
Supplemental Material: A Framework for Sharing Con�dential

Research Data, Applied to Investigating Di�erential Pay by Race

in the U. S. Government

This document includes online supplementary material for the main text. In Section 1, we

provide a formal description of the three sub-models used to model the employee's career. In

Section 2, we discuss the modeling strategies used to synthesize several variables and to deal

with some of the modeling challenges in the SF data. In Section 3, we formally describe the

veri�cation measures for longitudinal trends in regression coe�cients. In Section 4, we provide

the full list of the synthesized variables along with a brief description of each of them. In Section

5, we present the analyses of wage gaps conditional on six broad categories of occupation rather

than the 803 used in the main text.

1 Model for Employees' Careers

We de�ne an employee's career as the sequence of agencies where the employee has worked

throughout the 24 years. Since most employees have not worked during all 24 years, these

sequences do not always have the same length. This poses an additional challenge to be addressed

when modeling this variable. To avoid this issue, we create an additional level for this variable.

This level corresponds to the status not working. With this additional level, we only have to

work with sequences of length equal to 24. Thus, the career of the ith employee is represented

by

V i
1 = (V i

1;1; : : : ; V
i
1;24)

where V i
1;t denotes the agency where the ith employee worked in year t. To model these sequences,

we create three additional variables: Gi, Zi, and W i, where

- Gi is the number of agencies where the ith employee worked during the 24 years,

- Zi = (Zi
1; : : : ; Z

i
Gi�1) represents the list of years (minus one) when the ith employee moved

to a new agency, and
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- W i = (W i
1; : : : ;W

i
Gi) is the ordered sequence of agencies where the ith employee has

worked.

Since that (Gi; Zi;W i) 7! V i
1 is a one-to-one mapping, we can equivalently de�ne a model

for either (Gi; Zi;W i) or V i
1 . Thus, we de�ne a model for V i

1 by using (Gi; Zi;W i) and an

appropriate conditional representation. That is,

P
�
V i
1 = v

�
= P

�
(Gi; Zi;W i) = (g; z; w)

�
= P

�
W i = wj(Gi; Zi) = (g; z)

�
P
�
Zi = zjGi = g

�
P
�
Gi = g

�
;

with the following particular case,

P
�
V i
1 = (v; v; : : : ; v)

�
= P

�
(Gi;W i) = (1; v)

�
= P

�
W i = vjGi = 1

�
P
�
Gi = 1

�
:

We propose to estimate P
�
Gi = g

�
and P

�
V i
1 = (v; v; : : : ; v)

�
by using the corresponding ob-

served frequencies. The estimators for the conditional models of Zi and W i are explained

below.

Model for P [Zi = zjGi = g]

Henceforth we suppress the superscript i for ease of notation. For sake of generality, we denote

by T the length of the employees' career. Conditional on G, we de�ne the range of Z as

PG
T :=

�
(a1; : : : ; aG) : a1 < : : : < aG; (a1; : : : ; aG) 2 f1; : : : ; T � 1gG

	
:

For instance, if T = 4 and G = 2, then the range of Z corresponds to the set

P = f(1; 2); (1; 3); (1; 4); (2; 3); (2; 4); (3; 4)g : (1)

Notice that we can identify the space PG
T with elements in the simplex space by considering the

mapping,

PG
T 3 Z = (Z1; Z2; : : : ; ZG) 7! S :=

�
Z1 � 1

T � 1
;
Z2 � Z1 � 1

T � 1
; : : : ;

ZG � ZG�1 � 1

T � 1

�
2 �G;

where �G is the G-dimensional simplex space; that is,

�G =

8<
:(a1; : : : ; aG) 2 [0; 1]G :

GX
j=1

aj � 1

9=
; :
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In the example above, under this mapping, the set given in (1) is identi�ed with the following

set

� =

�
(0; 0) ;

�
0;
1

3

�
;

�
0;
2

3

�
;

�
1

3
; 0

�
;

�
1

3
;
1

3

�
;

�
2

3
; 0

��
:

Let ~S = ( ~S1; : : : ; ~SG) be a continuous latent random vector such that, conditioned on G, is

�G-valued and

S =

 
b(T � 1) ~S1c

T � 1
; : : : ;

b(T � 1) ~SGc

T � 1

!
:

Thus, we de�ne a probability model for Z, conditional on G, of the form

P [Z = zjG = g]

= P

�
S =

�
z1 � 1

T � 1
;
z2 � z1 � 1

T � 1
; : : : ;

zg � zg�1 � 1

T � 1

�����G = g

�
;

= P

�
~S 2

�
z1 � 1

T � 1
;

z1
T � 1

�
�

�
z2 � z1 � 1

T � 1
;
z2 � z1
T � 1

�
� : : :��

zg � zg�1 � 1

T � 1
;
zg � zg�1
T � 1

�����G = g

�
:

Since ~S is a continuous random vector on the simplex, we assume that its corresponding prob-

ability measure is absolutely continuous with respect to the Lebesgue measure with density f ~S .

