment shares evolve as in the data. Compute (12) in 2007 as if we had the same wages of 1994:

$$
\sigma_{2007 \mid w_{1994}}=\sqrt{\sum_{o} S_{o, 2007}\left(\omega_{o, \mathbf{1 9 9 4}}-1\right)^{2}} .
$$

Compare $\sigma_{2007}-\sigma_{1994}$ to $\sigma_{2007 \mid w_{1994}}-\sigma_{1994}$. The ratio $r_{1}=\left(\sigma_{2007 \mid w_{1994}}-\sigma_{1994}\right) /\left(\sigma_{2007}-\sigma_{1994}\right)$ tells us the contribution of occupational polarization to occupational inequality.
2. Fix employment shares, let wages evolve as in the data. Compute the weighted standard
deviation of relative wages in 2007 using the employment shares of 1994:

$$
\sigma_{2007 \mid h_{1994}}=\sqrt{\sum_{o} S_{o, 1994}\left(\omega_{o, 2007}-1\right)^{2}} .
$$

Compare $\sigma_{2007}-\sigma_{1994}$ to $\sigma_{2007 \mid h_{1994}}-\sigma_{1994}$. The ratio $r_{2}=\left(\sigma_{2007 \mid h_{1994}}-\sigma_{1994}\right) /\left(\sigma_{2007}-\sigma_{1994}\right)$ tells us the contribution of changes in occupational wages to occupational inequality; $1-r_{2}$ tells us the contribution of occupational polarization to occupational inequality.

The first calculation yields $r_{1}=1.53$, and the second calculation yields $1-r_{2}=1.24$. These results are obtained when splicing employment shares and relative wage series. When splicing employment shares and wage bill shares (computing relative wages as their ratio), the numbers are slightly smaller: $r_{1}=1.43$ and $1-r_{2}=1.14$.

E Properties of the model

In this section of the appendix we show how relative employment varies with θ, the distributional parameter associated with ICT services in the functions \widetilde{H} and \widetilde{M}, and with r, the cost of ICT capital services.

E. 1 Cross-sectional variation in relative employment

How does cross-sectional variation in θ affect the composition of employment within firms? We answer this question by differentiating the relative employment equations with respect to θ,

$$
\begin{aligned}
\frac{\partial}{\partial \theta}\left(\frac{H}{L}\right) & =\frac{-\beta}{1-\alpha-\beta} \frac{p_{C}^{\sigma+1} w_{H}^{\sigma} w_{L}}{\left(\theta p_{C} w_{H}^{\sigma}+(1-\theta) p_{C}^{\sigma} w_{H}\right)^{2}}<0 \\
\frac{\partial}{\partial \theta}\left(\frac{M}{L}\right) & =\frac{-\alpha}{1-\alpha-\beta} \frac{p_{C}^{\eta+1} w_{M}^{\eta} w_{L}}{\left(\theta p_{C} w_{M}^{\eta}+(1-\theta) p_{C}^{\eta} w_{M}\right)^{2}}<0
\end{aligned}
$$

For both H and M, higher θ is associated with lower employment relative to L. The reason is that as the importance of ICT in producing high- and medium-skill tasks rises, the labor that is required to work with ICT capital falls. Since there is no direct effect of θ on the productivity of L, the ratios H / L and M / L decline with θ. The effect of θ on $\frac{H}{M}$ can not be signed:

$$
\frac{\partial}{\partial \theta}\left(\frac{H}{M}\right)=\frac{\beta}{\alpha} \frac{p_{C}^{\sigma+1}\left(p_{C}^{\sigma-\eta} w_{H} w_{M}^{\eta}-1\right)}{\left(\theta p_{C} w_{H}^{\sigma}+(1-\theta) p_{C}^{\sigma} w_{H}\right)^{2}}
$$

The term in parentheses in the numerator is of ambiguous sign, so the derivative is of ambiguous sign. The effect is more likely to be positive the higher is w_{H} or w_{M}, and the lower is p_{C}.

The parameter θ is an indicator of the importance of ICT services in production. The share $S^{I C T}$ of ICT in unit cost b, which is also the elasticity of cost with respect to p_{C}, is a fairly complex function,

$$
S^{I C T}=\frac{p_{C}}{b} \frac{\partial b}{\partial p_{C}}=\frac{\theta p_{C} w_{M} w_{H}\left[\alpha(1-\theta) p_{C}^{\sigma} w_{M}^{\eta-1}+\beta(1-\theta) p_{C}^{\eta} w_{H}^{\sigma-1}+(\alpha+\beta) \theta p_{C} w_{M}^{\eta-1} w_{H}^{\sigma-1}\right]}{\left[\theta p_{C} w_{H}^{\sigma}+(1-\theta) p_{C}^{\sigma} w_{H}\right]\left[\theta p_{C} w_{M}^{\eta}+(1-\theta) p_{C}^{\eta} w_{M}\right]} .
$$

This share is increasing in θ :

$$
\frac{\partial S^{I C T}}{\partial \theta}=\frac{p_{C}}{b} \frac{\partial^{2} b}{\partial p_{C} \partial \theta}=\frac{\alpha\left(p_{C} w_{M}\right)^{\eta+1}}{\left(\theta p_{C} w_{M}^{\eta}+(1-\theta) p_{C}^{\eta} w_{M}\right)^{2}}+\frac{\beta\left(p_{C} w_{H}\right)^{\sigma+1}}{\left(\theta p_{C} w_{H}^{\sigma}+(1-\theta) p_{C}^{\sigma} w_{H}\right)^{2}}>0
$$

Given that $S^{I C T}$ is increasing in θ, it is not surprising that the share of techie workers in total employment, $T /(T+L+M+H)$, can also be shown to be increasing in θ.

