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This appendix contains proofs and supplementary results for the paper “Iden-

tification of and correction for publication bias.” Section A collects proofs for the

results stated in the main text. Section B considers the behavior of meta-regression

coe�cients, discussed in Section 3.3 of the main text, in a simple example. Section C

discusses the likelihoods used in our empirical applications. Section D states a simple

model for selection on both Z⇤ and a latent variable V ⇤. Section E provides details

on the empirical applications discussed in the main text, while Section F reports

additional results. Section G discusses results based on moment estimators which

are nonparametric in µ. Section H provides corrected inference plots, analogous to

Figure 4 of the main text, based on our psychology, minimum wage, and deworming

applications. Section I generalizes the inference results discussed in the main text to

multivariate normal settings, while Section J discusses the e↵ect of selective publica-

tion on Bayesian inference. Finally, Section K discusses optimal selection in a stylized

model.
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A Proofs

Proof of Lemma 1: By construction, and Bayes rule
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Proof of Lemma 2: The conditional density follows by the same argument used

to derive the truncated likelihood in Lemma 1. As for the marginal density, by

construction,
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⇤

Proof of Theorem 1: The marginal likelihood f
X,X

r derived in Lemma 2 satisfies

f
X,X

r(a, b) · p(b) = f
X,X

r(b, a) · p(a)

for all a, b.

Let (a, b) 2 A ⇥ A be any point such that f
X,X

r(a, b) > 0, so that in particular

p(a) > 0. By the assumptions on the support of f
X

⇤
,X

⇤r and the data generating

process this implies that f
X,X

r(a, c) > 0 for all c 2 A.

This in turn implies that

p(c) = p(a) · fX,X

r(c, a)

f
X,X

r(a, c)

for all c 2 A, where p(a) is the only unknown on the right hand side. We thus find

that p(x) is identified up to scale. ⇤

Proof of Corollary 1: In the case where � ⌘ 1, this is a special case of Theorem

1, and the claim immediately follows. (Note that (Z⇤, Z⇤r) has full support R2.) We

will show that we can reduce the case where � 6⌘ 1 to this special case. Let Z̃ be such

that

Z̃
i

|Z⇤
i

, D
i

,⇥⇤
i

⇠ N(⇥⇤
i

, 1).

If f
˜

Z|Z is identified, we are done. Note that

f
˜

Z|Z = f
⇥|Z ⇤ ',

and

f
Z

r|Z,� = f
⇥|Z,� ⇤ '�

.

Based on the last equation, f
⇥|Z,� is identified using deconvolution (this is a standard

result; see for instance Wasserman 2006, Chapter 10.1, equation 10.18. An extensive

discussion of deconvolution can be found in Meister 2009). We then get

f
⇥|Z =

Z

f
⇥|Z,�f�|Zd�,
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and identification of p(·) follows.
To show identification of µ, note that knowledge of p(·) up to scale allows us to

recover the density f
Z

⇤ via

f
Z

⇤(z) =
E[p(Z⇤)]

p(z)
f
Z

(z).

Deconvolution then identifies µ, since f
Z

⇤ = µ ⇤ '. ⇤

Proof of Corollary 2: Let S⇤
i

= ±1 with probability 0.5, independently of

(Z⇤
i

, Z⇤r
i

, �⇤
i

,⇥⇤
i

), and S
j

= S⇤
Ij
. Define

(V, V r) = S · (W,W r).

We show that (V, V r) satisfies the assumptions of Corollary 1, from which the claim

then follows.

Define S̃⇤ = S⇤ · sign(Z⇤), so that (V, V r) = S̃ · (Z,Zr), and define ⇥̃⇤ = S̃⇤ · ⇥⇤.

Since S̃ is independent of (Z,Zr, �,⇥), we get

⇥̃⇤ ⇠ µ̃ = 1

2

(µ
⇥

⇤ + µ�⇥

⇤)

and

f
V,V

r
,�

(v, vr, �) = p(v) · f
�|Z⇤(�|v) ·

R

'(v � ✓) · 1

�

'
�

v

r�✓

�

�

dµ̃(✓)
R

p(v0) · '(v0 � ✓)dv0dµ̃(✓)
.

This has the exact same form as the density of (Z,Zr, �) under the symmetric measure

µ̃. The claim follows, since identification of µ̃ implies identification of the distribution

of |⇥⇤|. ⇤

Proof of Theorem 2: Under the setup considered, using the implied conditional

independence assumptions we get

f
Z
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By deconvolution, this immediately implies that we can identify f
⇥|Z . Since f

Z

is

directly identified, Bayes’ rule yields the desired result via

f
Z|⇥(z|✓) =

f
⇥|Z(✓|z) · fZ(z)

R

f
⇥|Z(✓|z0) · fZ(z0)dz0

.

⇤

Proof of Theorem 3: Assume w.l.o.g. that � = 1 lies in the interior of the

support of �, and let

h(z) = f
Z

⇤|�⇤(z|1).

If h(·) is identified, then so are p(·) and µ. We will show that h(·) is identified,
which immedaitely identifies µ by deconvolution, since h = µ⇤'. We can then identify

p(z) as before, since the truncated conditional density of Z is given by

f
Z|�(z|�) =

p (z)

E [p (Z⇤) |�]fZ
⇤|�⇤(z|�), (5)

and thus

p(z) = const. ·
f
Z|�(z|1)
h(z)

.

A second order ODE for h(·). Let ⇡ = 1/� be the precision of an estimate.

Di↵erentiating the log of expression (5) for the truncated density at ⇡ = 1 yields

g(z) = @
⇡

log f
Z|�(z|1) = C

1

+ @
⇡

log f
Z

⇤|�⇤(z|1) (6)

for a constant C
1

. Note how, as we di↵erentiate log f
Z|�(z|1) with respect to ⇡ at a

given value z, the term p(z) drops out of the resulting equation. The function g is

identified under our assumptions.

Recall now that the definition of the standard normal density implies '0(z) =

�z'(z). The density f
X

⇤|�⇤ is given by µ⇤'
�

, and thus f
Z

⇤|�⇤(z|1/⇡) =
R

' (z � ✓⇡) dµ(✓),
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which implies

@
z

f
Z

⇤|�⇤(z|1) = �
Z

(z � ✓)' (z � ✓) dµ(✓)

@2

z

f
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Z
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@
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Z
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= �
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f
Z

⇤|�⇤(z|1) + z · @
z

f
Z

⇤|�⇤(z|1) + @2

z

f
Z

⇤|�⇤(z|1)
⇤

,

from which we conclude

h00(z) = (C
1

� 1� g(z)) · h(z)� z · h0(z). (7)

Equation (7) is a second order linear homogeneous ordinary di↵erential equation.

Two free parameters Given the initial conditions h(0) = h
0

and h0(0) = h0
0

, and

given C
1

, the solution to this equation exists and is unique, because all coe�cients

are continuous in z; cf. Murphy (2011). Furthermore, the general solution to this

di↵erential equation can be written in the form h(z, C
1

, h
0

, h0
0

) = h
0

· h
1

(z, C
1

) +

h0
0

· h
2

(z, C
1

), where the functions h
1

(·) and h
2

(·) are determined by equation (7);

cf. Murphy (2011), chapter B. This leaves three free parameters to be determined,

C
1

, h
0

and h0
0

. The constraint
R

h(z)dz = 1 pins down h
0

or h0
0

given the other two

parameters, so that there remain two free parameters.

A fourth order ODE for h(·). We next turn to the second derivative k(·) defined
by

k(z) = @2

⇡

log f
Z|�(z|1) = C

2

+ @2

⇡

log f
Z

⇤|�⇤(z|1),

which is identified under our assumptions, just like g(·). Calculations similar to those

for the first derivative with respect to ⇡ yield the fourth order di↵erential equation

h(4)(z) =
�

k(z)� C
2

+ (g(z)� C
1

)2 � 2
�

h(z)�4zh0(z)�(z2+5)h00(z)�2zh(3)(z). (8)

To complete this proof, we now (i) derive the fourth order di↵erential equation

(8) and (ii) show that it allows us to pin down the remaining free parameters. We

provide further discussion immediately following the proof.
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Derivation of the fourth order ODE for h(·) Di↵erentiating log f
Z

⇤|�⇤ twice

yields

@2

⇡

log f
Z

⇤|�⇤(z|1) =
@2

⇡

f
Z

⇤|�⇤(z|1)
h(z)

� (g(z)� C
1

)2 ,

so that

@2

⇡

f
Z

⇤|�⇤(z|1) = h(z) ·
�

k(z)� C
2

+ (g(z)� C
1

)2
�

.

From f
Z

⇤|�⇤(z|1/⇡) =
R

' (z � ✓⇡) dµ(✓) we note that

@2

⇡

f
Z

⇤|�⇤(z|1) =
Z

�

�✓2 + ✓2 (z � ✓)2
�

' (z � ✓) dµ(✓).

We furthermore have

h(3) = �3h0(z)�
Z

(z � ✓)3 ' (z � ✓) dµ(✓)

h(4) = �3h00(z)� 3

Z

(z � ✓)2 ' (z � ✓) dµ(✓) +

Z

(z � ✓)4 ' (z � ✓) dµ(✓)

= �6h00(z)� 3h(z) +

Z

(z � ✓)4 ' (z � ✓) dµ(✓).

Comparing coe�cients on ✓ between @2

⇡

f
Z

⇤|�⇤ and the derivatives of h(·), we get the

fourth order di↵erential equation (8).