This probability density function is assumed to be a mixture of Dirichlet densities of the form,

f ~S(~sjG = g;p;�) =
X
j2Pg

T

pjdirg (~s j�j )

where p = (pj)j2Pg
T
denotes the weights, dirg(�ja) stands for a g-dimensional Dirichlet density

with parameters a, and � = (�j)j2Pg
T
. The number of components of this mixture is equal to

the cardinality of Pg
T , i.e., equal to the number of elements in the range of Z.

Models designed to generate synthetic datasets should have parameters that allow users to

control the trade-o� between privacy and statistical usefulness. For this reason, we propose to

estimate the parameter p and use a deterministic de�nition for �. Speci�cally, we propose to

estimate p using the empirical frequencies, i.e.,

p̂j = p̂fj1;j2;:::;jgg /
X

i2fl:Gi=gg

IfZi
1
=j1;:::;Zi

g=jgg
:

Instead of using frequentist estimation of p, we could also place a prior distribution on p and pro-

vide an estimation through the posterior distribution. Regarding the parameter �, we propose

the following de�nition.,

�j = � (2j1 � 1; 2(j2 � j1)� 1; : : : ; 2(jg�1 � jg)� 1; 2(T � 1)� 2jg + g) ;
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where � is a positive constant. If the parameters p and � are de�ned as before, then the

over�tting and under�tting of the model can be controlled by �. Notice that if a model over�ts

the con�dential dataset, then the synthetic dataset obtained from that model should be very

similar to the con�dential dataset. Hence, over�tting implies high statistical usefulness but low

privacy level. Under a analogous reasoning, we can associate the under�tting with low statistical

usefulness but high privacy level. Thus, under this parametrization, the mean and the variance

of a Dirichlet distribution with parameter �j are equal to�
2j1 � 1

2(T � 1)
;
2(j2 � j1)� 1

2(T � 1)
; : : : ;

2(jg � jg�1)� 1

2(T � 1)

�
;

and �
2(jl � jl�1)�[2(T � 1)� � g � 2(jl � jl�1)�]

[2(T � 1)� � g]2[2(T � 1)� � g + 1]

�g

l=1

;

respectively. Notice that this mean always belongs to the inner of the hypercube de�ned by

Ij :=

�
j1 � 1

T � 1
;

j1
T � 1

�
�

�
j2 � j1 � 1

T � 1
;
j2 � j1
T � 1

�
� : : :�

�
jg � jg�1 � 1

T � 1
;
jg � jg�1
T � 1

�
;

and notice too that the variance goes to 0 when � !1. The above statements imply that

P [Z = zjG = g; �;Data] =
X
j2Pg

T

p̂j

Z
Iz

dirg (~s j�j ) d~s �!
�!1

p̂z;

meaning that if � increases, the latent model assigns probability equal to p̂j to the hypercube Ij

(i.e., over�tting). On the other hand, when � decreases, the model borrows information across all

the hypercubes fIjgj2Pg
T
(i.e., under�tting). The information related to an speci�c hypercube Ij

is borrowed across the other hypercubes. The amount of borrowed information depends on the

distance between Ij and the other hypercubes. The smaller the distance, the larger the amount

of borrowed information. In particular, if � is small enough, most of the information will be

transferred to the other hypercubes. This increases the probability of generating new careers

for the synthetic employees that do not match with the careers of the con�dential employees. In

other words, if � is small, it can lead to a degradation of the statistical information contained

in a synthetic data, but also an improvement in terms of privacy. Under this model, � is the

parameter controlling the trade-o� between statistical usefulness and privacy level.
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Model for P [W = wj(G;Z) = (g; z)]

Under some assumptions of independence, we simplify the de�nition of this model. Speci�cally,

we assume that

P [W = wj(G;Z) = (g; z)] / P [W = w;G = g; Z = z]

:= P [W1 = w1jG = g; Z1 = z1]

� P [W2 = w2jW1 = w1; G = g; Z1 = z1; Z2 = z2]

�

gY
j=3

P [Wj = wj jWj�1 = wj�1; G = g; Zj = zj ; Zj�1 = zj�1; Zj�2 = zj�2]

� P
�
Wg+1 = wg+1jW

i
g = wg; G = g; Zg = zg; Zg�1 = zg�1

�
;

= P [W1 = w1jG = g; Z1 = z1]

�

g+1Y
j=2

P [Wj = wj jWj�1 = wj�1; G = g; Yj = yj ] (2)

where Z 7! (Y2; : : : ; Yg+1) is a one-to-one transformation and

Yj = (Yj;1; Yj;2; Yj;3) =

8><
>:

(0; Z1 � 1; Z2 � Z1 � 1) if j = 2;

(Zj�2 � 1; Zj�1 � Zj�2 � 1; Zj � Zj�1 � 1) if j = 3; : : : ; g;

(Zg�1 � 1; Zg � Zg�1 � 1; T � Zg) if j = g + 1:

