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APPENDICES

A Data Construction

This appendix complements the description of the data in Section ?? of the text.

Selection of markets. We use 2,028 airport-pair markets linking the 79 U.S. airports (excluding

Alaska and Hawaii) with the most enplanements in Q2 2006. The markets that are excluded

meet one or more of the following criteria:

• airport-pairs that are less than 350 miles apart as ground transportation may be very

competitive on these routes;

• airport-pairs involving Dallas Love Field, which was subject to Wright Amendment restric-

tions that severely limited nonstop flights;

• airport-pairs involving New York LaGuardia or Reagan National that would violate the

so-called perimeter restrictions that were in effect from these airports1;

• airport-pairs where more than one carrier that is included in our composite “Other Legacy”

or “Other LCC” (low-cost) carriers are nonstop, have more than 20% of non-directional

traffic or have more than 25% presence (defined in the text) at either of the endpoint

airports. Our rationale is that our assumption that the composite carrier will act as a

single player may be especially problematic in these situations2; and,

• airport-pairs where, based on our market size definition (explained below), the combined

market shares of the carriers are more than 85% or less than 4%.

Definition of players, nonstop and connecting service. We are focused on the decision of

carriers to provide nonstop service on a route. Before defining any players or outcomes, we drop

all passenger itineraries from DB1 that involve prices of less than $25 or more than $2000 dollars3,

open-jaw journeys or journeys involving more than one connection in either direction. Our next

step is to aggregate smaller players into composite “Other Legacy” and “Other LCC” carriers, in

addition to the “named” carriers (American, Continental, Delta, Northwest, Southwest, United

1To be precise, we exclude routes involving LaGuardia that are more than 1,500 miles (except Denver) and
routes involving Reagan National that are more than 1,250 miles.

2An example of the type of route that is excluded is Atlanta-Denver where Airtran and Frontier, which are
included in our “Other LCC” category had hubs at the endpoints and both carriers served the route nonstop.

3These fare thresholds are halved for one-way trips.
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Figure A.2: Proportion of DB1 Passengers Traveling with Connections, Based on the Type of
Service
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(i) Nonstop Carriers
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(ii) Connecting Carriers

and US Airways) that we focus on. Our classification of carriers as low-cost follows Berry and

Jia (2010). Based on the number of passengers carried, the largest Other Legacy carrier is

Alaska Airlines, and the largest Other LCC carriers are JetBlue and AirTran.

We define the set of players on a given route as those ticketing carriers who achieve at

least a 1% share of total travelers (regardless of their originating endpoint) and, based on the

assumption that DB1 is a 10% sample, carry at least 200 return passengers per quarter, with a

one-way passenger counted as one-half of a return passenger. We define a carrier as providing

nonstop service on a route if it, or its regional affiliates, are recorded in the T100 data as having

at least 64 nonstop flights in each direction during the quarter and at least 50% of the DB1

passengers that it carries are recorded as not making connections (some of these passengers may

be traveling on flights that make a stop but do not require a change of planes). Other players

are defined as providing connecting service.

There is some arbitrariness in these thresholds. However, the 64 flight and 50% nonstop

thresholds for nonstop service have little effect because almost all nonstop carriers far exceed

these thresholds. For example, Figure A.2 shows that the carriers we define as nonstop typically

carry only a small proportion of connecting passengers. For this reason, we feel able to ignore
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Figure A.3: Market Size Measures and their Impact on Market Shares

-12 -10 -8 -6 -4 -2

Log(Total Mkt Shares)

0

20

40

60

80

100

120

140

N
um

be
r 

of
 R

ou
te

-D
ire

ct
io

ns

(i) Distribution of Log(Total Mkt Shares)

0 0.01 0.02 0.03 0.04 0.05

Total Market Share A to B

0

0.01

0.02

0.03

0.04

0.05

T
ot

al
 M

ar
ke

t S
ha

re
 B

 to
 A

(ii) Scatter Plot of Total Market Shares
 in Each Direction on Route             
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(ii) Scatter Plot of Total Market Shares
 in Each Direction on Route             

        (b) Using Regression Model to Define Market Size

(a) Using Geometric Average Populations to Define Market Size

the fact that carriers may provide both nonstop and connecting service on the same route.