The fourth order ODE pins down the remaining free parameters Our proof
is complete once we have shown that there is at most one set of values C

1

, C
2

, h
0

and h0
0

such that the resulting h satisfies the two di↵erential equations (7) and (8).
Di↵erentiating equation (7) three times yields

h00(z) = (�1 + C1 � g(z))h(z) �zh0(z)

h(3)(z) = �g0(z)h(z) +(�2 + C1 � g(z))h0(z) �zh00(z)

h(4)(z) = �g00(z)h(z) �2g0(z)h0(z) +(�3 + C1 � g(z))h00(z) �zh(3)(z)

h(5)(z) = �g(3)(z)h(z) �3g00(z)h0(z) �3g0(z)h00(z)

+(�4 + C1 � g(z))h(3)(z) �zh(4)(z),
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and di↵erentiating equation (8) yields

h(4)(z) =
�

�2� C2 + (�C1 + g(z))2 + k(z)
�

h(z) �4zh0(z)

�
�

5 + z2
�

h00(z) �2zh(3)(z),

h(5)(z) = (2(�C1 + g(z))g0(z) + k0(z))h(z) +
�

�6� C2 + (C1 � g(z))2 + k(z)
�

h0(z)

�6zh00(z) +
�

�7� z2
�

h(3)(z) �2zh(4)(z).

We can iteratively eliminate the derivatives of h(·) from these equations by substitu-
tion. After doing so, we divide by h(z), which is possible since h(z) > 0 for all z by
construction. This yields the following equation involving the constants C

1

and C
2

,
but not involving the function h(·) or any of its derivatives:

C2
1 + C2

2 + g(z)2 + k(z)2 � z2g0(z)2 + 4k(z)g00(z) + 3g00(z)2

� 2C2 (g(z) + k(z) + 2g00(z)) + 2g(z)
�

k(z) + 2
�

g0(z)2 + g00(z)
��

+ C1

�

2C2 � 2
�

g(z) + k(z) + 2
�

g0(z)2 + g00(z)
���

� 2g0(z)g(3)(z) = 2g0(z)k0(z)

This equation again has to hold for all z. Di↵erentiating twice with respect to z

yields new equations where the constants C
1

and C
2

enter only linearly, and we can

explicitly solve for them.6

Substituting the solutions C
1

and C
2

back into one of the first order di↵erential

equations we obtained by substitution and elimination of higher order derivatives

above, we obtain a solution for h0
0

given h
0

. Given h
0

, h0
0

and the constants C
1

and

C
2

, equation (7) yields a unique solution h(z) for all z. Rescaling any solution h(·)
by a constant again yields a solution by linearity of the di↵erential equations. h

0

is

finally pinned down by the constraint
R

h(z)dz = 1. ⇤

Remarks:

• The proof of Theorem 3 shows that our model is overidentified. If we consider

higher order derivatives of equations (7) and (8), or alternatively evaluate them

at di↵erent values z, we obtain infinitely many restrictions on a finite number

of free parameters.

• The proof of identification is considerably simplified if we restrict the model to a

normal distribution for ⇥⇤, ⇥⇤ ⇠ N(µ̄, ⌧ 2), which implies Z⇤|�⇤ = 1 ⇠ N(µ̄, ⌧ 2+

6The resulting expressions are unwieldy and so are omitted here, but are available on request.
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1), and thus h(z) = const.·exp
⇣

� 1

2(⌧

2
+1)

(z � µ̄)2
⌘

. Denoting e(z) = @
z

log h(z),

we can rewrite equation (7) as

e0(z) = C
1

� g(z)� 1� ze(z)� e2(z),

while the normality assumption yields e(z) = �(z � µ̄)/(⌧ 2 + 1) and e0(z) =

� 1

(⌧

2
+1)

. Plugging in yields

� 1

(⌧

2
+1)

= C
1

� g(z)� 1 + z z�µ̄

(⌧

2
+1)

�
⇣

z�µ̄

(⌧

2
+1)

⌘

2

.

Evaluating this equation at di↵erent values z pins down ⌧ 2 and µ̄.

• The proof of Theorem 3 could be equivalently stated in terms of linear operators

rather than di↵erential equations. In particular, the ordinary di↵erential equa-

tions (7) and (8) are equivalent to the following two linear operator equations,

indexed by z and linear in µ,

Z

[✓ (z � ✓)� (g(z)� C
1

)]' (z � ✓) dµ(✓) = 0
Z

⇥�

�✓2 + ✓2 (z � ✓)2
�

�
�

k(z)� C
2

+ (g(z)� C
1

)2
�⇤

' (z � ✓) dµ(✓) = 0

Identification is then equivalent to the “completeness condition” that there is

at most one probability measure µ in the orthocomplement of the span of the

functions of ✓

[✓ (z � ✓)� (g(z)� C
1

)]' (z � ✓) and
⇥�

�✓2 + ✓2 (z � ✓)2
�

�
�

k(z)� C
2

+ (g(z)� C
1

)2
�⇤

' (z � ✓).

Proof of Corollary 3: The proof proceeds like the proof of Corollary 2. Let

S⇤
i

= ±1 with probability 0.5, independently of (X⇤
i

, �⇤
i

,⇥⇤
i

), and S
j

= S⇤
Ij
. Define

V = S · |X|. We show that (V, �) satisfies the assumptions of Theorem 3, from which

the claim then follows.

Define S̃⇤ = S⇤ · sign(X⇤), so that V = S̃ ·X, and define ⇥̃⇤ = S̃⇤ ·⇥⇤. Since S̃ is
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independent of (Z, �,⇥), we get ⇥̃⇤ ⇠ µ̃ = 1

2

(µ
⇥

⇤ + µ�⇥

⇤) and

f
V/�|�(z|�) =

p(z) ·
R

'(z � ✓/�)dµ̃(✓)
R

p(z0)'(z0 � ✓/�)dz0dµ̃(✓)
.

This has the exact same form as the density of Z given � under the symmetric

measure µ̃. The claim follows, where we again use the fact that identification of µ̃

implies identification of the distribution of |⇥⇤|. ⇤

Proof of Theorem 4 For the first claim, note that since F
X|⇥(x|✓) tends to zero

as ✓ ! �1 and tends to one as ✓ ! 1, for any x and any ↵ 2 (0, 1) there exist

✓
l

(x) and ✓
u

(x) such that

F
X|⇥(x|✓u(x)) < ↵ < F

X|⇥(x|✓l(x)),

where since F
X|⇥(x|✓) is decreasing in ✓ we know that ✓

l

(x) < ✓
u

(x). Thus, since

F
X|⇥(x|✓) is continuous in ✓, the intermediate value theorem implies that there exists

✓̂
↵

(x) 2 (✓
l

(x), ✓
u

(x)) such that F
X|⇥

⇣

x|✓̂
↵

(x)
⌘

= ↵. Since F
X|⇥(x|✓) is strictly

decreasing we know this ✓̂
↵

(x) is unique, while its strict monotonicity and continuity

likewise follow from strict monotonicity and continuity of F
X|⇥ in both arguments.

For the second claim, note that since F
X|⇥(x|✓) is strictly decreasing in ✓, we

have ✓̂
↵

(x)  ✓ if and only if F
X|⇥(x|✓)  ↵. Continuity of F

X|⇥(x|✓) in x, however,

means that X is continuously distributed conditional on ⇥ = ✓ for all ✓, and thus

that F
X|⇥(X|✓) is uniformly distributed conditional on ⇥ = ✓. Thus,

P
�

F
X|⇥(x|✓)  ↵|⇥ = ✓

�

= ↵,

so

P
⇣

✓̂
↵

(X)  ✓|⇥ = ✓
⌘

= ↵ for all ✓,

as we aimed to show. ⇤

Proof of Lemma 5 Under the stated assumptions, Lemma 1 implies that X is

continuously distributed under all ✓ 2 R, with density given by (1). To prove the

strict monotonicity of F
X|⇥(x|✓) in ✓, we adapt the proof of Lemma A.1 in Lee et al.

(2016).
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In particular, note that for x
1

> x
0

and ✓
1

> ✓
0

,

f
X|⇥(x1

|✓
1

)

f
X|⇥(x0

|✓
1

)
>

f
X|⇥(x1

|✓
0

)

f
X|⇥(x0

|✓
0

)
,

as can be verified from multiplying out these expressions. This means, however, that

f
X|⇥(x1

|✓
1

)f
X|⇥(x0

|✓
0

) > f
X|⇥(x1

|✓
0

)f
X|⇥(x0

|✓
1

).

Integrating both sides with respect to x
0

from �1 to x < x
1

, and with respect to x
1

from x to 1, we obtain that

(1� F
X|⇥(x|✓1))FX|⇥(x|✓0) > (1� F

X|⇥(x|✓0))FX|⇥(x|✓1),

and thus that F
X|⇥(x|✓0) > F

X|⇥(x|✓1). Since this argument applies for all x and all

✓
0

, ✓
1

, we have shown that F
X|⇥(x|✓) is strictly decreasing in ✓ for all x.

To prove that F
X|⇥(x|✓) ! 0 as ✓ ! 1, note that by our assumption that

p(x) is almost everywhere continuous, for any x
0

there exists a point x
1

> x
0

, and

an open neighborhood (x
1

� ", x
1

+ ") of x
1

such that p(·) is continuous on the

closure of this neighborhood, and x
0

< x
1

� 2". Note, however, that for ✓ > x
1

+ ",

f
X|⇥(x|✓) for x  x

0

is bounded above by '((x � ✓)/�)/(� · E[p(X)|⇥⇤ = ✓]). On

the other hand, the infimum of f
X|⇥(x|✓) over (x1

� ", x
1

+ ") is bounded below by

p
l

· '((x
1

� "� ✓)/�)/(� · E[p(X)|⇥⇤ = ✓]) for

p
l

= inf
x2[x1�",x1+"]

p(x) > 0.

Integrating and taking the ratio, we see that

P (x  x
0

|⇥ = ✓)

P (x 2 (x
1

� ", x
1

+ ")|⇥ = ✓)
 �((x

0

� ✓)/�)

2"p
l

· '((x
1

� "� ✓)/�)/�
.