E. 2 Polarization with falling ICT prices

We next turn to the effect of falling ICT prices on relative employment. Since $\sigma-1<0$ and $\eta-1>0$, we find that a drop in r leads to a polarization in employment, with H rising relative to M and L, and M falling relative to H and L,

$$
\begin{gathered}
\frac{\partial}{\partial r}\left(\frac{H}{L}\right)=\frac{\beta}{1-\alpha-\beta} \frac{(\sigma-1) \theta(1-\theta) p_{C}^{\sigma} w_{H}^{\sigma} w_{L}}{\left(\theta p_{C} w_{H}^{\sigma}+(1-\theta) p_{C}^{\sigma} w_{H}\right)^{2}}<0 \\
\frac{\partial}{\partial r}\left(\frac{M}{L}\right)=\frac{\alpha}{1-\alpha-\beta} \frac{(\eta-1) \theta(1-\theta) p_{C}^{\eta} w_{M}^{\eta} w_{L}}{\left(\theta p_{C} w_{M}^{\eta}+(1-\theta) p_{C}^{\eta} w_{M}\right)^{2}}>0 \\
\frac{\partial}{\partial r}\left(\frac{H}{M}\right)=\frac{\beta}{\alpha} \frac{p_{C}^{\sigma-\eta}\left[-(1-\theta)(\eta-1) p_{C}^{\sigma} w_{H} w_{M}^{\eta}-w_{H}^{\sigma}\left\{\theta(\eta-\sigma) p_{C} w_{M}^{\eta}+(1-\theta)(1-\sigma) p_{C}^{\eta} w_{M}\right\}\right]}{\left(\theta p_{C} w_{H}^{\sigma}+(1-\theta) p_{C}^{\sigma} w_{H}\right)^{2}}<0
\end{gathered}
$$

The intuition is straightforward: since ICT is a complement to H but a substitute for M, a drop in r leads to greater employment of H and less of M.

We now turn to a key question which helps motivate our empirical specification below: is the polarizing effect of falling r stronger within firms where ICT is more important? Mathematically, is the cross derivative $\frac{\partial^{2}}{\partial r \partial \theta}\left(\frac{H}{M}\right)$ negative? The expression for $\frac{\partial^{2}}{\partial r \partial \theta}\left(\frac{H}{M}\right)$ is quite complex:

$$
\frac{\partial^{2}}{\partial r \partial \theta}\left(\frac{H}{M}\right)=r^{\sigma-\eta} \frac{\beta}{\alpha} \frac{A-B}{\left[-\theta r w_{H}^{\sigma}-(1-\theta) r^{\sigma} w_{H}\right]^{3}}
$$

where the cubed term in the denominator is negative, and

$$
\begin{gathered}
A=r^{\eta} w_{H}^{\sigma} w_{M}(\sigma-1)\left[\theta r w_{H}^{\sigma}-(1-\theta) r^{\sigma} w_{H}\right] \\
B=r^{\sigma} w_{H} w_{M}^{\eta}\left[\theta r w_{H}^{\sigma}(2 \sigma-\eta-1)-(1-\theta)(\eta-1) r^{\sigma} w_{H}\right]
\end{gathered}
$$

Given the assumptions $\eta>1$ and $1>\sigma>0$, the term B is necessarily negative. If $A>0$, then $A-B>0$ and the derivative is therefore negative. This is what intuition suggests: for higher levels of θ, the polarizing effect of a fall in r is greater. However, A need not be positive, though $A-B>0$ is still possible when $A<0$. The condition $A-B>0$ can be analyzed further by writing it out, and dividing both sides by the positive quantity $r^{\eta} w_{H}^{\sigma} w_{M}$, to obtain

$$
(\sigma-1)\left[\theta r w_{H}^{\sigma}-(1-\theta) r^{\sigma} w_{H}\right]>r^{\sigma-\eta} w_{H}^{1-\sigma} w_{M}^{\eta-1}\left[\theta r w_{H}^{\sigma}(2 \sigma-\eta-1)-(1-\theta)(\eta-1) r^{\sigma} w_{H}\right]
$$

When will this inequality be satisfied? Since the RHS is strictly negative, a sufficient but not necessary condition is that $\sigma \rightarrow 1$, so that the LHS $\rightarrow 0$. An alternative sufficient condition is that $\left[\theta r w_{H}^{\sigma}-(1-\theta) r^{\sigma} w_{H}\right]<0$, which will hold for small enough values of θ. Without tediously examining various configurations of the parameter space, we conclude that if the importance of ICT
in production θ is not too high, and/or if ICT is not too complementary with high-skilled labor H, then $\frac{\partial^{2}}{\partial r \partial \theta}\left(\frac{H}{M}\right)<0$: the polarizing effect of falling prices for ICT is stronger in firms where ICT is more important.

Aside from the effects on within-firm relative labor demand, a drop in r can change economywide relative labor demand by reducing costs more rapidly for firms that use ICT more intensively. This effect follows from $\frac{\partial^{2} b}{\partial p_{C} \partial \theta}>0$ shown above.

F Serial correlation and inconsistency

One of the things we are worried about is how serial correlation in the errors of the structural model in levels affects the 2SLS estimator of the change-on-levels regression. The structural model in levels can be written as

$$
\begin{equation*}
\ln h_{f t}=\beta_{f}+D_{f} \cdot t+\mathbf{W}_{f t} \gamma+\varepsilon_{f t} \tag{13}
\end{equation*}
$$

where h is total firm hours, β_{f} is a firm fixed effect, D is a firm specific trend in s, \mathbf{W} is a set of firm characteristics and ε is the error term. We take first differences of (13) to get

$$
\begin{equation*}
\Delta \ln h_{f t}=D_{f t}+\Delta \mathbf{W}_{f t} \gamma+\Delta \varepsilon_{f t}=D_{f t}+u_{f t} \tag{14}
\end{equation*}
$$

where $u_{f t}=\Delta \mathbf{W}_{f t} \gamma+\Delta \varepsilon_{f t}$ is a composite error. We model the firm-specific trend $D_{f t}$ as a function of the initial level of techies and trade in time t. Therefore, we estimate