On the other hand, our 1% share/200 passenger thresholds do affect the number of connecting

carriers. For example, if we instead required players to carry 300 return passengers and have

a 2% share, the average number of connecting carriers per market falls by almost one-third as

marginal carriers are excluded.

Market Size. As in many settings where discrete choice demand models are estimated, the

definition of market size is important but not straightforward. Ideally, variation in market shares

across carriers and markets should reflect variation in prices, carrier characteristics and service

types rather than variation in how many people consider flying on a particular route which is

what the market size measure should be capturing.

A common approach is to use the geometric average of endpoint populations as the measure of
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market size (e.g., Berry and Jia (2010), Ciliberto and Williams (2014)).4 However, as illustrated

in the left-hand panel of Figure A.3(a), using this measure results in considerable heterogeneity

in (the natural log of) total market shares (i.e., summing across all carriers) across routes. It also

leads to significant variation in the proportion of the market traveling in each direction on many

routes even though the services offered by the carriers are usually very similar in both directions

(right-hand panel). This is a problem as we model competition on directional routes.

We address these issues in two ways. First, conditional on our market size measure, our

demand model allows for a route-level random effect, unobserved to the econometrician but

known to the carriers. This random effect is common to all carriers and all types of service, and it

can explain why more people travel on some routes holding service, prices and observed variables

constant. Second, we define market size using the regression-based gravity model of Silva and

Tenreyro (2006) where the log of the number of passengers traveling on a directional route is

projected onto a set of interactions between the total number of originating and destination

passengers (i.e., aggregating across all carriers and routes) at the endpoint airports and the

nonstop distance between the airports. We then multiply the predicted traveler number by 3.5

so that, on average, the combined market shares of carriers is just under 30%. Figure A.3(b)

repeats the figures in Figure A.3(a) using this new definition, and the distribution of the log of

total market shares and the relationship between total market shares in each direction display

much more limited heterogeneity.

Prices and Market Shares. As is well-known, airlines use revenue management strategies

that result in passengers on the same route paying quite different prices. Even if more detailed

data (e.g., on when tickets are purchased) was available, it would likely not be feasible to model

these type of strategies within the context of a combined service choice and pricing game. We

therefore use the average price as our price measure, but allow for prices and market shares

(defined as the number of originating passengers carried divided by market size) to be different

in each direction, so that we can capture differences in passenger preferences (possibly reflecting

frequent-flyer program membership) across different airports.5

Explanatory Variables Reflecting Airline Networks. The legacy carriers in our data operate

hub-and-spoke networks. On many medium-sized routes nonstop service may be profitable only

because it allows a large number of passengers who use the route as one segment of a longer trip to

4Reiss and Spiller (1989) use the minimum endpoint population as their market size measure.
5Carriers may choose a similar set of ticket prices to use in each direction but revenue management techniques

mean that average prices can be significantly different. Fares on contracts that carriers negotiate with the federal
government and large employers, which may be significantly below list prices, may also play a role, but there is
no data available on how many tickets are sold under these contracts.
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be served. While our structural model captures price competition for passengers traveling only

the route itself, we allow for connecting traffic to reduce the effective fixed cost of providing non-

stop service by including three carrier-specific variables in our specification of fixed costs. Two

variables are indicators for the principal domestic and international hubs of the non-composite

carriers. We define domestic hubs as airports where more than 10,000 of the carrier’s ticketed

passengers made domestic connections in DB1 in Q2 2005 (i.e., one year before our estimation

sample). Note that some airports, such as New York’s JFK airport for Delta, that are often

classified as hubs do not meet our definition because the number of passengers using them for

domestic connections is quite limited even though the carrier serves many destinations from the

airport. International hubs are airports that carriers use to serve a significant number of non-

Canadian/Mexican international destination nonstop. Table A.2 shows the airports counted as

hubs for each named carrier.

We also include a continuous measure of the potential connecting traffic that will be served

if nonstop service is provided on routes involving a domestic hub. The construction of this

variable, as the prediction of a Heckman selection model, is detailed in Appendix A.1.