This expression can in turn be bounded above by

�((x
0

� ✓)/�)

2"p
l

· '((x
0

� ✓)/�)/�
,

which is proportional to Mill’s ratio and tends to zero and ✓ ! 1 (see, for example,

Baricz (2008)). This immediately implies that F
X|⇥(x0

|✓) ! 0, as we aimed to show.
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The claim that F
X|⇥(x|✓) ! 1 as ✓ ! �1 can be proved analogously. ⇤

B Interpretation of meta-regression coe�cients

In Section 3.3 of the main text we discussed meta-regressions. We noted that under

our assumptions meta-regressions deliver a valid test of the null of no selectivity. We

also noted, however, that in the presence of selectivity the function E[Z|1/� = ⇡] is

in general non-linear, and the slope of the best linear predictor cannot be interpreted

as a selection-corrected estimate of E[⇥⇤].

To see this, consider the following simple example. Suppose that ⇥⇤ ⌘ ✓̄ > 0, so

there is no parameter heterogeneity across latent studies, and that p(Z) = 1(Z > zc),

so there is strict selection on significant, positive e↵ects. Let " ⇠ N(0, 1), and let m

be the inverse Mill’s ratio, m(x) = '(x)

1��(x)

. Then

E[Z|1/� = ⇡] = E[⇡✓̄ + "|⇡✓̄ + " > zc] = ⇡✓̄ +m
�

zc � ⇡✓̄
�

.

This is a nonlinear function of ⇡, and the slope and intercept of the best linear

predictor approximating this function both depend on the distribution of ⇡ (that is,

of �). If � takes on only small values, and thus ⇡ only takes on large values, the Mill’s

ratio term is negligible, and E⇤[Z|1/� = ⇡] ⇡ ⇡✓̄. If � takes on only large values, a

first order approximation around ⇡ = 0 yields

E⇤[Z|1/� = ⇡] ⇡ m(zc) + ✓̄(1�m0(zc)) · ⇡.

This shows in particular that the slope, which in this example equals ✓̄(1 �m0(zc)),

is in general di↵erent from the average e↵ect ✓̄, so that meta-regressions cannot be

expected to deliver bias-corrected estimates of E[⇥⇤].
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C Likelihood and parametric specifications

C.1 Systematic replications

Under the replication setup of display (2), the marginal density of Z,Zr, � is

f
Z,Z

r
,�

(z, zr, �) =
p(z)

R

'(z � ✓) · 1

�

'
�

z

r�✓

�

�

dµ(✓)
RR

p(z0) · '(z0 � ✓)dz0dµ(✓)
f
�

⇤|Z⇤(�|z). (9)

Denoting the total number of observations by J , the joint likelihood of the observed

sample ((z
1

, zr
1

, �
1

), ..., (z
J

, zr
J

, �
J

)) is L(p, µ) =
Q

J

j=1

f
Z,Z

r
,�

(z
j

, zr
j

, �
j

). To fit a given

model, we maximize this likelihood with respect to p(·) and µ. Since f
�

⇤|Z⇤ enters

multiplicatively, it plays no role in maximum likelihood estimation of p(·) and µ.

Hence, we drop this term from the likelihood used in estimation.

To model p(·), similar to Hedges (1992) we consider step functions

p(z) /
K

X

k=1

�
p,k

· 1 (⇣
k�1

 z < ⇣
k

) ,

where �1 = ⇣
0

< ⇣
1

< . . . < ⇣
K

= 1 are fixed cuto↵s. Since p(·) is only identified

up to scale, we normalize �
p,K

= 1 and estimate �
p,1

, ..., �
p,K�1

. Thus �
p,k

can be

interpreted as the publication probability for a latent study with Z⇤ between ⇣
k�1

and ⇣
k

, relative to a latent study with Z⇤ � ⇣
K�1

.

Sign normalization As noted in the discussion preceding Corollary 2, the sign of

the initial estimate is normalized to be positive in both of our replication datasets. In

these applications, we thus follow the approach of Corollary 2 and assume that p(·) is
symmetric around zero. We conduct estimation based on the normalized z-statistics

(W,W r) = sign(Z) · (Z,Zr) using the marginal likelihood

f
W,W

r
,�

(w,wr, �) = f
Z,Z

r
,�

(w,wr, �) + f
Z,Z

r
,�

(�w,�wr, �).

In this setting, Corollary 2 implies that �
1

, ...�
k�1

and the distributuion of |⇥⇤| are
identified.

Specification test As noted in Section 3.1.3, replication data allows us to identify

models where conditional publication probabilities may depend on both Z⇤ and ⇥⇤.
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We use these models to check our baseline specifications. Note that in principle any

model that nests the null of no dependence of p(·) on ⇥⇤ given Z⇤ can be used to

construct a valid test of this null. The specific model we consider determines where

power is directed. In Section D we introduce a model where publication decisions

depend both on Z⇤ and on whether a 5% z-test based on an unobserved independent

normal estimate rejects ⇥⇤ = 0. This yields a conditional publication probability of

the form

p (z, ✓) =
K

X

k=1

(�
p,k

+ �
p,k

· (✓)) · 1 {⇣
k�1

 z < ⇣
k

} , (10)

for

 (✓) =
�(1.96� ✓)� �(�1.96� ✓)� �(1.96) + �(�1.96)

�(1.96) + �(�1.96)
,

where � is the standard normal distribution function. This model implies that the

publication probability is �
p,k

when Z⇤ is in bracket k and ⇥⇤ is zero, while the

publication probability is approximately �
p,k

+ �
p,k

when Z⇤ is in bracket k and |⇥⇤|
is large. Setting �

p

= 0 recovers our baseline model, so testing H
0

: �
p

= 0 allows us

to test our baseline specifications.

C.2 Meta-studies

In the meta-study context, the marginal likelihood of (X, �) is

f
X,�

(x, �) =
p(x

�

) ·
R

'
�

x�✓

�

�

dµ(✓)
R

p(x
0

�

) · '
�

x

0�✓

�

�

dx0dµ(✓)
f ⇤
�

(�). (11)

Again denoting the total number of observations by J, this yields joint likelihood

L(p, µ) =
Q

J

j=1

f
X,�

(x
j

, �
j

), which we again use to estimate p(·) and µ. As before, f
�

enters multiplicatively and need not be specified. Also as before, we consider step

function specifications for p(·).

Sign normalization In contexts where the sign of the initial estimate has been

normalized to be positive, we follow the analog of the approach described above,

restricting p(·) to be symmetric and conducting estimation based on |X| = W ·� and

�.

Note that meta-regressions, as discussed in section 3.3, do not yield a valid test

of the null of no selectivity when using sign-normalized data. Regressions of |X| on
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� can have a non-zero slope even when p(·) is constant, and regressions of |Z| on 1/�

can have a non-zero intercept. For this reason, we do not discuss meta-regression

results in our sign-normalized applications.

D Latent selection model

The baseline model we consider assumes that E[D = 1|X⇤,⇥⇤] = p(X⇤), so there

is no dependence of publication probabilities on the latent parameter given X⇤. In

the context of systematic replication studies with normally distributed estimates,

however, we showed that a more general class of models which allows for dependence

of p(·) on ⇥⇤ is identified. In Section C.1 we introduced a parametric specification for

such a more general model, which we then estimate to provide a specification check

for our baseline model.

The parametric specification introduced in Section C.1 can be derived as follows.

Assume that publication decisions are based on

 

Z⇤

V ⇤

!

|⇥⇤ ⇠ N

  

⇥⇤

⇥⇤

!

,

 

1 0

0 1

!!

,

where V ⇤ is a second, independent estimate of the true e↵ect ⇥⇤, with the same

variance as Z⇤. Assume further that

D
i

|Z⇤
i

, V ⇤
i

,⇥⇤
i

⇠ Ber (p (Z⇤
i

, V ⇤
i

)) ,

so publication decisions are based on Z⇤
i

and V ⇤
i

. Since V ⇤
i

is unobserved, integrating

over its distribution gives publication probabilities of the form p(Z⇤,⇥⇤).

We want our specification for p (z, v) to nest our baseline specifications,

p (z) =
K

X

k=1

�
p,k

1 {⇣
k�1

 z < ⇣
k

} .

To ensure this, we consider the generalized specification

p (z, v) =

P

K

k=1

�̃1

p,k

1 {⇣
k�1

 z < ⇣
k

, |v| � ⇣
V

}
+
P

K

k=1

�̃0

p,k

1 {⇣
k�1

 z < ⇣
k

, |v| < ⇣
V

} ,
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which allows publication probabilities to depend on whether two-sided z-tests based

on the latent variable v reject ⇥⇤ = 0. Integrating over the distribution of V ⇤ yields

the following specification for p (z, ✓):

p (z, ✓) =

P

K

k=1

�̃1

p,k

1 {⇣
k�1

 z < ⇣
k

}
⇣

1�  ̃ (⇣
V

, ✓)
⌘

+
P

K

k=1

�̃0

p,k

1 {⇣
k�1

 z < ⇣
k

}  ̃ (⇣
V

, ✓) ,

where

 ̃ (⇣
V

, ✓) = Pr {|V | < ⇣
V

|⇥⇤ = ✓} = � (⇣
V

� ✓)� � (�⇣
V

� ✓) .

As noted in the main text, p (z, ✓) is only nonparametrically identified up to a

normalization for each value ✓. Analogous to our baseline specifications, here we

impose the normalization �̃1

p,K

= �̃0

p,K

= 1. To obtain the specification discussed in

Section C.1, we then define

�
p,k

= �̃1

p,k

+  ̃(⇣
V

, 0) · (�̃0

p,k

� �̃1

p,k

),

�
p,k

=
⇣

�̃1

p,k

� �̃0

p,k

⌘

·  ̃ (⇣
V

, 0) ,

and

 (⇣
V

, ✓) =
 ̃ (⇣

V

, ✓)�  ̃ (⇣
V

, 0)

� ̃ (⇣
V

, 0)
,

which yields the specification

p (z, ✓) =
K

X

k=1

(�
p,k

+ �
p,k

· (⇣
V

, ✓)) · 1 {⇣
k�1

 z < ⇣
k

} .