Notice that Yj is related to the moments where the transition wj�1 ! wj is made. The �rst

component of this random vector represents the year (minus one) when the employee started to

work for agency wj�1. The second and third components indicate for how many years (minus

one) the employee worked for agency wj�1 and wj , respectively. Since the terms in (2) can be

re-written of the form,

P [W1 = w1jG = g; Z1 = z1] / P [W1 = w1; G = g; Z1 = z1] ;

=
X
z2;w2

P [Z1 = z1; Z2 = z2jW2 = w2;W1 = w1;M = m]P [W2 = w2;W1 = w1; G = g] ;

=
X

(�;z2)7!y2;w2

P [Y2 = y2jW2 = w2;W1 = w1; G = g]P [W2 = w2;W1 = w1; G = g] ;

and

P [Wj = wj jWj�1 = wj�1; G = g; Yj = yj ] / P [Wj = wj ;Wj�1 = wj�1; G = g]

� P [Yj = yj jWj = wj ;Wj�1 = wj�1; G = g] ;

we propose to estimate the terms P [Wj = wj ;Wj�1 = wj�1; G = g] using the observed frequen-

cies. We could also estimate these probabilities through a multinomial-Dirichlet Bayesian model.

For the term P [Yj = yj jWj = wj ;Wj�1 = wj�1; G = g], we use the same latent model de�ned de-
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scribed in the previous subsection. This is possible because Yj=(T�G) = (Y1;j ; Y2;j ; Y3;j)=(T�G)

lies in the three-dimensional simplex space. Thus, let ~Yj = (~Y1;j ; ~Y2;j ; ~Y3;j) be a �3-valued con-

tinuous latent random vector such that, conditional on G,

Yj =
�
b(T �M) ~Y1;jc; b(T �M) ~Y2;jc; b(T �M) ~Y3;jc

�
:

We de�ne a probability model for Yj , conditional on Wj , Wj�1, and G, of the form

P [Yj = (y1;j ; y2;j ; y3;j)jWj = wj ;Wj�1 = wj�1; G = g]

= P

�
~Yj 2

�
y1;j
T � 1

;
y1;j + 1

T � 1

�
�

�
y2;j
T � 1

;
y2;j + 1

T � 1

�
�

�
y3;j
T � 1

;
y3;j + 1

T � 1

�����Wj = wj ;Wj�1 = wj�1; G = g

�
:

We also assume that the law of ~Yi has a probability density function and is de�ned as a mixture

of Dirichlet densities of the form,

f ~Yj (~yjWj = wj ;Wj�1 = wj�1; G = g;p0;�0) :=
X

j2P3
T�g

p0jdir3
�
~y
���0j �

where p0 = (p0j)j2P3
T�g

and �0 = (�0j)j2P3
T�g

. Since our goal is still the same, i.e., to propose

models that provide control over the trade-o� between privacy and statistical usefulness, the

parameters p0 and �0 are estimated and de�ned in a similar manner to the one proposed in the

previous subsection. Speci�cally,

p̂0fj1;j2;j3g /
X

j = 2; : : : ; g + 1

i 2 fl : Gi
l = g;W i

j = wj ;W
i
j�1 = wj�1g

IfY i
1;j=j1�1;Y

i
2;j=j2�j1�1;Y

i
3;j=j3�j2�1g

:

and

�0j = � (2j1 � 1; 2(j2 � j1)� 1; 2(j3 � j2)� 1; 2(T � g)� 2j3 + 3) :

Here, the implications of increasing or decreasing the value of � remain the same as in the

previous subsection.

2 General Strategies for Synthesizing the OPM Dataset

The modeling of the SF dataset requires us to deal with many non-trivial problems. For each of

these problems, we design di�erent strategies that take run time and computational resources

into account. In this section, we provide a more detailed description of the most relevant

strategies proposed during the modeling of the SF dataset.
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2.1 Deriving predictors from employees' careers

After generating the synthetic careers, we create a set of variables that are functions of the

employees' careers. These variables serve as predictors in the modeling of the remaining variables

in the SF dataset. Speci�cally, we create the following variables.

- Initial year: year when the employee was included in the dataset.

- Last year: year in which the employee stopped working in the last agency.

- Total years: number of years that the employee worked.

- Initial agency: agency in which the employee started working.

- Number of moves: number of times that the employee changed agency during her/his

career.

- Number of gaps: number of times that the employee stopped working for at least one year

and then started working again.

2.2 General strategy for static variables

Static variables are those variables whose values remain the same across time. We model these

variables using classi�cation and regression trees (CART), as described in Reiter (2005). For

each static variable, we use as predictors the variables derived from the employees' careers along

with all the original values of the variables previously synthesized. The sex and a binary variable

associated with months of military service are classi�ed in this category.