A.1 An Ancillary Model of Connecting Traffic

As explained in Section 2 of the text, we want to allow for the amount of connecting traffic that a

carrier can carry when it serves a route nonstop to affect its decision to do so. Connecting traffic

is especially important in explaining why a large number of nonstop flights can be supported at

domestic hubs in smaller cities, such as Charlotte, NC (a US Airways hub), Memphis (Northwest)

and Salt Lake City (Delta). While the development of a model where carriers choose their entire

network structure is well beyond the scope of the paper, we use a reduced-form model of network

flows that fits the data well6 and which gives us a prediction of how much connecting traffic that

a carrier can generate on a route where it does not currently provide nonstop service, taking the

service that it provides on other routes as given. We include this prediction in our model of

entry as a variable that can reduce the effective fixed or opportunity cost of providing nonstop

service on the route.7

Model. We build our prediction of nonstop traffic on a particular segment up from a multi-

6This is true even though we do not make use of additional information on connecting times at different
domestic hubs which could potentially improve the within-sample fit of the model, as in Berry and Jia (2010).
As well as not wanting to avoid excessive complexity, we would face the problem that we would not observe
connection times for routes that do not currently have nonstop service on each segment, but which could for
alternative service choices considered in our model.

7We also use the predicted value, not the actual value, on routes where we actually observe nonstop service.
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nomial logit model of the share of the connecting passengers going from a particular origin to a

particular destination (e.g., Raleigh (RDU) to San Francisco (SFO)) who will use a particular

carrier-hub combination to make the connection. Specifically,

sc,i,od =
exp(Xc,i,odβ + ξc,i,od)

1 +
∑

l

∑
k exp(Xl,k,o,dβ + ξl,k,od)

(1)

where Xc,i,od is a vector of observed characteristics for the connection (c)-carrier (i)-origin (o)-

destination (d) combination and ξc,i,od is an unobserved characteristic. The Xs are functions of

variables that we are treating as exogenous such as airport presence, endpoint populations and

geography. The outside good is traveling using connecting service via an airport that is not one

of the domestic hubs that we identify.8 Assuming that we have enough connecting passengers

that the choice probabilities can be treated as equal to the observed market shares, we could

potentially estimate the parameters using the standard estimating equation for aggregate data

(Berry 1994):

log(sc,i,od)− log(s0,od) = Xc,i,odβ + ξc,i,od. (2)

However, estimating (2) would ignore the selection problem that arises from the fact that some

connections may only be available because the carrier will attract a large share of connecting

traffic. We therefore introduce an additional probit model, as part of a Heckman selection

model, to describe the probability that carrier i does serve the full ocd route,

Pr(i serves route ocd) = Φ (Wi,c,odγ) . (3)

Sample, Included Variables and Exclusion Restrictions. We estimate our model using data

from Q2 2005 (one year prior to the data used to estimate our main model) for the top 100 US

airports. We use DB1B passengers who (i) travel from their origin to their destination making

at least one stop in at least one direction (or their only direction if they go one way) and no

more than one stop in either direction; and, (ii) have only one ticketing carrier for their entire

trip. For each direction of the trip, a passenger counts as one-half of a passenger on an origin-

connecting-destination pair route (so a passenger traveling RDU-ATL-SFO-CVG-RDU counts as

1
2

on RDU-ATL-SFO and 1
2

on RDU-CVG-SFO). Having joined the passenger data to the set

8For example, the outside good for Raleigh to San Francisco could involve traveling via Nashville on any carrier
(because Nashville is not a domestic hub) or on Delta via Dallas Fort Worth because, during our data, Dallas is
not defined as a domestic hub for Delta even though it is for American.
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of carrier-origin-destination-connecting airport combinations, we then exclude origin-destination

routes with less than 25 connecting passengers (adding up across all connecting routes) or any

origin-connection or connection-destination segment that is less than 100 miles long.9 We also

drop carrier-origin-destination-connecting airport observations where the carrier (or one of its

regional affiliates) is not, based on T100, providing nonstop service on the segments involved

in the connection. This gives us a sample of 5,765 origin-destination pairs and 142,506 carrier-

origin-destination-hub connecting airport combinations, of which 47,996 are considered to be

served in the data.