Note that our normalization now implies that �
p,K

= 1 and �
p,K

= 0. For our speci-

fication tests we set ⇣
V

= 1.96, corresponding to a 5% test based on V ⇤.

E Details on data and variable construction

In this section, we give additional details on our applications in Section 5 of the main

text and discuss how we cast the data of Camerer et al. (2016) and Open Science

Collaboration (2015) into our framework.
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E.1 Details for economics laboratory experiments

To apply our approach, we need z-statistics and standard errors for both the original

and replication studies. For the application to data from Camerer et al. (2016), we

first collect p-values and standardized e↵ect sizes from table S1 in the supplement.

Some of the p-values are censored below at .001, so for these studies we also collect the

original estimates and standard errors from the replication reports posted online by

Camerer et al.7 and recompute the censored p-values. We then construct z-statistics

by inverting the p-value transformation, where z = ��1(1�p/2). To obtain e↵ect size

estimates, we apply the Fisher transformation to standardized e↵ect sizes reported

by Camerer et al. Dividing these estimates by the z-statistics finally recovers the

standard error.

We can infer the sign of the z-statistics from the sign of the standardized e↵ect.

Since signs are arbitrary and not comparable across studies, however, we normalize

all signs to be positive.

E.2 Details for psychology laboratory experiments

To apply our approach to the data from Open Science Collaboration (2015), we again

need z-statistics and standard errors for both the original and replication studies. We

draw the inputs for all of these calculations from the RPPdataConverted spreadsheet

posted online by the Open Science Collaboration.8 Since Open Science Collaboration

(2015) report p-values for both the original and replication studies, we invert the p-

value transform to obtain z statistics. We use the p-values reported in their columns

T.pval.USE.O and T.pval.USE.R for the original and replication studies, respectively.

Since some of the p-values in this application are based on one-sided tests, we account

for this in the inversion step. To compute e↵ect size estimates, we again apply the

Fisher transformation to the standardized e↵ect sizes (columns T.r.O and T.r.R of

RPPdataConverted for the original and replication studies, respectively), and then

divide these estimates by the z-statistics to construct standard errors.

7Available at https://experimentaleconreplications.com/replicationreports.html, ac-
cessed September 3, 2016.

8Available at https://osf.io/ytpuq/files/, accessed January 19, 2017.
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F Additional maximum likelihood results

This section discusses results from additional specifications estimated by maximum

likeihood, intended to complement the results discussed in the main text.

F.1 Additional results for economics laboratory experiments

Here we report results based on an alternative specification for the economics repli-

cation data from Camerer et al. (2016). We consider specifications which allow the

probability of publication to vary depending on whether a latent study is sent to

the American Economic Review (AER) or Quarterly Journal of Economics (QJE).

The publication probability is identified up to scale separately for each journal. We

index the journal by w, and set set p(z, w) proportional to one for both journals when

the result is significantly di↵erent from zero at the 5% level. This ensures that the

� parameters can be interpreted as publication probabilities for insignificant results

relative to significant results at the same journal. Our ultimate specification is

p(Z, S) /

8

>

>

>

<

>

>

>

:

�
p,1

|Z| < 1.96,W = AER

�
p,1

+ �
p,2

|Z| < 1.96,W = QJE

1 |Z| � 1.96.

Results are reported in Table 5. In both the replication and metastudy specifications

we estimate that the QJE is more likely to publish insignificant results. This makes

sense given that the sample contains one significant result and one insignificant result

published in the QJE, while it contains fifteen significant results and one insignificant

result published in the AER. The estimated publication probabilities for the QJE are

quite noisy, however, and we cannot reject the hypothesis that �
p,2

= 0, so the same

publication rule is used at both journals.

F.2 Additional results for psychology laboratory experiments

We next report results based on three alternative specifications for the psychology

replication data from Open Science Collaboration (2015). First, we limit attention

to studies with a large number of denominator degrees of freedom. Second, we limit

attention to studies where the replication protocols were approved by the original
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Replication

 � �
p,1

�
p,2

0.373 2.153 0.015 0.216
(0.267) (1.029) (0.021) (0.333)

Meta-study

̃ �̃ �
p,1

�
p,2

1.847 0.131 0.021 0.786
(1.582) (0.065) (0.030) (1.496)

Table 5: Selection estimates from lab experiments in economics, allowing publication prob-
ability to vary by journal. The left panel reports estimates from replication specifications,
while the right panel reports results from meta-study specifications. Publication probability
�
p

is measured relative to omitted category of studies significant at 5% level.

authors. Third, we allow the publication rule to vary by journal.

Denominator degrees of freedom As noted in the main text, our baseline anal-

ysis of the Open Science Collaboration (2015) data focuses on studies that use z- or

t-statistics (or the squares of these statistics). Our analysis then treats these statis-

tics as approximately normal. A potential problem here is that t-distributions with a

small number of degrees of freedom behave di↵erently from normal distributions, and

in particular have heavier tails. While the smallest degrees of freedom in the Open

Science Collaboration (2015) data is seven, this concern may still lead us to worry

about the validity of our approach in this setting. To address this concern, in Table

6 we report parameter estimates using the replication and meta-study specifications

discussed in Section 5.2, where

p(Z) /

8

>

>

>

<

>

>

>

:

�
p,1

|Z| < 1.64

�
p,2

1.64  |Z| < 1.96

1 |Z| � 1.96,

except that we now limit attention to the 52 observations with denominator degrees

of freedom at least 30 in the original study.9 Our results are broadly similar for this

restricted sample and for the full data.

Approved replications As discussed in the main text, Gilbert et al. (2016) argue

that some of the replications in Open Science Collaboration (2015) deviated substan-

9We screen only on the degrees of freedom in the original study since sample sizes, and thus
degrees of freedom, in the replication studies depend on the results in the initial study. Hence,
screening on replication degrees of freedom has the potential to introduce additional selection on the
results of the original study.
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Replication

 � �
p,1

�
p,2

0.174 1.602 0.007 0.142
(0.121) (0.677) (0.005) (0.079)

Meta-study

̃ �̃ �
p,1

�
p,2

0.869 0.138 0.018 0.247
(0.657) (0.059) (0.012) (0.142)

Table 6: Selection estimates from lab experiments in psychology, restricted to observations
with denominator degrees of freedom at least 30, with standard errors in parentheses. The
left panel reports estimates from replication specifications, while the right panel reports
results from meta-study specifications. Publication probability �

p

is measured relative to
omitted category of studies significant at 5% level.

tially from the protocol of the original studies, which might lead to a violation of

our assumption that the replication and original results are generated by the same

underlying parameter ⇥. Before conducting their replications, however, Open Science

Collaboration (2015) asked the authors of each original study to review the proposed

replication protocol, and recorded whether the original authors endorsed the replica-

tion protocol. We can thus partly address this critique by limiting attention to the

subset of studies where the replication was endorsed by the authors of the original

study. Re-estimating the specifications of Section 5.2 on the 51 endorsed replications,

we obtain the estimates reported in Table 7. These estimates suggest a somewhat

smaller degree of selection than our baseline estimates, consistent with a higher rate

of replication for approved replications, but are broadly similar to our other estimates.

Replication

 � �
p,1

�
p,2

0.490 1.159 0.017 0.365
(0.268) (0.402) (0.011) (0.165)

Meta-study

̃ �̃ �
p,1

�
p,2

0.634 0.198 0.022 0.440
(0.502) (0.078) (0.014) (0.217)

Table 7: Selection estimates from lab experiments in psychology, approved replications,
with standard errors in parentheses. The left panel reports estimates from replication spec-
ifications, while the right panel reports results from meta-study specifications. Publication
probability �

p

is measured relative to omitted category of studies significant at the 5% level.

Publication rule varies by journal The published studies replicated in Open

Science Collaboration (2015) are drawn from Psychological Science (PS), the Journal

of Personality and Social Psychology (JPSP), and the Journal of Learning Memory

and Cognition (JLMC). In this section we estimate a model where we allow the

publication rule to vary by journal, which we index by W . In particular, we consider
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the publication rule:

p(Z,W ) /

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

�
p,1

|Z| < 1.64,W = JLMC

�
p,1

+ �
p,2

|Z| < 1.64,W = PS

�
p,1

+ �
p,3

|Z| < 1.64,W = JPSP

�
p,4

1.64  |Z| < 1.96,W = JLMC

�
p,4

+ �
p,5

1.64  |Z| < 1.96,W = PS

�
p4

+ �
p,6

1.64  |Z| < 1.96,W = JPSP

1 |Z| � 1.96,

As discussed in the economics application above, we normalize the publication prob-

ability for studies significant at the 5% level to be proportional to one, which allows

us to interpret the � coe�cients in terms of the publication probability for insignif-

icant studies relative to that for significant studies at the same journal. Such a

normalization is necessary since publication probabilities are only identified up to a

journal-specific scaling factor.

Results from estimating this model are reported in Table 8. These are noisier than

our baseline estimates, as is intuitive given the larger number of parameters, but the

JLMC coe�cients show roughly the same pattern as our baseline specifications. None

of the di↵erences between journal publication probabilities are significant, and a joint

test yields a p-value of .78 in the replication specification and .84 in the metastudy

specification, so in neither case do we reject the null hypothesis that all the journals

use the same publication rule.

F.3 Additional results for minimum wage meta-study

This section reports results based on two alternative specifications for the data from

Wolfson and Belman (2015). Since Wolfson and Belman (2015) include estimates from

both published and working papers, we first reanalyze the data limiting attention to

published studies. We then examine whether the publication rules appear to vary

with time.
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Replication

 � �
p,1

�
p,2

�
p,3

�
p,4

�
p,5

�
p,6

0.315 1.308 0.008 0.002 -0.001 0.428 -0.288 -0.332
(0.140) (0.330) (0.008) (0.011) (0.011) (0.245) (0.264) (0.260)

Meta-study

̃ �̃ �
p,1

�
p,2

�
p,3

�
p,4

�
p,5

�
p,6

0.966 0.154 0.013 0.005 0.008 0.555 -0.360 -0.368
(0.561) (0.054) (0.014) (0.019) (0.026) (0.320) (0.350) (0.364)

Table 8: Selection estimates from lab experiments in psychology, allowing publication
probability to vary by journal. The top panel reports estimates from replication specifica-
tions, while the bottom panel reports results from meta-study specifications. Publication
probability �

p

is measured relative to omitted category of studies significant at 5% level.