$$
\begin{equation*}
\Delta \ln h_{f t}=\mathbf{X}_{f t} \beta+u_{f t}, \tag{15}
\end{equation*}
$$

where \mathbf{X} is a subset of the list of variables \mathbf{W}. In practice, we add to (15) industry fixed effects.
Within $u_{f t}$, there is $\Delta \varepsilon_{f t}$. What are the consequences of serial correlation in $\varepsilon_{f t}$? Since we cannot assume $E\left(\mathbf{X}_{f t} \varepsilon_{f t} \mid \beta_{f}\right)=0$, then \mathbf{X} is endogenous and OLS is a biased and inconsistent estimator of β. This is one of the motivations for using instruments for \mathbf{X}. Our instruments are lagged values. Here we characterize the consequences of serial correlation in $\varepsilon_{f t}$.

To make progress, we add the particular timing to (15), and structure to the serial correlation. Here Δ is the change from 2002 to 2007 , and $t=2002$. Our instruments are the set of lagged values of \mathbf{X}, where the latest one is in 1998, i.e. in $t-4$, and the earliest one is in 1994, i.e. in $t-8$. In other words, our instrument set is $\mathbf{X}_{f, t-4}, \ldots \mathbf{X}_{f, t-8}$. Let $E\left(\mathbf{X}_{f t} \varepsilon_{f t} \mid \beta_{f}\right)=\eta \neq 0$, and suppose that $\varepsilon_{f t}$ follows an $\mathrm{AR}(1)$ process

$$
\begin{equation*}
\varepsilon_{f t}=\rho \varepsilon_{f t-1}+v_{f t} \tag{16}
\end{equation*}
$$

where $\rho \in(0,1)$ and v is white noise.
To ease notation, we ignore the firm-level index, which is inconsequential for what follows, unless ρ and η systematically covary across firms, which is unlikely. For \mathbf{X}_{t-4} to be a valid instrument we
need $E\left(\mathbf{X}_{t-4} \Delta \varepsilon_{t}\right)=0$, but this is not the case:

$$
\begin{aligned}
E\left(\mathbf{X}_{t-4} \Delta \varepsilon_{t}\right) & =E\left[\mathbf{X}_{t-4}\left(\varepsilon_{t+5}-\varepsilon_{t}\right)\right] \\
& =E\left[\mathbf{X}_{t-4} \varepsilon_{t+5}\right]-E\left[\mathbf{X}_{t-4} \varepsilon_{t}\right] \\
& =E\left[\mathbf{X}_{t-4}\left(\rho^{9} \varepsilon_{t-4}+\sum_{j=0}^{8} \rho^{j} v_{t+5-j}\right)\right]-E\left[\mathbf{X}_{t-4}\left(\rho^{4} \varepsilon_{t-4}+\sum_{j=0}^{3} \rho^{j} v_{t-j}\right)\right] \\
& =\rho^{9} E\left[\mathbf{X}_{t-4} \varepsilon_{t-4}\right]-\rho^{4} E\left[\mathbf{X}_{t-4} \varepsilon_{t-4}\right] \\
& =\rho^{9} E_{\beta_{f}}\left[E\left(\mathbf{X}_{t-4} \varepsilon_{t-4} \mid \beta_{f}\right)\right]-\rho^{4} E_{\beta_{f}}\left[E\left(\mathbf{X}_{t-4} \varepsilon_{t-4} \mid \beta_{f}\right)\right] \\
& =\left(\rho^{9}-\rho^{4}\right) \eta \\
& =-\eta\left(1-\rho^{5}\right) \rho^{4}<0 .
\end{aligned}
$$

Similar calculations give $E\left(\mathbf{X}_{t-5} \Delta \varepsilon_{t}\right)=-\eta\left(1-\rho^{5}\right) \rho^{5}, \ldots E\left(\mathbf{X}_{t-8} \Delta \varepsilon_{t}\right)=-\eta\left(1-\rho^{5}\right) \rho^{8}$. We see that longer lags give lower correlation, so bias with respect to longer lags is smaller. We also see that the relationship to ρ is non-monotonic, where both $\rho=0$ and $\rho=1$ give zero correlation of \mathbf{X}_{t-s} with $\Delta \varepsilon_{t}$, for any $s=4,5 \ldots 8$. For $\rho \in(0,1)$ we get a non-zero correlation, with a maximum of $E\left(\mathbf{X}_{t-4} \Delta \varepsilon_{t}\right) \approx-\eta \cdot 0.29$ at $\rho \approx 0.85$ and a maximum of $E\left(\mathbf{X}_{t-8} \Delta \varepsilon_{t}\right) \approx-\eta \cdot 0.18$ at $\rho \approx 0.9$; see figure below. Note that one needs rather high ρ to get large values of $E\left(\mathbf{X}_{t-s} \Delta \varepsilon_{t}\right), s=4,5, \ldots 8$.

Inconsistency of 2SLS is the result of the non-zero product of $\left(1-\rho^{5}\right) \rho^{5}$ with η. We expect $\eta=E\left(\mathbf{X}_{f t} \varepsilon_{f t} \mid \beta_{f}\right)$ to be small. First, most of the cross-firm variation in technological and other shocks (and in unobservables, too) is absorbed in the β_{f} firm fixed effects; see (5) and (10). Second, $\mathbf{X}_{f t}$ are firm characteristics and as such they are unlikely to respond much to contemporaneous firm level shocks. Therefore, we think that it is reasonable to say that this source of inconsistency is not a major concern.

G Extensive and intensive margins and evaluation of the effects

Here we explain how we calculate the extensive and intensive margin effects of techies and trade when we use the interaction specification given by equation (7). The extensive and intensive margin effects depend on both estimated parameters and data, and Section G. 3 explains where in the sample we evaluate the effects that we report in Tables 10, 11, and 14 through 17.