2.3 General strategy for longitudinal variables

Longitudinal variables are those variables that do not change deterministically across time. Let

ti1 < : : : < tini be the years when ith employee is observed and V i
j := (V i

j;ti
1

; : : : ; V i
j;tini

). If V i
j is a

longitudinal variable, j > 1, then we consider the following conditional representation of pj ,

pj
�
V i
j jV

i
1 ; : : : ; V

i
j�1

�
:=

niY
l=1

pj;ti
l

�
V i
j;ti

l

���V i
1 ; : : : ; V

i
j�1; V

i
j;ti

1

; : : : ; V i
j;ti

l�1

�
(3)

where pj;ti
l
denotes the distribution V i

j;tl
which is conditioned on the values of the previous

variables and the past values of V i
j , i.e., V

i
j;ti

1

; : : : ; V i
j;ti

l�1
. In order to simply the modeling of

pj;ti
l
, we assume that

pj;ti
l

�
V i
j;ti

l

���V i
1 ; : : : ; V

i
j�1; V

i
j;ti

1

; : : : ; V i
j;ti

l�1

�
= pj;ti

l

�
V i
j;ti

l

���V i
1;ti

l
; : : : ; V i

j�1;ti
l
; V i

j;ti
l�1

�
; (4)
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This assumption implies that the conditional distribution of V i
j;ti

l

only dependents of current

values of V i
l , 1 < l < j, and the nearest past value of V i

j . We estimate these conditional

probabilities using CART models.

2.4 General strategy for variables with a high proportion of constant se-

quences

There are variables whose values do not change across time for most employees. Speci�cally,

race and educational level show this pattern. For this reason, we create an auxiliary binary

variable that indicates whether the values of the variable remain the same across time or not.

After imputing this binary variable to the synthetic employees using CARTs, we divide the

dataset into two groups. The �rst group represents those employees whose values remain the

same across time. This group is modeled using the general strategy for static variables. The

second group represents those employees whose values change across time. We model this group

using the general strategy for longitudinal variables.

2.5 General strategy for oddities

Some observations have values that are theoretically impossible. For example, for any given

employee, we expect the values associated with educational level are not decreasing. However,

we observe that there are some employees whose educational level drops at some point. We

assume that a drop in the educational level should be considered as an oddity. The SF synthetic

dataset represents a methodological tool for those researches that will only have access to the

original dataset for a limited period of time. For those researchers, the synthetic dataset can

be used to de�ne which models they plan to run when they have access to the original dataset.

Hence, �tting a model to the synthetic data should lead to similar challenges to the ones the

researches will face when they access the original dataset. For this reason, we de�ne a model

able to generate those oddities. To do so, we create a binary variable that indicates whether

the employee contains an oddity or not. Thus, we use this binary variable to �t a CART model

that allows us to classify the synthetic employees in two groups. The �rst is the group that

is synthesized with a model that does not generate oddities, i.e., a model that only generates

non-decreasing sequences. The second is a group that is synthesize with a model that generates

oddities with positive probability.

2.6 General strategy for bucketed continuous variables

Age and yrsdegrng|years since the employee earned the degree mentioned in educational level|

are classi�ed in this category. The levels of these variables are reported in 5-year buckets.

For this reason, we model age and yrsdegrng as categorical variables using the �rst reported
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bucket as a response variable. Thus, we synthesize these variables using the general strategy

for static variables. Once we impute the �rst age and yrsdegrng to the synthetic employee,

we deterministically impute the values of the next years using the middle of the range of the

buckets. For example, we impute at|age in year t|by adding one to the mid-range value in

the previous year at�1; that is, at = at�1 + 1. Finally, we bucket the imputed values back into

5-year buckets.

2.7 General strategy for variables with a large number of levels

Fitting a CART using a response variable with a large number of levels requires a high com-

putational cost. In fact, the R function tree only allows a response variable with at most 32

levels. To wave this issue, we create an auxiliary variable that is a copy of the original variable

with only 32 levels, where the �rst 31 levels correspond to those levels with the highest observed

frequencies and the last level groups the remaining levels. Then we �t a CART model to this

auxiliary variable and predict the values for the synthetic employees. Thus, there are some

synthetic employees having the value associated with the last level of the auxiliary variable. For

those employees, we re-impute their values using a CART �tted to a new auxiliary variable. This

CART is �tted to a subset of the original dataset that does not contain those employees whose

values correspond to one of the 31 levels with most data points. This new auxiliary variable

also has 32 levels. The �rst 31 levels correspond to those levels with most data points in such

subset and the last level grouped the rest of the levels. We repeat this process until we reach

those levels with the smallest observed frequencies.

2.8 General strategy for variables with low observed frequency levels

This strategy is used for occupation. This variable has over eight hundred levels each year.

Some of these occupations have a very low observed frequency. Therefore, the probability that

we impute one of these occupations to a synthetic employee is also small. In fact, we observe

that, after having used the general strategy for variables with a large number of levels, there are

some occupations in the synthetic data with an observed frequency equal to zero. The absence

of these occupations is problematic for those researchers interested in occupations with small

frequency. In other words, it would be useless for them to have a synthetic dataset where some

of these occupations do not appear. To deal with this issue, we start modeling this variable

by using the general strategy for variables with a large number of levels. Thus, we guarantee

that those occupations with a large number of data points are reasonably represented in the

synthetic dataset. For those occupations with a small number of observations, we use propensity

score matching. Speci�cally, we combine the synthetic and original datasets into one dataset.