In Xc,i,od (share equation), we include variables designed to measure the attractiveness of

the carrier i and the particular ocd connecting route. Specifically, the included variables are

carrier i’s presence at the origin and its square, its presence at the destination and its square,

the interaction between carrier i’s origin and destination presence, the distance involved in flying

route ocd divided by the nonstop distance between the origin and destination (we call this the

‘relative distance’ of the connecting route), an indicator for whether route ocd is the shortest

route involving a hub, an indicator for whether ocd is the shortest route involving a hub for

carrier i and the interaction between these two indicator variables and the relative distance.

The logic of our model allows us to define some identifying exclusion restrictions in the form

of variables that appear in W but not in X. For example, the size of the populations in Raleigh,

Atlanta and San Francisco will affect whether Delta offers service between RDU and ATL and

ATL and SFO, but it should not be directly relevant for the choice of whether a traveler who

is going from RDU to SFO connects via Atlanta (or a smaller city such as Charlotte), so these

population terms can appear in the selection equation for whether nonstop service is offered

but not the connecting share equation. In Wc,i,od we include origin, destination and connecting

airport presence for carrier i; the interactions of origin and connecting airport presence and of

destination and connecting airport presence; origin, destination and connecting city populations;

the interactions of origin and connecting city populations and of destination and connecting city

populations, a count of the number of airports in the origin, destination and connecting cities10;

indicators for whether either of the origin or destination airports is an airport with limitations on

how far planes can fly (LaGuardia and Reagan National) and the interactions of these variables

with the distance between the origin or destination (as appropriate) and the connecting airport;

9Note while we will only use routes of more than 350 miles in the estimation of our main model, we use a
shorter cut-off here because we do not want to lose too many passengers who travel more than 350 miles on one
segment but less than 350 miles on a second segment.

10For example, the number is 3 for the airports BWI, DCA and IAD in the Washington DC-Baltimore metro
area.
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indicators for whether the origin or destination airport are slot-constrained. In both Xi,c,od and

Wi,c,od we also include origin, destination and carrier-connecting airport dummies.

Results. We estimate the equations using a one-step Maximum Likelihood procedure where

we allow for residuals that are assumed to be normally distributed in both (3) and (2) to be

correlated, although our predictions are almost identical using a two-step procedure (correlation

in predictions greater than 0.999). The coefficient estimates are in Table A.3, although the many

interactions means that it is not straightforward to interpret the coefficients

To generate a prediction of the connecting traffic that a carrier will serve if it operates nonstop

on particular segment we proceed as follows. First, holding service on other routes and by other

carriers fixed, we use the estimates to calculate a predicted value for each carrier’s share of traffic

on a particular ocd route. Second, we multiply this share prediction by the number of connecting

travelers on the od route to get a predicted number of passengers. Third, we add up across all oc

and cd pairs involving a segment to get our prediction of the number of connecting passengers

served if nonstop service is provided. There will obviously be error in this prediction resulting

from our failure to account for how the total number of connecting passengers may be affected

by service changes and the fact that network decisions will really be made simultaneously.

However we find that the estimated model does a pretty accurate job of predicting how many

connecting travelers there are on the segments that airlines fly in 2005. For example, for the

identified legacy carriers in our primary model, the correlation between the number of connecting

passengers served on one of these segments and the number of passengers the model predicts

is 0.96, and the model captures some natural geographic variation. For example, for many

destinations a connection via Dallas is likely to be more attractive for a passenger originating

in Raleigh-Durham (RDU) than a passenger originating in Boston (BOS), while the opposite

may hold for Chicago. Our model predicts that American, with hubs in both Dallas (DFW) and

Chicago (ORD), should serve 2,247 connecting DB1 passengers on RDU-DFW, 1213 on RDU-

ORD and 376 on RDU-STL (St Louis), which compares with observed numbers of 2,533, 1,197

and 376. On the other hand, from Boston the model predicts that American will serve more

connecting traffic via ORD (2265, observed 2765) than DFW (2040, observed 2364).