In what follows, Δy can be either the firm-level growth in hours $\left(\Delta \ln h_{f t}\right)$ or the change in ex-techie share of hours of the twelve large non-techie occupations $\left(\Delta s_{f o t}\right)$.

G. 1 Extensive margins

G.1. 1 Techies

Comparing the mean of Δs when techpos $=0$ and techpos $=1$,

$$
\begin{aligned}
& \mathbb{E}\left[\Delta s_{f_{\text {ot }}} \mid \text { techpos }_{t-1}=1\right]-\mathbb{E}\left[\Delta s_{f_{f o t}} \mid \text { techpos }_{t-1}=0\right] \\
& =\beta_{1} \text { tech }_{t-1}+\beta_{2} \\
& +\left(\beta_{7} \text { imp }_{t-1}+\beta_{8} \text { imppos }_{t-1}+\beta_{9} \text { exp }_{t-1}+\beta_{10} \text { exppos }_{t-1}\right) \times \text { tech }_{t-1} \\
& +\left(\beta_{11} \text { imp }_{t-1}+\beta_{12} \text { imppos }_{t-1}+\beta_{13} \text { exp }_{t-1}+\beta_{14} \text { exppos }_{t-1}\right) .
\end{aligned}
$$

This can be evaluated at - among other points - the different combinations of the trade variables, imppos and exppos.

	exppos $_{t-1}=0$	exppos $_{t-1}=1$
imppos $_{t-1}=0$	β_{1} tech $_{t-1}+\beta_{2}$	$\begin{aligned} & \beta_{1} \text { tech }_{t-1}+\beta_{2} \\ & +\left(\beta_{9} \exp _{t-1}+\beta_{10}\right) \times \text { tech }_{t-1} \\ & +\left(\beta_{13} \exp _{t-1}+\beta_{14}\right) \end{aligned}$
imppos $_{t-1}=1$	$\begin{aligned} & \beta_{1} \text { tech }_{t-1}+\beta_{2} \\ & +\left(\beta_{7} i m p_{t-1}+\beta_{8}\right) \times \text { tech }_{t-1} \\ & +\left(\beta_{11} i m p_{t-1}+\beta_{12}\right) \end{aligned}$	$\begin{aligned} & \beta_{1} \text { tech }_{t-1}+\beta_{2} \\ & +\left(\beta_{7} \text { imp }_{t-1}+\beta_{8}+\beta_{9} \text { exp }_{t-1}+\beta_{10}\right) \times \text { tech }_{t-1} \\ & +\left(\beta_{11} \text { imp }_{t-1}+\beta_{12}+\beta_{13} \text { exp }_{t-1}+\beta_{14}\right) \end{aligned}$

G.1.2 Imports

$$
\begin{aligned}
& \mathbb{E}\left[\Delta s_{f_{f o t}} \mid \text { imppos }_{t-1}=1\right]-\mathbb{E}\left[\Delta s_{f_{f o t}} \mid \text { imppos }_{t-1}=0\right] \\
& =\beta_{3} i m p_{t-1}+\beta_{5} \\
& +\left(\beta_{7} i m p_{t-1}+\beta_{8}\right) \times \text { tech }_{t-1} \\
& +\left(\beta_{11} \text { imp }_{t-1}+\beta_{12}\right) \times \text { techpos }_{t-1}
\end{aligned}
$$

Since the model contains no interactions between the two trade variables, we only need evaluate the extensive import margin at zero or positive levels of techies:
$\mathbb{E}\left[\Delta s_{f o t} \mid\right.$ imppos $_{t-1}=1$, techpos $\left._{t-1}=0\right]-\mathbb{E}\left[\Delta s_{f_{o t}} \mid\right.$ imppos $_{t-1}=0$, techpos $\left._{t-1}=0\right]=\beta_{3} i m p_{t-1}+\beta_{5}$,
and

$$
\begin{aligned}
& \mathbb{E}\left[\Delta s_{f o t} \mid \text { imppos }_{t-1}=1, \text { techpos }_{t-1}=1\right]-\mathbb{E}\left[\Delta s_{f_{o t}} \mid \text { imppos }_{t-1}=0, \text { techpos }_{t-1}=1\right] \\
& =\beta_{3} i m p_{t-1}+\beta_{5} \\
& +\left(\beta_{7} i m p_{t-1}+\beta_{8}\right) \times \text { tech }_{t-1} \\
& +\left(\beta_{11} i m p_{t-1}+\beta_{12}\right) .
\end{aligned}
$$

G.1.3 Exports

Similarly,

$$
\begin{aligned}
& \mathbb{E}\left[\Delta s_{f_{\text {ot }}} \mid \text { exppos }_{t-1}=1\right]-\mathbb{E}\left[\Delta s_{f o t} \mid \text { exppos }_{t-1}=0\right] \\
& =\beta_{4} \text { exp }_{t-1}+\beta_{6} \\
& +\left(\beta_{9} \text { exp }_{t-1}+\beta_{10}\right) \times \text { tech }_{t-1} \\
& +\left(\beta_{13} \text { exp }_{t-1}+\beta_{14}\right) \times \text { techpos }_{t-1} .
\end{aligned}
$$

So
$\mathbb{E}\left[\Delta s_{f_{\text {ot }}} \mid\right.$ exppos $_{t-1}=1$, techpos $\left._{t-1}=0\right]-\mathbb{E}\left[\Delta s_{f_{o t}} \mid\right.$ exppos $_{t-1}=0$, techpos $\left._{t-1}=0\right]=\beta_{4}$ exp $_{t-1}+\beta_{6}$, and

$$
\begin{aligned}
& \mathbb{E}\left[\Delta s_{f_{f o t}} \mid \text { exppos }_{t-1}=1, \text { techpos }_{t-1}=1\right]-\mathbb{E}\left[\Delta s_{f_{f o t}} \text { exppos }_{t-1}=0, \text { techpos }_{t-1}=1\right] \\
& =\beta_{4} \exp _{t-1}+\beta_{6} \\
& +\left(\beta_{9} \exp _{t-1}+\beta_{10}\right) \times \text { tech }_{t-1} \\
& +\left(\beta_{13} \exp _{t-1}+\beta_{14}\right) .
\end{aligned}
$$