Published Studies Table 9 reports estimates based on the model

⇥⇤ ⇠ ✓̄ + t(⌫) · ⌧̃ , p(X/�) /

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�
p,1

X/� < �1.96

�
p,2

�1.96  X/� < 0

�
p,3

0  X/� < 1.96

1 X/� � 1.96

based on the subset of published papers, consisting of 705 estimates drawn from 31

studies. As in the main text we cluster our standard errors at the study level. The

resulting estimates are broadly similar to those obtained on the full sample.

✓̄ ⌧̃ ⌫̃ �
p,1

�
p,2

�
p,3

0.022 0.044 1.697 0.838 0.365 0.387
(0.012) (0.025) (0.380) (0.331) (0.146) (0.140)

Table 9: Meta-study selection estimates from minimum wage data, published studies, with
standard errors in parentheses. Publication probability �

p

is measured relative to omitted
category of studies estimating a positive e↵ect significant at the 5% level.

Time Trends We next examine whether publication rules appear to vary over time.

In particular, letting T
i

denote the year in which study i was initially circulated, for
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&(x) = exp(x)/(1 + exp(x)) the logistic function we consider the model

⇥⇤ ⇠ ✓̄ + t(⌫) · ⌧̃ , p(X/�, T ) /

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

& (�
p,1

+ �
p,2

(T � 2013)) X/� < �1.96

& (�
p,3

+ �
p,4

(T � 2013)) �1.96  X/� < 0

& (�
p,5

+ �
p,6

(T � 2013)) 0  X/� < 1.96

& (1) X/� � 1.96

where we measure time in years relative to 2013, which is the median year observed

in the data, and T varies between 2000 and 2015. We use the logistic function here to

ensure that publication probabilities lie between zero and one, and without the time

trend this would simply be a reparameterization of our baseline model. Publication

probabilities are only identified up to a year-specific scaling, so by normalizing the

publication coe�cient for studies finding a negative and significant e↵ect of the min-

imum wage on employment to be proportional to one, we again ensure that the �
p

coe�cients can be interpreted as measuring publication probabilities relative to the

publication probability for studies finding a negative and significant e↵ect within the

same year.

✓̄ ⌧̃ ⌫̃ �
p,1

�
p,2

�
p,3

�
p,4

�
p,5

�
p,6

0.019 0.021 1.359 0.284 0.176 -1.231 0.074 -1.089 0.025
(0.009) (0.013) (0.300) (0.845) (0.178) (0.602) (0.117) (0.478) (0.113)

Table 10: Meta-study selection estimates from minimum wage data, published studies,
with standard errors in parentheses. Publication probability �

p

is measured relative to
omitted category of studies estimating a positive e↵ect significant at the 5% level.

These estimates are consistent with our baseline model assuming that publication

rules are constant over time, with a p-value of 0.7 for the test of the joint hypothesis

that �
p,2

= �
p,4

= �
p,6

= 0.

F.4 Additional results for deworming meta-study

In the main text we report estimates for the deworming data of Croke et al. (2016)

based on a specification that restricts p(·) to be symmetric around zero. To comple-
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ment those results, here we consider the more flexible specification

⇥⇤ ⇠ N(✓̄, ⌧ 2), p(X/�) /

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�
p,1

X/� < �1.96

�
p,2

�1.96  X/� < 0

�
p,3

0  X/� < 1.96

1 X/� � 1.96.

Results based on this specification are reported in Table 11. These estimates di↵er

substantially from those reported in the main text, and suggest strong selectivity

against negative estimates, particularly negative and significant estimates. However,

as can be seen from Figure 10 in the main text there is only a single negative and

statistically significant estimate in the sample, so the reliability of conventional large-

sample approximations here is highly suspect.

✓̄ ⌧̃ �
p,1

�
p,2

�
p,3

-0.714 0.521 0.008 0.151 1.299
(0.626) (0.206) (0.025) (0.207) (1.113)

Table 11: Meta-study selection estimates from deworming wage data, flexible specification,
with standard errors in parentheses. Publication probability �

p

is measured relative to
omitted category of studies estimating a positive e↵ect significant at the 5% level.

To reduce the number of free parameters, we estimate a version of the model which

does not allow discontinuities in p(·) based on statistical significance, but only based

on the sign of the estimate,

⇥⇤ ⇠ N(✓̄, ⌧ 2), p(X/�) /

8

<

:

�
p

X/� < 0

1 X/� � 0.

Fitting this model yields the estimates reported in Table 12. These estimates sug-

gest strong selectivity on the sign of the estimated e↵ect, where positive e↵ects are

estimated to be ten times more likely to be published than negative e↵ects. While

this is consistent with the distribution of observations in Figure 10, our choice of

this specification was driven by our results in Table 11. Given that this is a form of

specification search, it suggests that conventional asymptotic approximations may be

unreliable here, and thus that these results should be treated with caution.
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✓̄ ⌧̃ �
p

-0.217 0.365 0.094
(0.156) (0.103) (0.099)

Table 12: Meta-study selection estimates from deworming wage data, restricted asym-
metric specification, with standard errors in parentheses. Publication probability �

p

is
measured relative to omitted category of studies estimating a positive e↵ect significant at
the 5% level.

G Moment-based estimation results

In the main text we report estimates based on parametric specifications for the dis-

tribution µ of true e↵ects ⇥⇤ in latent studies. To confirm that our results are not

sensitive to the choice of parametric specification for µ, in this section we report re-

sults based on moment-based estimators that require only that we specify a functional

form for the publication probability p, and leave the distribution of true e↵ects fully

nonparametric. The moments used to obtain these estimators are motivated by the

identification arguments in Section 3 of the paper.

We begin by introducing the moments we consider in the replication and meta-

study settings, respectively, and then discuss results in our applications. Overall,

we find that while moment-based approaches often yield less precise conclusions, our

main findings are robust to dropping our parametric specifications for µ.

G.1 Estimation Moments

G.1.1 Replication Moments

In our discussion of identification for settings with replication data in Section 3.1 of

the main text, we noted that if the original and replication estimates have the same

distribution in the population of latent studies, then absent selective publication the

joint distribution of published and replication estimates will likewise be symmetric.

This observation implies a moment restriction that can be used for estimation.

To derive our moments, we focus on the case where the original and replication

estimates (Z⇤
i

, Z⇤r
i

) are normally distributed in the population of latent studies. First

consider the case where �⇤
i

⌘ 1 for all i, so the original and replication studies have
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the same standard error. Note that for any constants c
1

, c
2

E [1 {|Z⇤
i

| > c
1

, |Zr⇤
i

|  c
2

}� 1 {|Zr⇤
i

| > c
1

, |Z⇤
i

|  c
2

}] = 0,

in the population of latent studies no matter the distribution µ of true e↵ects.10 In

particular, this reflects our observation in the main text that, absent selection, we

should observe an equal number of cases where the original results are significant and

the replications are insignificant, and where the replication results are significant and

the original results are insignificant, where we can consider results significant and

insignificant at di↵erent levels.

We can recover the distribution of latent studies from the distribution of published

studies by weighting by the inverse of the publication probability, E [p (Z⇤)] /p (Z) .

This implies the moment restriction

E



E [p (Z⇤
i

)]

p (Z
j

)

�

1
�

|Z
j

| > c
1

,
�

�Zr

j

�

�  c
2

 

� 1
�

�

�Zr

j

�

� > c
1

, |Z
j

|  c
2

 �

�

= 0

in the population of published studies. Since E [p (Z⇤
i

)] does not vary across ob-

servations, the moment restriction continues to hold if we drop this term yielding

moments

E



1

p (Z
j

)

��

|Z
j

| > c
1

,
�

�Zr

j

�

�  c
2

 

� 1
�

�

�Zr

j

�

� > c
1

, |Z
j

|  c
2

 �

�

= 0 (12)

which depend only on observables and p(·) and so can be used to estimate p (·) .
Thus far, in deriving moments we have assumed that �⇤

i

⌘ 1. In our applications,

however, we in fact have �⇤
i

|Z⇤
i

⇠ f
�|X (�|Z⇤

i

). If the distribution of �
i

is bounded

above by some value �
max

, we can adapt the moments (12) to account for unequal

variances by noising up both the original and replication estimates to noise level �
max

.

In particular, for "
j

, "r
j

iid N (0, 1) random variables,

E
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p (Z
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@
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2

o

1

A

3

5 = 0.

To eliminate the added noise ("
j

, "r
j

) in these moments, we can take the conditional

10Here we focus on the absolute value of the original and replication estimates to avoid complica-
tions from the sign normalization in our replication applications.
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expectation of each component given the data and define

h (z, 1, zr, �) = E
hn

�

�
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By the law of iterated expectations, we obtain the moment restrictions

E



1

p (Z
j

)

�

h
�

Z
j

, 1, Zr

j

, �
j

�

� h
�

Zr

j

, �
j

, Z
j

, 1
��

�

= 0 (13)

which depends only on observables and p and so can be used for estimation.

To use these moments in practice we need to choose a value of �
max

and values for

c. In our applications we below we take �
max

to equal sample maximum of �
i

, which is

about 2.5 for the economics replications and about 2 for the psychology replications,

and consider values c in each specification corresponding to the critical values used

in p. Setting �
max

to the sample maximum is ad-hoc, so as a further check we also

report results based on the moments

E



1
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��

Z2

j

� 1
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�
�

Zr2
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� �2

j

��

�

= 0 (14)

which can be shown to hold for any µ by arguments along the same lines as above

and do not require that we select a value �
max

.