10



Table A.3: Estimation Coefficients for Ancillary Model of Connecting Traffic
Connecting Share Serve Route 1

2
log 1+ρ

1−ρ log(std. deviation)

Constant 4.200*** -8.712*** -0.109 0.308***
(0.338) (0.823) (0.0860) (0.0150)

Presence at Origin Airport 4.135*** 6.052***
(0.396) (1.136)

Presence at Connecting Airport 11.90***
(0.721)

Presence at Destination Airport 2.587*** 6.094***
(0.396) (1.126)

Origin Presence * Connecting Presence -5.536***
(1.311)

Destin. Presence * Connecting Presence -5.771***
(1.303)

Population of Connecting Airport -1.20e-07***
(3.16e-08)

Origin Population * Origin Presence -5.09e-08**
(2.23e-08)

Destin. Population * Destination Presence -4.46e-08*
(2.35e-08)

Number of Airports Served from Origin 0.543***
(0.101)

Number of Airports Served from Destination 0.529***
(0.0984)

Origin is Restricted Perimeter Airport 0.0317
(0.321)

Destination is Restricted Perimeter Airport -0.0865
(0.305)

Origin is Slot Controlled Airport -1.098***
(0.321)

Destination is Slot Controlled Airport -1.055***
(0.331)

Distance: Origin to Connection -0.00146***
(0.000128)

Distance: Connection to Destination -0.00143***
(0.000125)

Origin Restricted * Distance Origin - Connection 0.000569***
(0.000207)

Destin. Restricted * Distance Connection - Destin 0.000602***
(0.000211)

Relative Distance -4.657***
(0.441)

Most Convenient Own Hub -0.357*
(0.192)

Most Convenient Hub of Any Carrier -0.574
(0.442)

Origin Presence2 -2.797***
(0.429)

Destination Presence2 -1.862***
(0.449)

Relative Distance2 0.745***
(0.129)

Most Convenient Own Hub * Relative Distance2 0.479***
(0.151)

Most Convenient Hub of Any Carrier * 0.590
Relative Distance (0.434)
Origin Presence * Destination Presence -5.278***

(0.513)

Observations 142,506 - - -

Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1
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B Estimation

This Appendix provides additional information on the algorithm that we use to estimate our

model. Appendix B.1 lays out the set of moments that are used in our preferred specification.

Appendix B.2 explains how we estimate our model when we do not impose a known order

of moves. Appendix B.3 provides Monte Carlo evidence that both estimators work well for a

simplified model. Appendix B.4 provides some evidence that the algorithm works well when

applied to our data.

B.1 Moments

When estimating our preferred specification, we minimize a standard simulated method of mo-

ments objective function in the second step

m(Γ)′Wm(Γ)

where W is a weighting matrix. m(Γ) is a vector of moments where each element has the form

1
2,028

∑m=2,028
m=1

(
ydatam − Êm(y|Γ)

)
Zm, where subscript ms represent markets. ydatam are observed

outcomes and Zm are exogenous observed variables.

We use a large number (1,384) of moments in estimation. To understand how we get to this

number, Table B.2 presents a cross-tab describing the interactions that we use between outcomes

and exogenous variables. There are two types of outcomes: market-specific and carrier-specific,

and for each of these types, we are interested in prices, market shares and service choices. For

example, market-specific outcomes include weighted average connecting and nonstop prices in

each direction. Carrier-specific outcomes include the carrier’s price in each direction, its market

share in each direction and whether it provides nonstop service. The exogenous Z variables

can be divided into three groups: market-level variables, variables that are specific to a single

carrier, and variables that measure the characteristics of the other carriers that are in the market

(e.g., Delta’s presence at each of the endpoint airports when we are looking at an outcome that

involves United’s price or service choice).

B.2 Estimation Using Moment Inequalities

Our baseline estimates assume that carriers play a sequential service choice game. However we

also present estimated coefficients based on moment inequality estimation where we allow for

12



Table B.2: Moments Used in Estimation

Market Specific (yM) Carrier Specific (yC)
Endogenous Outcomes Endogenous Outcomes

Exogenous Variables 7 outcomes 5 per carrier Row Total
Market-Level Variables 49 315 364
(ZM) (7 per market)

Carrier-Specific Variables 280 200 480
(ZC) (up to 5 per carrier)

Other Carrier-Specific 315 225 540
(Z−C) (5 per “other carrier”)