Then, we �t a logistic regression model using whether the employee is a synthetic one or not

as a response variable. We use the predicted probabilities to match synthetic employees with
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authentic employees having an occupation that has a small observed frequency. Thus, the

synthetic employee is assigned to the same occupation of the corresponding matched authentic

employee.

2.9 General strategy for structural zeros

We de�ne a structural zero as an impossible combination of levels of di�erent variables. For

example, if we have age and educational level, the combination one-year-old and college degree

should occur with a probability equal to zero. De�ning models for a categorical response that

deal with structural zeros is a di�cult task. This task can be even more di�cult if there is

no exhaustive list of these impossible combinations. Structural zeros can occur if we do not

carefully model some of the variables in the SF dataset. For example, there are occupations

absent in certain agencies or some grades that only make sense within a particular pay plan.

The strategy we use here is to split the dataset into subsets such that if we �t a CART model to

that subset, the CART model will not impute values that produce structural zeros. Speci�cally,

we always split the data at least into agency. However, for some variables, we require dividing

the dataset considering other variables. For example, we know that the levels that grade can

take are restricted by the pay plan. In this case, we have to divide the dataset not only by

agency but also by pay plan.

2.10 General strategy for missing values

Almost all variables of the SF dataset have missing values. To deal with this aspect, we assume

that the missing status is an additional level that each variable can take. Hence, under this

strategy, models �tted to the con�dential dataset are able to generate synthetic employees with

missing values. This leads to synthetic datasets more similar to the con�dential one regarding

the presence of missing values. Thus, users can design modeling strategies that account for

missing data using the synthetic dataset. These strategies could potentially be implemented in

the con�dential dataset if the user plans to access it in the future.

Another strategy to deal with missing data is imputation. In this work, we impute a missing

value if a deterministic rule can provide a reasonable approximation of the unobserved value.

We can think of this strategy more as a cleaning step than as a formal statistical procedure to

deal with missing values. This strategy is used in only one variable, educational level. The rules

that we consider for this speci�c variable are:

- If the initial educational levels are missing, we impute those with the �rst reported edu-

cational level.

- If the last educational levels are missing, we impute those with the last reported educational

level.
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- If the educational level is reported at year t1 and t2, with t1 < t2, and the values of this

variable are missing for every year t 2 ft1 + 1; : : : ; t2 � 1g, then we impute those missing

values with the educational level reported at year t1.

Notice that, under these rules, some employees can still have missing values in this variable.

Speci�cally, those employees for whom all the educational level values are missing will not be

assigned any values for educational level after the imputation. To deal with this issue, as before,

we model this variable assuming that the missing status corresponds to an additional educational

level.

2.11 General strategy for allowances

For each year, we create a binary variable to predict whether or not the synthetic employee

receives an allowance. We model these binary sequences using the general strategy for longitu-

dinal variables. Then, for each year and using those authentic employees that have received an

allowance, we compute how much this allowance is as a percentage of basic pay. This creates

a population of percentages related to the allowances received by the employees each year. If

a synthetic employee is classi�ed as receiving an allowance, then we compute this allowance by

multiplying her basic pay by a percentage randomly drawn from the percentage population of

the corresponding year.

3 Longitudinal Veri�cation Measure

In addition to verifying whether a given coe�cient exceeds some threshold, analysts can also

be interested in studying how �jt changes across time, where �jt is the regression coe�cient of

interest at year t. To study how �jt changes across time, we assume that D can be divided

into nonempty subsets D1; : : : ;D24, where D = f(xi; yi)g
n
i=1, D

t denotes all the data points in

D observed at year t, yi 2 R is the response variable, and xi = (1; xi;1; : : : ; xi;p)
T 2 R

p+1 are

the set of predictors. We also assume that, for every (yit; xit) 2 D
t, E(yitjxit) = �Tt xit, where

� = (�0t; : : : ; �pt)
T 2 R

p+1. To formally state our goal here, let m (f(t; �jt)gt2T ) be a f0; 1g-

valued function which returns a zero if the OLS line passing through the points f(t; �jt)gt2T

has negative slope and returns a one if the slope is positive, where T is a period of years.

Here, we presume the analyst is speci�cally interested in checking whether �jt has an increasing

or decreasing trend in a given period of years T , i.e., whether m (f(t; �jt)gt2T ) equals zero or

one. More generally, we assume the analyst can consider K periods of the form Tk = [tk�1; tk],

k = 1; : : : ;K, where 1 = t0 < t1 < : : : < tK = 24, and check whether the trend of �jt is

increasing or decreasing within each Tk. Hence, for a given sequence (�1; : : : ; �K) 2 f0; 1g
K , we

can think of the analyst's interest as an inference problem where the parameter to infer is de�ned

by �0 =
QK

k=1 If�kg (m (f(t; �jt)gt2Tk)). Notice that �0 is a binary parameter such that it is equal
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to one when �k = m (f(t; �jt)gt2T ), for every k = 1; : : : ;K, and is equal to zero otherwise.