G. 2 Intensive margins

G.2.1 Techies

All else equal, if $t e c h_{t-1}$ changes by $\Delta t e c h_{t-1}$, then $\Delta s_{f o t}$ changes by $\Delta \mathbb{E}\left[\Delta s_{\text {fot }} \mid\right.$ techpos $\left._{t-1}=1\right]=\left(\beta_{1}+\beta_{7}\right.$ imp $_{t-1}+\beta_{8}$ imppos $_{t-1}+\beta_{9}$ exp $_{t-1}+\beta_{10}$ exppos $\left._{t-1}\right) \times \Delta$ tech $_{t-1}$, which can also be evaluated at various combinations of the two trade indicators.

	exppos $_{t-1}=0$	$\operatorname{exppos}_{t-1}=1$
imppos $_{t-1}=0$	$\beta_{1} \times \Delta t e c h ~_{t-1}$	$\left(\beta_{1}+\beta_{9} \exp _{t-1}+\beta_{10}\right) \times \Delta$ tech $_{t-1}$
imppos $_{t-1}=1$	$\left(\beta_{1}+\beta_{7} i m p_{t-1}+\beta_{8}\right) \times \Delta t e c h ~_{t-1}$	$\left(\beta_{1}+\beta_{7} i m p_{t-1}+\beta_{8}+\beta_{9} \exp _{t-1}+\beta_{10}\right) \times \Delta t^{\prime} \mathrm{ch}_{t-1}$

G.2. 2 Imports

Similarly, if Δ tech $_{t-1}=\Delta \exp _{t-1}=0$, then

$$
\Delta \mathbb{E}\left[\Delta s_{f_{o t}} \mid \text { imppos }_{t-1}=1\right]=\left(\beta_{3}+\beta_{7} \text { tech }_{t-1}+\beta_{11} \text { techpos }_{t-1}\right) \times \Delta \text { imp }_{t-1} .
$$

Then

$$
\Delta \mathbb{E}\left[\Delta s_{f_{f o t}} \mid \text { imppos }_{t-1}=1, \text { techpos }_{t-1}=0\right]=\beta_{3} \times \Delta i m p_{t-1},
$$

and

$$
\Delta \mathbb{E}\left[\Delta s_{f_{\text {fot }}} \mid \text { imppos }_{t-1}=1, \text { techpos }_{t-1}=1\right]=\left(\beta_{3}+\beta_{7} \text { tech }_{t-1}+\beta_{11}\right) \times \Delta \text { imp }_{t-1} .
$$

G.2. 3 Exports

Finally, if $\Delta t e c h_{t-1}=\Delta i m p_{t-1}=0$, then

$$
\Delta \mathbb{E}\left[\Delta s_{f_{\text {fot }}} \mid \text { exppos }_{t-1}=1\right]=\left(\beta_{4}+\beta_{9} \text { tech }_{t-1}+\beta_{13} \text { techpos }_{t-1}\right) \times \Delta \text { exp }_{t-1} .
$$

Then

$$
\Delta \mathbb{E}\left[\Delta s_{\text {fot }} \text { exppos }_{t-1}=1, \text { techpos }_{t-1}=0\right]=\beta_{4} \times \Delta \exp _{t-1},
$$

and

$$
\Delta \mathbb{E}\left[\Delta s_{f_{\text {fot }}} \mid \text { exppos }_{t-1}=1, \text { techpos }_{t-1}=1\right]=\left(\beta_{4}+\beta_{9} \text { tech }_{t-1}+\beta_{13}\right) \times \Delta \text { exp }_{t-1} .
$$

G. 3 Evaluating the effects

- We need to pick values of $t e c h_{t-1}, i m p_{t-1}$, and $e x p_{t-1}$ at which to evaluate effects at both margins
- In addition, we need to pick values of $\Delta t e c h_{t-1}, \Delta i m p_{t-1}$, and $\Delta e x p_{t-1}$ at which to evaluate the intensive margin effects
- For comparability across PCS codes, the computed effects are be scaled by variation in the occupation share. In particular
- For the extensive margin effects, we calculate all values at the median of the strictly positive values and then divide by the median of the ex-techie share.
- For the intensive margin effects, we also evaluate levels at the median of the strictly positive values. The changes $\Delta t e c h_{t-1}, \Delta i m p_{t-1}$, and $\Delta e x p_{t-1}$ are evaluated as the difference between the $25^{t h}$ and $75^{t h}$ percentiles of the strictly positive values, that is, $p_{75}(x)-p_{25}(x)$, and then divide by the $25^{t h}-75^{t h}$ percentile range of the ex-techie share.

$\mathbf{H} \quad$ Approximating $\Delta \widehat{\lambda}_{f}$ by using \widehat{g}_{f}

Here we describe how we use predicted values of firm employment growth (from employment growth regreesions) to predict changes in firm employment shares.

The change in the employment share of firm f from period 1 to period 2 is

$$
\Delta \lambda_{f}=\frac{h_{f 2}}{H_{2}}-\frac{h_{f 1}}{H_{1}},
$$

where

$$
H_{t}=\sum_{f} h_{f t}
$$

is total employment in time t. Firm employment growth of firm f from period 1 to period 2 is

$$
g_{f}=\frac{h_{f 2}-h_{f 1}}{h_{f 1}} .
$$

$\Delta \lambda_{f}$ can be written as

$$
\Delta \lambda_{f}=\frac{h_{f 2}}{H_{2}}-\frac{h_{f 1}}{H_{1}}=\frac{h_{f 1}\left(1+g_{f}\right)}{H_{2}}-\frac{h_{f 1}}{H_{1}},
$$

so we can predict

$$
\widehat{\Delta \lambda}_{f}=\frac{h_{f 1}\left(1+\widehat{g}_{f}\right)}{H_{2}}-\frac{h_{f 1}}{H_{1}},
$$

where $h_{f 1}, H_{1}$ and H_{2} are all data.