G.1.2 Metastudy Moments

The moments we consider in our metastudy applications are derived using a similar

approach. As noted in our discussion of metastudy identification in Section 3.2 of

the text, absent selectivity in the publication process our assumptions imply that the

distribution of e↵ects for noisier studies is just a noised-up version of the distribution

for less noisy studies. In particular, if we consider a pair of latent studies (i, i0) with

�⇤
i

> �⇤
i

0 then for any constant c and "
i

⇠ N (0, 1)

E



1 {X⇤
i

< c�⇤
i

}� 1

⇢

X⇤
i

0 +
q

�⇤2
i

� �⇤2
i

0 "
i

< c�⇤
i

�

�

�

�

�

�⇤
i

, �⇤
i

0

�

= 0.
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As above we can eliminate the noise from the added error "
i

. If we define

h (x, �
1

, �
2

) = E
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+
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� �2

2

"
i

< c�⇤
1

�
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then the law of iterated expectations implies that

E [1 {X⇤
i

< c�⇤
i

}� h (X⇤
i

0 , �⇤
i

0 , �⇤
i

)] = 0.

As in the replication setting, to obtain moments which hold in the population of

published studies, we can weight inversely by the publication probability (now for the

pair X
i

, X
i

0), again dropping normalizing constants to obtain the moments

E
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p (X
j

/�
j

)

1

p (X
j

0/�
j

0)
(1 {X

j

< c�
j

}� h (X
j

0 , �
j

0 , �
j

))

�

= 0 (15)

which depend only on p(·) and observables and so can be used for estimation.11

For estimation, we again consider values of c corresponding to the thresholds used

in p (·). Since our moments hold for each pair (j, j0) with �
j

> �
j

0 , we average over all

pairs of observations and obtain asymptotic distributions using results for estimators

based on U-statistics from Honore and Powell (1994).

G.2 Empirical Applications

G.2.1 Economics laboratory experiments

In our application to data on economics lab experiments from Camerer et al. (2016),

we again model the publication probability as

p (Z) /

8

<

:

�
p

if |Z|  1.96

1 otherwise.

When we attempt to estimate �
p

based on moments (13), we find that while the

system of moments is just-identified and can be solved exactly, the zero of the sample

moments corresponds to a negative value of �
p

. This occurs because, unlike in likeli-

11In the sign-normalized case, as above we instead form moments based on the absolute value of
Xj .
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hood estimation, the GMM moments do not automatically rule out negative values of

�
p

, though such values are meaningless under our model. Indeed, we see in simulation

that even under correct specification negative point estimates arise with non-negligible

probability for small sample sizes and small values of �
p

. To address this issue, in Ta-

ble 13 we report 95% confidence sets based on Stock and Wright (2000), which are

robust both to weak-identification and to parameter-on-the-boundary issues.

Robust CS, Baseline Moments

�
p

Lower Bound �
p

Upper Bound
0.000 0.049

Robust CS, Alternative Moments

�
p

Lower Bound �
p

Upper Bound
0.000 1

Table 13: Stock and Wright (2000) 95% confidence sets for �
p

for lab experiments in
economics. The left panel reports results based on our baseline moments (13) for replica-
tion models, while the right panel reports results based on the alternative moments (14).
Publication probability �

p

is measured relative to omitted category of studies significant at
the 5% level.

From these results, we see that when we consider our baseline moments (13) we

obtain a robust confidence set roughly consistent with the estimate of �
p

reported in

the main text, even though we are fully relaxing our assumption on the distribution

µ of latent e↵ects. When we consider the alternative moments (14), by contrast, the

moments are less informative, and the robust confidence set covers the full parameter

space.

As before, instead of using the replication data we can instead focus just on the

initial estimates and standard errors and apply our meta-study approach based on

the moments (15). The results from this approach are reported in Table 14. For

comparability with the replication results above we include both a conventional point

estimate and standard error and an identification-robust confidence based on the

generalization of Stock and Wright (2000) to the present U-statistic setting. These

results are again broadly consistent with those obtained both from the replication

moments above and from our likelihood estimates in the main text, showing strong

selection in favor of statistically significant results.
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Point Estimate

�
p

0.040
(0.042)

Robust CS

�
p

Lower Bound �
p

Upper Bound
0.000 0.177

Table 14: Moment-based results for lab experiments in economics. The left panel reports
an estimate and standard error based on our moments (15) for metastudy models, while the
right panel reports a 95% identification-robust confidence set based on the same moments.
Publication probability �

p

is measured relative to omitted category of studies significant at
the 5% level.

G.2.2 Psychology laboratory experiments

Turning next to the data on lab experiments in psychology from Open Science Col-

laboration (2015), as in the main text we model the publication probability as

p (Z) /

8

>

>

>

<

>

>

>

:

�
p1

if |Z|  1.64

�
p2

if 1.64 < |Z|  1.96

1 otherwise.

We find that identification of �
p2

based on both our replication and metastudy mo-

ments appears weak in this setting. We report identification-robust joint confidence

sets for (�
p1

, �
p2

) based on Stock and Wright (2000) in Figure 11. While both con-

fidence sets allow a wide range of possible values �
p2

, only small values of �
p,1

are

consistent with the confidence set based on replication data. On the other hand,

results based on our meta-study approach allow a wide range of values for either

parameter, though they rule out cases where both are large simultaneously. Both

sets of results are consistent with our estimates in the main text, and in the case of

the replications specification again provide evidence of selection against insignificant

results.

To avoid specifying a value �
max

to use in the moments (13), we can instead

consider the moments (14). Since yeilds only a single moment restriction, we consider

selection only on significance at the 5% level, as in our application to economics lab

experiments above. Robust confidence sets from this specification are reported in

Table 15. These results highlight that we still obtain informative results in this

setting if we restrict attention to selection on significance at the 5% level.

76



0.05 0.1 0.15 0.2 0.25

1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
2

0.05 0.1 0.15 0.2 0.25

1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2

Figure 11: This figure plots 95% Stock and Wright (2000) joint confidence sets for �
p,1

and �
p,2

using data from lab experiments in psychology. The left panel plots results based
on the baseline replication moments (13), while the right panel plots results based on the
metastudy moments (15).

Robust CS, Alternative

Replication Moments

�
p

Lower Bound �
p

Upper Bound
0.000 0.045

Robust CS, Metastudy Moments

�
p

Lower Bound �
p

Upper Bound
0.000 0.115

Table 15: Stock and Wright (2000) 95% confidence sets for �
p

for lab experiments in
psychology, assuming only selection on significance at the 5% level. The left panel reports
results based on our alternative moments (14) for replication data, while the right panel
reports results based on our metastudy moments. Publication probability �

p

is measured
relative to omitted category of studies significant at the 5% level.

G.2.3 E↵ect of minimum wage on employment

For the data from Wolfson and Belman (2015) we consider the specification

p (X/�) /

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�
p1

if X/� < �1.96

�
p2

if � 1.96  X/� < 0

�
p3

if 0  X/� < 1.96

1 if X/� � 1/96.
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Table 16 reports estimates and standard errors. We see that the main message of our

�
p,1

�
p,2

�
p,3

1.174 0.231 0.235
(0.417) (0.100) (0.080)

Table 16: Meta-study selection estimates from GMM specifications for minimum wage
data, with standard errors in parentheses. Publication probability �

p

is measured relative
to omitted category of studies estimating a positive e↵ect significant at the 5% level.

likelihood results in this setting, that results finding a significant and negative e↵ect

of the minimum wage on employment are favored over insignificant results, again

comes through clearly. In contrast to our likelihood results the point estimate for �
p1

also suggests selection in favor of significant results finding a positive e↵ect of the

minimum wage on employment, but given the large standard error associated with

this coe�cient the results are also consistent with selection on statistical significance

alone (�
p1

= 1, �
p2

= �
p3

), with a p-value of .86 for the joint test.

G.2.4 Deworming meta-study

For the deworming data of Croke et al. (2016) we again consider the specification

p (Z) /

8

<

:

�
p

if |Z|  1.96

1 otherwise
.

Estimating this model using our meta-study moments yields the point estimate and

standard error reported in the left panel of Table 17.

Point Estimate

�
p

0.251
(0.236)

Robust CS

�
p

Lower Bound �
p

Upper Bound
0.048 1

Table 17: Moment-based results for deworming data. Left panel reports an estimate
and standard error based on our moments (15) for metastudy models, while right panel
reports a 95% identification-robust confidence set based on the same moments. Publication
probability �

p

is measured relative to omitted category of studies significant at the 5% level.

While the point estimate for �
p

obtained in this setting is quite di↵erent from that
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in our baseline specification, the robust confidence set is unbounded above, suggesting

that identification is quite weak and the point estimate is likely unreliable.

H Bias corrections based on applications

In this section, we plot our median unbiased estimators and corrected confidence

sets, analogous to Figure 4 of the paper, based on the selection estimates from our

applications. Corrections based on replication estimates from the Camerer et al.

(2016) data are plotted in Figure 12. Corrections based on replication estimates from

the Open Science Collaboration (2015) data are plotted in Figure 13. Corrections

based on estimates using data fromWolfson and Belman (2015) are reported in Figure

14. Finally, corrections based on estimates from the Croke et al. (2016) data are

plotted in Figure 15.

I Inference when selection depends on multiple

variables

In this section, we extend the frequentist inference results developed in the main text

to cases where publication decisions are based not just on a scalar, but instead on a

normally distributed vector of estimates. Let X⇤
i

represent the estimates from study

i, and assume that

X⇤
i

|⇥⇤
i

⇠ N (⇥⇤
i

,⌃)

for ⌃ known. Assume that ⌃ is constant across latent studies i; the generalization to

the case where latent study i has variance ⌃⇤
i

is immediate. Since X⇤
i

is a vector, ⌃

is a matrix. We thus obtain the following density for X⇤ given ⇥⇤:

Assumption 1

The distribution f
X

⇤|⇥⇤ (x|✓) is multivariate normal with mean ✓ and variance ⌃:

f
X

⇤|⇥⇤ (x|✓) = (2⇡)�
k
2 |⌃|�

1
2 exp

✓

�1

2
(x� ✓)0⌃�1 (x� ✓)

◆

.