For example, an analysis of whether the trend of �jt is decreasing during the �rst 9 years and

is increasing during the last 15 years would examine whether �0 = 1 when (�1; �2) = (0; 1),

T1 = [1; 9], and T2 = [10; 24].

Similar to the DP veri�cation procedure for the threshold, and because of the large sample

sizes in the SF data, approximated inferences for �0 can be made by using a pseudo parameter �N .

This pseudo parameter is a function of the sampling distribution of the MLE of �jt, t = 1; : : : ; 24.

We de�ne the pseudo parameter �N by

�N1;:::;N24
=

(
1 if P [m(f(t; �̂Nt

jt )gt2Tk) = �k; k = 1; : : : ;K] � 1;

0 if P [m(f(t; �̂Nt

jt )gt2Tk) = �k; k = 1; : : : ;K] < 1:

where �̂Nt

jt is the MLE of �jt based on a sample with Nt individuals and, again, 1 2 (0; 1)

reects the degree of certainty the user requires before she decides there is enough evidence

to conclude that �0 = 1. In this case, if �̂Nt

jt is a consistent estimator of �jt, we have that

lim8t;Nt!1 �N1;:::;N24
= �0.

Since making inferences about �N1;:::;N24
is equivalent to making inferences about r = P [m(f(t; �̂Nt

jt )gt2Tk) =

�k; k = 1; : : : ;K], we focus on providing a DP procedure for releasing inferences for r. This pro-

cedure is based on the subsample and aggregate method. We start by randomly splitting each

D
t into M disjoint subsets, Dt

1; : : : ;D
t
M , of the same size (or approximately the same size when

nt=M is not an integer with nt = jDtj), where M is speci�ed by the user. Then, in each Dt
l , we

compute the MLE bjtl of �jt. We assume that, for each t, bjt1; : : : ; bjtM is a random sample from

the sampling distribution of �̂Nt

jt , where Nt = nt=M . Let Wl =
QK

k=1 If�kg(m (f(t; bjtl)gt2Tk)

and S =
PM

l=1Wl. Since W1; : : : ;WM are independent Bernoulli distributed random variables

with parameter r, we can provide inferences for r by using the Binomial random variable S.

Unfortunately, inferences directly based on S can lead to leakage of information. Hence, we

propose to make inferences for r based on a DP version of S, say SR + S + �, where � is drawn

from a Laplace distribution with mean zero and variance 1=�.

Based on SR, we make inferences for r by using the following model,

SRjS � Laplace(S; 1=�); S j r � Binomial(M; r); r � Beta(1; 1):

Under this model, the veri�cation server can report back any graph or summary of the pos-

terior distribution of r to the analyst. Then, she can compare any of those outputs with her

degree of certainty represented by 1 and decides whether or not �0 = 1. She can alternatively

interpret this posterior distribution for r as an asymptotic approximation of the Bayesian pos-

terior probability, �(m(f(t; �jt)gt2Tk) = �k; k = 1; : : : ;KjSR). In our previous example where

(�1; �2) = (0; 1), T1 = [1; 9], and T2 = [10; 24], if the mode of the posterior probability for r equals

0:93, we could say that the posterior probability that the trend of �jt is decreasing during the

12



�rst 9 years and is decreasing during the last 15 years is approximately equal to 0:93.

4 List of Synthesized Variables

In this section, we provide a full list of the synthesized variables. The variables in this list are

ordered from the �rst to last to be synthesized.

1. Agency. Each entry of personnel data from the Central Personnel Data File (CPDF) is

accompanied by a distinct agency identi�er (e.g., AG13 or HUAA). These 4-digit codes are

a combination of letters and numbers. The �rst two digits signify the overarching agency

(e.g., AG=Department of Agriculture) and the last two digits signify a sub-element within

the agency if there is one (e.g., Forest Service).

2. Sex. An employee's sex.

3. Race. Race or National Origin - An employee's race or national origin. Employees of

mixed race or national origin should be identi�ed with the race or national origin with

which they most closely associate themselves. This data standard is only applicable to

an employee whose accession occurs prior to July 1, 2006. See the ETHNICITY AND

RACE IDENTIFICATION data standard for an employee whose accession occurs on or

after January 1, 2006.1

4. Eribridge. The data standard is applicable to accessions occurring on or after January 1,

2006, and is required for accessions occurring on or after July 1, 2006. The data standard

consists of one ethnicity category (Hispanic or Latino) and �ve race categories.

5. Educ lvl. The extent of an employee's educational attainment from an accredited insti-

tution.2

6. Agerange. The age of the employee in the year observed within a particular range. The

method to generate the variable is as follows: OPM took the real age, randomly added

error, which is uniformly distributed around 0 and goes from -2 to +2. That generates a

predicted age, which is then bucketed into 5-year buckets. The variable agerange is the

predicted age in the 5-year bucket. This is generated year-by-year, not person-by-person.