I Regression Results

As discussed in the previous section, the estimated effects reported in the main text are functions of estimated regression results and the data. In Tables 21 through 26 below we report the regression results.

Table 21: Growth regressions (nonmanufacturing)

	(1)	(2)	(3)	(4)
techies	0.042	0.042	0.058	$0.574^{* * *}$
	0.160	0.158	0.150	0.220
positive techies	0.107*	0.103	$0.124^{* *}$	0.075
	0.063	0.068	0.060	0.061
exports	-0.019	-0.018	-0.019	0.004
	0.018	0.018	0.019	0.017
positive exports	-0.107	-0.123*	-0.057	-0.123
	0.069	0.069	0.077	0.127
imports	0.001	0.007		0.004
	0.007	0.007		0.012
positive imports	-0.040	-0.013		0.028
	0.069	0.104		0.115
imports of intermediate inputs		-0.023*		
		0.012		
positive imports of intermediate inputs		0.004		
		0.097		
imports from China			0.019	
			0.024	
positive imports from China			-0.046	
			0.141	
imports from high income countries			0.006	
			0.009	
positive imports from high income countries			0.010	
			0.081	
imports from other countries			0.005	
			0.014	
positive imports from other countries			-0.118	
			0.113	
techies \times exports				0.391
				0.355
techies \times positive exports				0.019
				0.634
techies \times imports				-0.244
				0.183
techies \times positive imports				-1.143
				0.764
positive techies \times exports				$-0.059 * *$
				0.024
positive techies \times positive exports				0.034
				0.235
positive techies \times imports 84				0.012
				0.023
positive techies \times positive imports				-0.010
				0.217
Observations	261,196	261,196	261,196	261,196
R^{2}	0.005	0.005	0.005	0.002

Table 22: Growth regressions (manufacturing)

	(1)	(2)	(3)	(4)
techies	$0.337^{* * *}$	$0.340^{* * *}$	$0.352^{* * *}$	0.206
	0.103	0.103	0.106	0.225
positive techies	$0.188^{* * *}$	$0.185^{* * *}$	$0.155^{* * *}$	$0.256^{* * *}$
	0.056	0.056	0.057	0.065
exports	-0.004	-0.003	-0.002	0.021
	0.005	0.005	0.005	0.037
positive exports	0.023	0.017	0.048	-0.093
	0.054	0.053	0.049	0.128
imports	0.006	0.010		-0.017
	0.006	0.009		0.031
positive imports	-0.042	0.166		0.223*
	0.067	0.129		0.133
imports of intermediate inputs		-0.008		
		0.012		
positive imports of intermediate inputs		-0.199**		
		0.097		
imports from China			0.079	
			0.060	
positive imports from China			-0.021	
			0.047	
imports from high income countries			$0.017^{* *}$	
			0.009	
positive imports from high income countries			-0.014	
			0.056	
imports from other countries			$-0.027^{* *}$	
			0.012	
positive imports from other countries			-0.106**	
			0.053	
techies \times exports				-0.053
				0.042
techies \times positive exports				-0.935
				0.580
techies \times imports				0.047
				0.074
techies \times positive imports				1.158*
				0.631
positive techies \times exports				-0.014
				0.039
positive techies \times positive exports				0.227
				0.247
positive techies \times imports				0.017
				0.039
positive techies \times positive imports				-0.439
	85			0.272
Observations	47,808	47,808	47,808	47,808
R^{2}	0.018	0.017	0.018	0.013