We consider inference on � = v0⇥ for a known non-zero vector v, treating the

other elements of ⇥, denoted ⌦, as nuisance parameters. To conduct inference on
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Figure 12: This figure plots 95% con-
fidence bounds and the median unbi-
ased estimator for the selection estimates
based on replication data from Camerer
et al. (2016). The usual (uncorrected) es-
timator and confidence bounds are plot-
ted in grey for comparison.
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Figure 13: This figure plots 95% con-
fidence bounds and the median unbi-
ased estimator for the selection estimates
based on replication data from Open Sci-
ence Collaboration (2015). The usual
(uncorrected) estimator and confidence
bounds are plotted in grey for compar-
ison.
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Figure 14: The figure to the left plots
95% confidence bounds and the median
unbiased estimator for the selection es-
timates based on replication data from
Wolfson and Belman (2015). The usual
(uncorrected) estimator and confidence
bounds are plotted in grey for compar-
ison.
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Figure 15: This figure plots 95% con-
fidence bounds and the median unbi-
ased estimator for the selection estimates
based on replication data from Croke
et al. (2016). The usual (uncorrected) es-
timator and confidence bounds are plot-
ted in grey for comparison.80



the ith element of ⇥ we can simply take v to be the ith standard basis vector. To

illustrate our results, we consider the example of di↵erence in di↵erences estimation,

with selection on both statistical significance and a test for parallel trends.

I.1 Illustrative example: di↵erence in di↵erences

Suppose we observe data from two states, s 2 {1, 2} over three time periods t 2
{1, 2, 3}. Denote the average outcome for residents of state s at time t by Y

st

, and

note that under regularity conditions, Y
st

will be approximately normally distributed

Y
st

⇠ N
�

µ
st

, �2

st

�

.

For simplicity we assume that Y
st

is independent of Y
s

0
t

0 if s 6= s0 or t 6= t0.

Suppose we are interested in estimating the e↵ect of a particular state-level policy,

and let D
st

be a dummy for the presence of the policy in state s at time t. The

di↵erence in di↵erences model (with no control variables) assumes that

µ
st

= ↵
s

+ �
t

+D
st

�.

If we are interested in the e↵ect of a policy enacted in state 1 in period 3 and nowhere

else in the sample, for example, we would take

D
st

= {s = 1, t = 3} .

A key identifying assumption in the di↵erence-in-di↵erences model is that the only

source of variation in µ
st

at the state-by-time level is the policy change of interest.

In particular, while we allow state fixed e↵ects ↵
s

and time fixed e↵ects �
t

, we rule

out state-time-specific e↵ects other than those acting through D
st

. This is known as

the parallel trends assumption.

With only two periods of data this assumption is untestable, since we have four

free parameters (↵
1

,↵
2

, �
2

, �) and only four means (µ
11

, µ
12

, µ
21

, µ
22

). With data from

an additional time period, however, we have five free parameters and six means and

so can instead consider the model

µ
st

= ↵
s

+ �
t

+ D̃
st

�+D
st

�
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where

D̃
st

= {s = 1, t = 2}

and the parallel trends assumption implies that � = 0. Thus, given data from two

states in three time periods the parallel trends assumption is testable.

Formal and informal tests of parallel trends are common in applications of di↵er-

ence in di↵erences strategies. To describe a formal test in our setting, note that the

natural estimator (G,L) for (�,�) has a simple form,

(G,L) = ((X
13

�X
12

)� (X
23

�X
22

) , (X
12

�X
11

)� (X
22

�X
21

)) .

To test the parallel trends assumption in this setting we again want to test that �,

the mean of L, is equal to zero.

Consider a population of latent studies with the structure just described, and

let us further simplify the model by setting �
st

= 1 for all t. For latent estimates

X⇤ = (G⇤, L⇤) and latent true e↵ects ⇥⇤ = (�⇤,⇤⇤),

 

G⇤

L⇤

!

�

�

�

�

�

 

�⇤

⇤⇤

!

⇠ N

  

�⇤

⇤⇤

!

,

 

4 2

2 4

!!

where the covariance matrix is known.

As in our illustrative example in the main text, assume studies that reject � = 0

at the 5% level are ten times more likely to be published than studies that do not.

In addition, assume studies that reject � = 0 at the 5% level are ten times less likely

to be published than studies that do not. This leads to publication probability

p (X) / 1

⇢

|G⇤|
�
G

> 1.96,
|L⇤|
�
L

 1.96

�

1 + 1

⇢

|G⇤|
�
G

> 1.96,
|L⇤|
�
L

� 1.96

�

0.1

+1

⇢

|G⇤|
�
G

 1.96,
|L⇤|
�
L

 1.96

�

0.1 + 1

⇢

|G⇤|
�
G

 1.96,
|L⇤|
�
L

> 1.96

�

0.01.

This publication rule favors studies that find significant di↵erence in di↵erence esti-

mates, and disfavors studies that reject the parallel trends assumption.

To illustrate the e↵ect of selective publication in this setting, Figure 16 plots

the median bias of G as an estimator for � (scaled by the standard deviation �
G

of G⇤). Selective publication results in large bias for the conventional estimator
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Figure 16: This figure plots the median
bias of (G) /�

G

in the di↵erence in di↵er-
ences example.

Figure 17: This figure plots the cover-
age of conventional 95% confidence sets
in the di↵erence in di↵erences example.

G, which depends on both the parameter of interest � and the nuisance parameter

�. Analogously, Figure 17 plots the coverage of the usual two-sided confidence set

G⇤ ± 1.96�
G

, and shows that selective publication results in substantial coverage

distortions.

I.2 Su�cient statistic for nuisance parameter

To conduct inference on �, treating ! as a nuisance parameter, it will be helpful

to derive a su�cient statistic for !. Note that for M (v) a (dim (X)� 1) ⇥ dim (X)

matrix such that M (v)
�

I � ⌃vv

0

v

0
⌃v

�

has full row-rank,

(G (x) ,W (x)) =

✓

v0x,M (v)

✓

I � ⌃vv0

v0⌃v

◆

x

◆

is a one-to one transformation of x. Thus (G,W ) = (G (X) ,W (X)) are jointly

su�cient for ✓, and rather than basing inference on X we can equally well base

inference on (G,W ). Note moreover that for G⇤ = G (X⇤) and W ⇤ = W (X⇤) ,

X⇤ ⇠ N (✓,⌃) implies that

 

G⇤

W ⇤

!

⇠ N

  

�

!

!

,

 

�2

G

0

0 ⌃
W

!!

(16)
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for ! = M (v)
�

I � ⌃vv

0

v

0
⌃v

�

✓, �2

G

= v0⌃v, and ⌃
W

= M (v)
�

I � ⌃vv

0

v

0
⌃v

�

⌃
�

I � vv

0
⌃

v

0
⌃v

�

M (v)0.

Thus the conditional distribution of G⇤ given W ⇤ depends only on �,

G⇤|W ⇤ ⇠ N (�, �⇤
G

) ,

and by conditioning on W ⇤ we can eliminate dependence on the nuisance parameter

!. This property continues to hold for the conditional distribution of published G

given W , as the following lemma shows.

Lemma 6

Under Assumption 1, the conditional density G|W,� is given by

f
G|W,�

(g|w, �) = p (g, w)

E [p (G⇤,W ⇤) |W ⇤ = w,�⇤ = �]

1

�
G

�

✓

g � �

�
G

◆

(17)

for � the standard normal density, where we use the fact that (g, w) is a one-to-one

transformation of x to write p (g, w) = p (x (g, w)) .

Proof of Lemma 6 Note that we can draw from the conditional distribution

G|W = w,� = � by drawing from the conditional distribution G⇤|W ⇤ = w,�⇤ = �

and discarding the draw G⇤ with probability 1 � p (G⇤, w). The result then follows

by the same argument as Lemma 1. ⇤
Thus, we see that the conditional density of G given W depends only on the

parameter of interest � and not on the nuisance parameter !. Hence, by conditioning

on W we can eliminate the nuisance parameter and conduct inference on � alone.

I.3 Optimal quantile-unbiased estimates

To conduct frequentist inference, we generalize the median-unbiased estimator and

equal-tailed confidence set proposed in Section 4 to the present setting. Using a

result from Pfanzagl (1994) we show that the resulting quantile-unbiased estimators

are optimal in a strong sense.

Formally, define �̂
↵

(X) by

F
G(X)|W (X),�

(G|W, �̂
↵

(X)) = ↵.

This estimator is simply the value � such that the observed G lies at the ↵ quantile
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of the corresponding conditional distribution given W . The following theorem, based

on the results of Pfanzagl (1994), shows that this estimator is both quantile-unbiased

and, in a strong sense, optimal in the class of quantile-unbiased estimators.

Theorem 5

Let Assumption 1 hold, and assume further that the conditional distribution of G given

W is absolutely continuous for all � and almost every W , and that the parameter space

for ! given � contains an open set for all �. Then

1. The estimator �̂
↵

(X) is level-↵ quantile unbiased:

Pr {�̂
↵

(X)  �|⇥ = (�,!)} = ↵ for all �,!,

2. This estimator is uniformly most concentrated in the class of level-↵ quantile-

unbiased estimators, in the sense that for any other level-↵ quantile unbiased

estimator �̃ (X) and any loss function L (d, �) that attains its minimum at d = �

and is increasing as d moves away from �,

E [L (�̂
↵

(X) , �) |⇥ = (�,!)]  E [L (�̃ (X) , �) |⇥ = (�,!)] for all �,!.