7. Yrsdegrng. Years since the employee earned the degree mentioned in educ lvl. OPM

took the real year, randomly added error, which is uniformly distributed around 0 and

goes from -2 to +2. That generates a predicted year, which is then bucketed into 5-year

buckets. The variable yrsdegrng is the predicted number of years in the 5-year bucket.

This is generated year-by-year, not person-by-person.

1The Guide to Data Standards, Update 16, November 15, 2014, A-420.
2The Guide to Data Standards, Update 16, November 15, 2014, A-130.
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8. Milmonths. The months of military service that are creditable for annual leave accrual

purposes. This variable was generated using the milserve (same as CREDIBLE MILITARY

SERVICE) variable provided to us by OPM.3

9. Occ. Occupation - An employees occupational series. Occupational Series 0001 through

2299 represent white collar occupations and occupational series 2501 through 9999 repre-

sent blue collar occupations.4

10. Instrctpgm. Instructional Program - an employees �eld of study.5

11. Occ cat. Occupational Category - The occupational category to which an occupational

series belongs.6

12. Funcclas. Functional Class - An employee's primary work function as a scientist or

engineer.

13. Flsa. The status of a Federal civilian employee under the authority of Section 13 of the

Fair Labor Standards Act (29 U.S.C. 213), as amended.

14. Appttype. Type of Appointment the type of appointment under which an employee is

serving.7

15. Polappttype. Political Appointment Type. - Political appointee is a generic term that is

not de�ned in OPM sta�ng policy. For purposes of our analyses a political appointee, non-

career SES employee, or Schedule C employee who can be identi�ed as such in OPMs Cen-

tral Personnel Data File (CPDF) or Enterprise Human Resources Integration-Statistical

Data Mart (EHRI-SDM).

16. Position. Position Occupied an employee's position in the Competitive Service, Excepted

Service, or the Senior Executive Service.8

17. Tenure. For purposes of reduction in force, the retention group in which an employee is

placed based on the employee's type of appointment.9

18. Svsrstat. Supervisory status - The nature of managerial, supervisory, or non-supervisory

responsibility assigned to an employee's position.10

3The Guide to Data Standards, Update 16, November 15, 2014, A-86.
4The Guide to Data Standards, Update 16, November 15, 2014, A-307.
5The Guide to Data Standards, Update 16, November 15, 2014, A-173-A-236.
6The Guide to Data Standards, Update 16, November 15, 2014, A-343.
7The Guide to Data Standards, Update 16, November 15, 2014, A-510.
8The Guide to Data Standards, Update 16, November 15, 2014, A-396.
9The Guide to Data Standards, Update 16, November 15, 2014, A-506 A-507.
10The Guide to Data Standards, Update 16, November 15, 2014, A-504 A-505.
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19. Bargunit. An employee's bargaining unit. Bargaining unit names and codes can be found

in the O�ce of Personnel Managements Federal Labor Management Information System

(FLIS) website (https://apps.opm.gov/is/start.aspx).11

20. Pay plan. A particular table or array of pay rates prescribed by law or other authoritative

source that establishes the basic pay rates for certain employees. In most cases, a pay plan

(system) is a two dimensional matrix of pay rates: one dimension providing a series of

di�erent pay rates or ranges corresponding to di�erences in grade (or level, class, rank, or

pay band of work) and the other dimension providing a series of pay rates or a range of

rates within a grade. These rates may be a function of length of service in the grade or of

performance ratings.12

21. Grade. An indicator of hierarchical relationships among positions covered by the same

pay plan or system.13

22. Steprate. An indicator of a speci�c salary within a grade, level, class, rate, or pay band.

23. Paybasis. The principal condition in terms of time, production, or other criteria that,

along with salary rate, determines the compensation paid to an employee.

24. Workschd. Work Schedule - The time basis on which an employee is scheduled to work.

25. Payrated. A designation of any special factors that help determine an employee's rate of

basic pay or adjusted basic pay.14

26. Localpay. Locality Pay Area - the identi�cation of an area for purposes of locality-based

comparability payments.

27. Paybasic. The employees rate of basic pay. Exclude supplements, adjustments, al-

lowances, di�erentials, incentives, or other similar additional payments.

28. Retallow. This variable comes from Nature of Action code 827, Retention Incentive.15

29. Svsr di�. Supervisory Di�erential - The annual total dollar amount paid, over and above

paybasic, to a General Schedule supervisor who otherwise would be paid less than one or

more of the civilian employees supervised.16

11The Guide to Data Standards, Update 16, November 15, 2014, A-59.
12The Guide to Data Standards, Update 16, November 15, 2014, A-352 A-386.
13The Guide to Data Standards, Update 16, November 15, 2014, A-168 A-169.
14The Guide to Data Standards, Update 16, November 15, 2014, A-387 A-392.
15The Guide to Data Standards, Update 16, November 15, 2014, A-302.
16The Guide to Data Standards, Update 16, November 15, 2014, A-503.
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Males' Regression Females' Regression
Variable Synthetic Con�dential Synthetic Con�dential