Table 23: Within regressions (nonmanufacturing; baseline)										
	37	46	54	55	56	62	63	64	67	68
techies	$\begin{gathered} 0.1200^{* * *} \\ 0.0457 \end{gathered}$	$\begin{gathered} 0.0474^{* *} \\ 0.0186 \end{gathered}$	$\begin{gathered} -0.0442^{*} \\ 0.0241 \end{gathered}$	$\begin{gathered} -0.0649^{* *} \\ 0.0321 \end{gathered}$	$\begin{gathered} 0.0155^{*} \\ 0.0093 \end{gathered}$	$\begin{gathered} -0.0578 \\ 0.0471 \end{gathered}$	$\begin{gathered} -0.0250 \\ 0.0204 \end{gathered}$	$\begin{gathered} -0.0337^{* *} \\ 0.0146 \end{gathered}$	$\begin{gathered} 0.0572^{* *} \\ 0.0245 \end{gathered}$	$\begin{gathered} -0.0406 * * \\ 0.0162 \end{gathered}$
positive techies	$\begin{gathered} 0.0105 \\ 0.0092 \end{gathered}$	$\begin{gathered} -0.0105 \\ 0.0078 \end{gathered}$	$\begin{gathered} 0.0022 \\ 0.0075 \end{gathered}$	$\begin{gathered} 0.0052 \\ 0.0083 \end{gathered}$	$\begin{gathered} -0.0053 \\ 0.0068 \end{gathered}$	$\begin{gathered} 0.0270^{* *} \\ 0.0113 \end{gathered}$	$\begin{gathered} 0.0070 \\ 0.0047 \end{gathered}$	$\begin{gathered} -0.0001 \\ 0.0039 \end{gathered}$	$\begin{gathered} 0.0037 \\ 0.0067 \end{gathered}$	$\begin{gathered} -0.0082^{* *} \\ 0.0034 \end{gathered}$
imports	$\begin{gathered} 0.0026^{* *} \\ 0.0011 \end{gathered}$	$\begin{gathered} -0.0020^{*} \\ 0.0012 \end{gathered}$	$\begin{aligned} & 0.0015 \\ & 0.0014 \end{aligned}$	$\begin{gathered} 0.0018^{*} \\ 0.0010 \end{gathered}$	$\begin{gathered} -0.0001 \\ 0.0005 \end{gathered}$	$\begin{gathered} 0.0006 \\ 0.0017 \end{gathered}$	$\begin{gathered} -0.0018^{*} \\ 0.0010 \end{gathered}$	$\begin{gathered} -0.0018^{* * *} \\ 0.0006 \end{gathered}$	$\begin{gathered} 0.0010 \\ 0.0012 \end{gathered}$	$\begin{gathered} -0.0006 \\ 0.0006 \end{gathered}$
positive imports	$\begin{gathered} 0.0081 \\ 0.0118 \end{gathered}$	$\begin{aligned} & 0.0131 \\ & 0.0090 \end{aligned}$	$\begin{aligned} & 0.0040 \\ & 0.0109 \end{aligned}$	$\begin{gathered} -0.0104 \\ 0.0066 \end{gathered}$	$\begin{gathered} -0.0082 \\ 0.0058 \end{gathered}$	$\begin{gathered} -0.0162 \\ 0.0112 \end{gathered}$	$\begin{gathered} 0.0016 \\ 0.0064 \end{gathered}$	$\begin{gathered} 0.0149^{*} \\ 0.0081 \end{gathered}$	$\begin{gathered} 0.0002 \\ 0.0077 \end{gathered}$	$\begin{gathered} -0.0177 \\ 0.0122 \end{gathered}$
exports	$\begin{gathered} 0.0102^{* *} \\ 0.0048 \end{gathered}$	$\begin{gathered} -0.0007 \\ 0.0023 \end{gathered}$	$\begin{gathered} 0.0049 * * \\ 0.0020 \end{gathered}$	$\begin{gathered} -0.0014 \\ 0.0012 \end{gathered}$	$\begin{gathered} 0.0008 \\ 0.0012 \end{gathered}$	$\begin{gathered} -0.0098^{* *} \\ 0.0048 \end{gathered}$	$\begin{gathered} -0.0008 \\ 0.0011 \end{gathered}$	$\begin{gathered} -0.0004 \\ 0.0010 \end{gathered}$	-0.0014 0.0022	$\begin{gathered} -0.0036^{* * *} \\ 0.0014 \end{gathered}$
positive exports	$\begin{gathered} 0.0024 \\ 0.0109 \end{gathered}$	$\begin{gathered} 0.0062 \\ 0.0118 \end{gathered}$	$\begin{gathered} -0.0398^{* * *} \\ 0.0145 \end{gathered}$	$\begin{gathered} 0.0112 \\ 0.0081 \end{gathered}$	$\begin{gathered} -0.0037 \\ 0.0088 \\ \hline \end{gathered}$	$\begin{gathered} -0.0034 \\ 0.0088 \end{gathered}$	$\begin{gathered} -0.0028 \\ 0.0057 \end{gathered}$	$\begin{aligned} & 0.0000 \\ & 0.0074 \end{aligned}$	$\begin{gathered} -0.0090 \\ 0.0108 \end{gathered}$	$\begin{gathered} 0.0350 \\ 0.0156 \end{gathered}$
Observations	76,731	119,470	170,219	73,198	55,464	33,650	114,246	50,376	49,418	106,631
R^{2}	0.049	0.012	0.021	0.010	0.019	0.028	0.002	0.012	0.043	0.005

Table 24: Within regressions (nonmanufacturing; interactions)

	37	46	54	55	56	62	63	64	67	68
techies	0.0283	0.0191	-0.0227	0.0009	0.0193	0.0609*	0.0102	-0.0736*	0.0371	-0.0318*
	0.0214	0.0243	0.0261	0.0252	0.0183	0.0358	0.0411	0.0382	0.0344	0.0174
positive techies	$0.0221^{* * *}$	-0.0111	0.0007	0.0018	-0.0031	0.0217***	0.0048	0.0009	0.0126	-0.0091**
	0.0075	0.0094	0.0090	0.0102	0.0078	0.0075	0.0048	0.0056	0.0094	0.0043
imports	0.0009	-0.0020	0.0026	-0.0012	0.0035	0.0011	0.0001	-0.0005	-0.0036	-0.0015
	0.0028	0.0025	0.0042	0.0022	0.0030	0.0051	0.0018	0.0017	0.0029	0.0014
exports	-0.0041	-0.0013	-0.0028	-0.0005	-0.0100	0.0054	-0.0022	-0.0006	$0.0065^{* *}$	0.0001
	0.0031	0.0030	0.0022	0.0029	0.0062	0.0062	0.0034	0.0019	0.0029	0.0018
positive imports	0.0120	0.0317*	-0.0303*	0.0005	-0.0372*	0.0449*	-0.0122	-0.0112	0.0004	0.0281**
	0.0167	0.0184	0.0180	0.0117	0.0225	0.0267	0.0171	0.0093	0.0127	0.0142
positive exports	-0.0007	-0.0486**	0.0240	0.0057	$0.0506^{* *}$	-0.0443	0.0095	0.0182	0.0300**	-0.0211
	0.0250	0.0199	0.0175	0.0195	0.0237	0.0409	0.0311	0.0118	0.0134	0.0183
techies \times imports	0.0530	0.0032	0.0358	-0.0427*	-0.0101	-0.0582	-0.0203	0.0131*	-0.0237*	0.0119
	0.0656	0.0271	0.0232	0.0229	0.0090	0.0920	0.0299	0.0078	0.0129	0.0076
techies \times positive imports	0.0622	-0.0232	-0.0936	0.0543	0.0262	-0.1630**	-0.0461	0.0228	0.0291	0.0845
	0.0746	0.0966	0.1060	0.0514	0.0313	0.0687	0.0490	0.0487	0.0722	0.0527
techies \times exports	0.0701	-0.0212	-0.0109	0.0360*	0.0135	-0.0515	0.0182	-0.0001	-0.0138	-0.0033
	0.0640	0.0244	0.0216	0.0200	0.0113	0.0583	0.0231	0.0077	0.0141	0.0073
techies \times positive exports	0.0723	0.0996	0.0395	-0.1600**	-0.0438	0.0146	-0.0022	0.0350	0.0156	-0.0998*
	0.0740	0.0948	0.1080	0.0769	0.0338	0.0587	0.0327	0.0234	0.0505	0.0569
positive techies \times imports	-0.0010	0.0000	-0.0044	0.0065	-0.0032	0.0015	-0.0002	-0.0021	0.0067	0.0002
	0.0057	0.0043	0.0054	0.0043	0.0035	0.0080	0.0035	0.0022	0.0041	0.0019
positive techies \times positive imports	-0.0157	-0.0279	0.0559	-0.0165	0.0264	-0.0519	0.0192	0.0308	-0.0007	-0.0618*
	0.0239	0.0278	0.0344	0.0180	0.0258	0.0319	0.0212	0.0201	0.0196	0.0333
positive techies \times exports	0.0071	0.0055	0.0085*	-0.0035	0.0097	-0.0081	-0.0004	-0.0004	-0.0099*	-0.0035
	0.0072	0.0056	0.0047	0.0038	0.0068	0.0091	0.0032	0.0030	0.0058	0.0032
positive techies \times positive exports	-0.0049	0.0574*	-0.0798**	0.0169	-0.0511*	0.0471	-0.0150	-0.0269	-0.0434*	0.0741*
	0.0319	0.0318	0.0382	0.0227	0.0266	0.0451	0.0354	0.0206	0.0248	0.0407
Observations	76,731	119,470	170,219	73,198	55,464	33,650	114,246	50,376	49,418	106,631
R^{2}	0.068	0.011	0.018	0.007	0.017	0.039	0.000	0.010	0.043	