Proof of Theorem 5 Since the multivariate normal distribution belongs to the

exponential family, we can write

f
G

⇤
,W

⇤|⇥⇤ (g, w|✓) = h̃ (g, w) r̃ (� (✓) ,! (✓)) exp
�

� (✓) g + ! (✓)0 w
�

.

By the same argument as in the proof of Lemma 1, this implies that

f
G,W |⇥ (g, w|✓) = h (g, w) r (� (✓) ,! (✓)) exp (� (✓) g) exp

�

! (✓)0 w
�

(18)

for h (g, w) = p (g, w) h̃ (g, w) and

r (�,!) =
r̃ (�,!)

E [p (X⇤
i

) |⇥⇤
i

= ✓ (�,!)]
.

The density (18) has the same structure as (5.5.14) of Pfanzagl (1994), and satisfies

properties (5.5.1)-(5.5.3) of Pfanzagl (1994) as well. Part 1 of the theorem then follows

immediately Theorem 5.5.9 of Pfanzagl (1994).
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Figure 18: This figure plots the di↵er-
ence between the median-unbiased esti-
amtor �̂ 1

2
(X) and the conventional esti-

mator G in the di↵erence-in-di↵erences
example.

Figure 19: This figure plots the
(shaded) rejection region for a 5% test
of H

0

: � = 0 based on equal-tailed confi-
dence sets for � in the di↵erences in dif-
ferences example.

Part 2 of the theorem follows by using Theorem 5.5.9 of Pfanzagl (1994) along

with (18) to verify the conditions of Theorem 5.5.15 of Pfanzagl (1994). ⇤
Using this result we see that �̂ 1

2
(X) is the optimal median-unbiased estimator for

the parameter of interest �. A natural level-↵ confidence interval to accompany this

estimator is then the equal-tailed confidence interval

CS =
⇥

�̂
1�↵

2
(X) , �̂↵

2
(X)

⇤

.

Di↵erence in di↵erences example (continued) To illustrate our corrections in

a multivariate setting, Figure 18 plots the di↵erence between our median-unbiased

estimator �̂ 1
2
(X) and the conventional estimator �̂ = G in the di↵erence-in-di↵erences

example. As this plot makes clear, �̂ 1
2
(X) depends on both G and L. Thus, while

we are interested only in the di↵erence-in-di↵erences parameter �, the result for the

pretest of parallel trends also plays a role in our estimate. Figure 19 plots the rejection

region for a 5% test of H
0

: � = 0 based on our equal-tailed confidence interval for �.

As this plot shows, the results of this test likewise depend on both G and L.
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J Bayesian inference

In the main text we discuss the e↵ect of selective publication on frequentist inference

on ✓ under known p(·). The e↵ect of selective publication on Bayesian inference is

more subtle, and depends on the prior. Here we briefly discuss Bayesian inference on

✓ under known p(·) for two natural classes of priors. These priors can be thought of

as two extreme points of the set of relevant priors.

Definition 4 (Two classes of priors)

Consider the following two classes of prior distributions ⇡
µ

for µ:

1. Unrelated Parameters: ⇡
µ

is a point mass at some µ, so that µ is known and

the prior distribution of ⇥⇤
i

is i.i.d. across i.

2. Common Parameters: ⇡
µ

assigns positive probability only to point-measures µ,

so that ⇥⇤
i

is constant across i (equal to ⇥⇤
0

) with probability 1.

The unrelated parameters prior corresponds to the case where each latent study

considers a di↵erent parameter. Thus, under priors in this class, learning the true

parameter value ⇥⇤
i

in latent study i conveys no information about the true parameter

value ⇥⇤
i

0 in latent study i0, and ⇥⇤
i

is iid across i. The common parameters prior, by

contrast, assumes that all latent studies attempt to estimate the same parameter ⇥⇤
0

.

Thus, priors in this class imply that ⇥⇤
i

is perfectly dependent across i.

For both the unrelated and common parameters classes, the marginal prior ⇡
⇥

⇤

for ⇥⇤ is unrestricted. For any ⇡
⇥

⇤ there is a unique prior in each class consistent

with this marginal distribution.

If we observe a single draw X⇤, our posterior for ⇥⇤ depends only on the marginal

prior ⇡
⇥

⇤ , and so is the same whether we consider the unrelated or common param-

eters priors. By contrast, when we observe a single draw X from the distribution

of published papers, which class of priors we use turns out to be important. The

following result is closely related to the findings of Yekutieli (2012).

Lemma 7 (Two posterior distributions)

Based on single observation of X, we obtain the following posteriors:

1. Under unrelated parameters priors:

f
⇥|X(✓|x) = f

X

⇤|⇥⇤(x|✓) · ⇡
⇥

⇤(✓)/⇡
X

⇤(x)
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2. Under common parameters priors:

f
⇥|X(✓|x) =

p (x)

E [p (X⇤
i

) |⇥⇤
i

= ✓]
f
X

⇤|⇥⇤(x|✓) · ⇡
⇥

⇤(✓)/⇡
X

⇤(x)

/ f
X|⇥(x|✓) · ⇡⇥

⇤(✓)

Proof of Lemma 7:

1. Unrelated parameters: By construction D
i

? ⇥
i

|X⇤
i

, and thus

f
⇥|X(✓|x) = f

⇥

⇤
i |X⇤

i ,Di(✓|x, d = 1)

= f
⇥

⇤
i |X⇤

i
(✓|x)

= f
X

⇤|⇥⇤(x|✓) · ⇡
⇥

⇤(✓)/f
X

⇤(x).

2. Common parameters: This follows immediately from the truncated likelihood

derived in Lemma 1 of the main text.

⇤
Under the unrelated parameters prior, our posterior f

⇥|X(✓|x) after observing

X = x is the same as our posterior had we observed X⇤ = x. The form of p(·)
has no e↵ect on our posterior distribution, and inference proceeds exactly as in the

case without selection. Under the common parameters prior, by contrast, our pos-

terior f
⇥|X(✓|x) corresponds to updating our marginal prior ⇡

⇥

⇤ using the truncated

likelihood f
X|⇥(x|✓) derived in Lemma 1.

The fact that selection has no e↵ect on our posterior under the common parameters

prior may be surprising, but reflects the fact that under this prior, selection changes

the marginal prior ⇡
⇥

for true e↵ects in published studies. In particular, under this

prior we have

⇡
⇥

(✓) =
E [p (X⇤

i

) |⇥⇤
i

= ✓]

E [p (X⇤
i

)]
⇡
⇥

⇤(✓),

which reflects the fact that the distribution of true e↵ects for published studies di↵ers

from that for latent studies under this prior. When we update this prior based on

observation of X, however, the adjustment by E [p (X⇤
i

) |⇥⇤
i

= ✓] in the prior cancels

that in the likelihood, and selection has no net e↵ect on the posterior. Under the

common parameters prior, by contrast, ⇡
⇥

⇤ = ⇡
⇥

, so the adjustment term in the
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prior due to selective inference continues to play a role in the posterior. For related

discussion, see Yekutieli (2012).

K Optimal selection for publication in a simple

model

In the main text we discuss how to account for selective publication in inference and

how to identify selectivity. It is natural to ask, however, whether selective publication

is a good idea in the first place or just a misguided application of statistics leading

to either publication bias or needlessly complicated inference. The answer to this

question depends on the journal’s objective function. One possibility is as follows.

Suppose that published estimates are inputs into policy decisions, for instance in de-

velopment economics, education, public finance, or medicine. If there are constraints

on how many studies are published and read, then selectivity of the sort we observe

might be justified.

We discuss a stylized version of this idea in a development economics context,

though our model might also be considered a stylized description of medical publishing

and doctors’ prescriptions of treatments for patients. Suppose that each i corresponds

to a di↵erent policy intervention. Suppose the distribution µ of true treatment e↵ects

⇥⇤
i

is known to journal editors and readers, and that the expected e↵ect E[⇥⇤
i

] of

a randomly chosen treatment on the likelihood of escaping poverty is non-positive.

Suppose further that the journal is read by policy makers who aim to minimize

poverty. Assume finally that each treatment is relevant for a population of equal

size, normalized to 1. A policy maker wishes to implement a given treatment j if the

expected impact on the outcome considered is positive, conditional on the observed

estimate X
j

= x. Thus, their optimal treatment assignment rule is

t(x) = 1(E[⇥
j

|X
j

= x] > 0), (19)

which results in the expected outcome

v(x) = max(0, E[⇥
j

|X
j

= x]) (20)
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where E[⇥
j

|X
j

] is the policymakers’ posterior expectation of ⇥
j

after observing X
j

.12

Suppose the journal also aims to minimize poverty, but faces a marginal (opportunity)

cost of c, in units comparable to treatment outcomes, when publishing a given study.

Policymakers update their behavior only for published studies with E[⇥
j

|X
j

] > 0.

This updated behavior results in an expected poverty reduction of E[⇥
j

|X
j

] relative

to the status quo. It follows that the optimal publication rule for the journal is

p(X⇤
i

) = 1(E[⇥⇤
i

|X⇤
i

] > c). (21)

If the conditional expectation is monotonic in X⇤
i

, this rule is equivalent to

p(X⇤
i

) = 1(X⇤
i

> x
c

),

so that results should get published if they are positive and “significant” relative to

the critical value x
c

, defined via E[⇥⇤
i

|X⇤
i

= x
c

] = c.

This result rationalizes selectivity in the publication process: the optimal rule

derived here corresponds to one-sided testing. A more realistic version of this story

allows for variation across i in the variance of X⇤
i

, the cost of implementing treatment,

the size of the populations to be treated, etc. All of these would a↵ect the critical

value x
c

, which thus should vary across i and need not be equal to conventional critical

values of hypothesis tests. What remains true, however, is that publication decisions

that are optimal according to the above model are selective in a way which leads to

publication bias, and correct inference needs to account for this selectivity.

12Perhaps surprisingly, truncation is irrelevant for this posterior expectation. This stems from the
fact that we assume policy makers have unrelated parameters priors as in Definition 4 above.
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