AI/AN -.016 (9) -.034 (17) -.017 (11) -.036 (21)
Asian -.014 (11) -.027 (20) .004 (4) .014 (12)
Black -.058 (86) -.083 (116) -.009 (20) -.011 (23)
Hispanic -.016 (20) -.033 (37) -.014 (17) -.018 (22)

Employee-years 13,008,298 12,720,500 12,263,514 11,874,048
Employees 1,446,499 1,430,238 1,390,611 1,348,381

Table 1: Coe�cients from overall regression models. AI/AN stands for American Indian and
Alaska Native, and Asian includes individuals that identify as Native Hawaiian or Paci�c Is-
lander. Absolute values of t-statistics are in parentheses. Disparities in sample sizes arise from
deletions of cases with missing values in the con�dential data analyses. These models include an
indicator for an individual's occupational category code { professional, administrative (omitted
category), technical, clerical, other white collar, or blue collar. Models also include controls for
age, age squared, and educational attainment.

5 Results for Model With Broad Occupation Classi�cation

Table 1 includes estimates of the racial wage gap over the 1988-2011 time period for men and

women from the synthetic and authentic datasets. These estimates are from models similar

to those reported in the main text of the paper. However, rather than including indicators

for disaggregated occupational information, we use indicators for broad occupational indicators

created by the O�ce of Personnel Management. There are six possible categories: administrative

(omitted group), blue collar, clerical, other white collar, professional, and technical.

In general, administrative jobs require a college degree and are primarily white collar positions

with management functions. This is the largest category of positions in the federal government.

Professional positions tend to be complex and technical in function, requiring advanced degrees

and training. Examples would include engineers and scientists. Clerical positions and technical

positions tend to be supportive roles within agencies that do not require a bachelor's degree

and/or individuals may be able to be trained on the job. These categories include positions like

administrative assistants (clerical) and nursing assistants (technical). Blue collar positions have

shrunk in number over time, but they include trades and craft workers in both supervisory and

non-supervisory roles. Finally, other white collar positions include those that do not comfortably

fall into any of the other white collar categories, such as student trainees for a variety of white

collar positions or border patrol enforcement (O�ce of Personnel Management, 2014).

If individuals' races play an important role in the speci�c occupations that they work in, then

conditioning on occupational information could induce post-treatment bias in our estimates of

the racial wage gap. Race may play a role, for example, if there is signi�cant racial discrimination
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Figure 1: Estimated racial wage gaps (coe�cients of race indicators) for yearly females' regres-
sions in synthetic data (left) and con�dential, authentic data (right). These models include an
indicator for an individual's occupational category code { professional, administrative (omitted
category), technical, clerical, other white collar, or blue collar.

or legacies of discrimination in particular occupations or classes of occupations. In that case,

conditioning on occupation would not give a full picture of racial pay disparities. However,

completely excluding occupational information may lead to incorrect inferences if occupational

sorting rather than discrimination is at play. Here, we \split the di�erence," by including only

broad occupational information. Results with no occupational indicators in models are available

upon request.

As can be seen in Table 1, the estimated wage gaps are in general larger than those reported

in the main text of the paper when including more aggregated occupational indicators. In all

cases, except for Asian female employees, we see an estimated negative coe�cient for each group,

indicating that they are paid less than comparable white employees. These signed relationships

are found in both the synthetic and the con�dential datasets, although the coe�cients estimated

from the con�dential dataset tend to be of larger magnitude.

Figure 1 displays the over-time trends in estimated racial pay gaps with 95% con�dence

intervals for female employees in the synthetic and con�dential datasets, respectively. Both

�gures show similar trends both to one another, as well as to those reported in the main text of

the paper. The key place in which the synthetic and con�dential datasets depart in their results
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Figure 2: Estimated racial wage gaps (coe�cients of race indicators) for yearly males' regres-
sions in synthetic data (left) and con�dential, authentic data (right). These models include an
indicator for an individual's occupational category code { professional, administrative (omitted
category), technical, clerical, other white collar, or blue collar.

is for black female employees, a trend which is replicated in models with more disaggregated

occupational information as well. In the con�dential dataset, we see a decline in black female

earnings relative to whites over time, whereas we see no clear trend in the synthetic dataset

estimates. Again, we observe relatively larger magnitude estimates in the con�dential datasets.

Figure 2 displays over-time trends and 95% con�dence intervals for the racial pay gap for male

employees in the federal government. As can be seen, there are relatively similar trends to those

reported in the main text of the paper and the results are fairly consistent across the synthetic

and the con�dential datasets as well. The only sign discrepancy appears to be for Hispanic

males, who are estimated to earn more than white males in the latter years of the dataset in

the synthetic dataset. This is not replicated in the con�dential dataset. There are a couple of

minor di�erences between these results and those reported in the main text. With disaggregated

occupational information, we see that Asian male employees appear to reach parity with white

male employees in the latter years of the dataset. We also see that in these models, employees

who identify as American Indian or Alaska Native also appear to fare less well, never reaching

parity, while they do when using disaggregated occupational data.
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