Table 26: Within regressions (manufacturing; interactions)

	37	46	48	54	62	63	64	67
techies	-0.0543	0.0768	0.0353	0.0780	0.2170	$-0.2390^{* * *}$	-0.0623^{*}	-0.3740
	0.0592	0.0606	0.1250	0.0680	0.2260	0.0741	0.0331	0.2970
positive techies	$0.0428^{* * *}$	0.0150	-0.0332	-0.0275^{*}	$-0.2030^{* *}$	$0.0756^{* * *}$	$0.0260^{* * *}$	0.1990
imports	0.0166	0.0169	0.0497	0.0161	0.0858	0.0222	0.0078	0.1270
	-0.0105	-0.0086	0.0015	-0.0046	0.0020	-0.0157^{*}	0.0002	0.0067
exports	0.0057	0.0084	0.0041	0.0047	0.0152	0.0082	0.0024	0.0171
	0.0034	-0.0064	-0.0036	0.0139	-0.0208	0.0150	0.0034	0.0218
positive imports	0.0084	0.0083	0.0049	0.0087	0.0199	0.0180	0.0042	0.0245
	0.0365	0.0194	-0.0100	0.0350	$-0.4150^{* *}$	0.0646	0.0145	0.4590^{*}
positive exports	0.0317	0.0379	0.0250	0.0235	0.1700	0.0525	0.0138	0.2640
	0.0233	-0.0041	0.0021	-0.0381^{*}	0.3130^{*}	0.0336	-0.0038	-0.4630^{*}
techies \times imports	0.0335	0.0382	0.0212	0.0198	0.1660	0.0531	0.0150	0.2560
	-0.0184	0.0019	-0.0074	0.0275	-0.0612	-0.0216	-0.0004	0.0765^{*}
techies \times positive imports	0.0195	0.0235	0.0069	0.0328	0.0449	0.0149	0.0031	0.0439
	0.1980^{*}	-0.0211	-0.0283	-0.0082	$-1.8960^{* *}$	0.0294	0.0645^{*}	2.0460
techies \times exports	0.1190	0.1880	0.0998	0.1230	0.8930	0.2020	0.0377	1.2560
	-0.0019	0.0045	0.0019	-0.0094	0.0198	0.0035	-0.0003	-0.0152
techies \times positive exports	0.0105	0.0116	0.0039	0.0150	0.0290	0.0065	0.0013	0.0308
	-0.0724	0.0269	-0.0367	-0.1150	$1.5220^{* *}$	0.2320	0.0105	-1.6400
positive techies \times imports	0.1090	0.1910	0.0845	0.1050	0.7480	0.1580	0.0238	1.0200
	0.0141^{*}	0.0084	0.0001	0.0013	0.0063	$0.0204^{* *}$	-0.0005	-0.0201
positive techies \times positive imports	0.0074	0.0108	0.0046	0.0076	0.0201	0.0099	0.0027	0.0226
	-0.0643	-0.0151	0.0339	-0.0416	$0.8860^{* *}$	-0.0054	-0.0195	-1.0850^{*}
positive techies \times exports	0.0520	0.0686	0.0466	0.0490	0.3930	0.1080	0.0191	0.5970
	-0.0037	0.0051	0.0033	-0.0127	0.0261	-0.0141	-0.0029	-0.0282
positive techies \times positive exports	0.0091	0.0090	0.0052	0.0084	0.0248	0.0183	0.0043	0.0304
	0.0018	0.0053	-0.0005	0.0598	$-0.6910^{* *}$	-0.1120	0.0007	0.9330^{*}
Observations	0.0489	0.0644	0.0342	0.0380	0.3410	0.0966	0.0192	0.5120
R^{2}	20,244	27,944	20,413	31,882	35,168	26,750	12,649	31,778
	0.060	0.021	0.002	0.012			0.004	