Column Total 644 740 1,384

Notes: ZM = {constant, market size, market (nonstop) distance, business index, number of low-cost
carriers, tourist dummy, slot constrained dummy}
ZC = {presence at each endpoint airport, our measure of the carrier’s connecting traffic if the route
is served nonstop, connecting distance, international hub dummy} for named legacy carriers and for
Southwest (except the international hub dummy). For the Other Legacy and Other LCC Carrier we
use {presence at each endpoint airport, connecting distance} as we do not model their connecting
traffic. Carrier-specific variables are interacted with all market-level outcomes and carrier-specific
outcomes for the same carrier.
Z−C = {the average presence of other carriers at each endpoint airport, connecting passengers,
connecting distance, and international hub dummy} for each other carrier (zero if that carrier is not
present at all in the market).
yM = {market level nonstop price (both directions), connecting price (both directions), sum of
squared market shares (both directions), and the square of number of nonstop carriers}
yC = {nonstop dummy, price (both directions), and market shares (both directions)} for each carrier.

13



the observed outcome to be associated with any pure strategy equilibrium in a simultaneous

move game or a sequential move game with any order of moves. Estimation is based on moment

inequalities of the form

E(m(y,X, Z,Γ)) = E


ydatam − ̂E(ym(X,Γ))

̂E(ym(X,Γ))− ydatam

⊗ Zm

 ≥ 0

where ydatam are observed outcomes in the data and Zm are non-negative instruments. ̂E(ym(X,Γ))

and ̂E(ym(X,Γ)) are minimum and maximum expected values for ym given a set of parameters

Γ, and these are calculated using importance sampling where, for each set of draws, we now

calculate the minimum and maximum values of the outcome across different equilibria. For

example, suppose that the outcome is whether firm A is nonstop. The lower bound (minimum)

would be formed by assuming that whenever there are equilibrium outcomes where A is not

nonstop, one of them will be realized, whereas the upper bound (maximum) would be formed

by assuming that whenever there are equilibrium outcomes where A is nonstop, one of them is

realized.11 The instruments are the same as for the baseline estimation.

The objective function that is minimized is

Q(Γ) = min
t≥0

[ ̂m(y,X, Z,Γ)− t]W [ ̂m(y,X, Z,Γ)− t]

where t is a vector equal in length to the vector of moments, and it sets equal to zero those

moment inequalities which hold so that they do not contribute to the objective function. W is

a weighting matrix.

B.3 Monte Carlo

We present the results of several Monte Carlo exercises that examine the performance of our

‘Simulated Method of Moments with Importance Sampling’ estimator when applied to a model

of airline entry. To make the Monte Carlo exercises computationally feasible, we use a slightly

simpler model by reducing the number of covariates and using a binary choice of whether or

not to enter a market rather than a service choice decision. However, compared with many

Monte Carlos, the number of parameters that we estimate is still large, illustrating that we can

11Because only a subset of outcomes, or combinations of outcomes, are considered when forming moments,
estimates based on these inequalities will not be sharp.
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accurately estimate many parameters using our approach.

B.3.1 Model

All of the Monte Carlo exercises are based on the same economic model.

Industry Participants. At the industry level, there are six carriers, A, B, C, D, E and F. A,

B, C and D are ‘legacy’ carriers (LEGi = 1) whereas E and F are low-cost carriers (LCCi = 1).

A carrier’s legacy/low-cost status can affect both its demand and costs.

Potential Entrants. We create datasets with observations from either 500 or 1,000 independent

local markets, which one can think of as airport-pairs. For each market, we first draw the number

of potential entrants (2, 3 or 4 with equal probability), and then randomly choose which of the

six carriers will be potential entrants.

Demand, Costs and Market and Carrier Characteristics. Each carrier has a demand quality

and a marginal cost (which does not depend on quality if it enters). Carrier i’s quality, βDi,m, is

a draw from a truncated normal distribution

βDi,m ∼ TRN(βD,LEG
0.2

LEGi + βD,LCC
0

LCCi + βD1
0.3

XD
i,m x LEGi, σ

D

0.2
,−2, 10)

where the terms in parentheses are the mean, the standard deviation and the lower and upper

truncation points respectively. The numbers beneath the Greek parameters are their true values.

Carrier i’s marginal cost, ci,m, is also drawn from a truncated normal

ci,m ∼ TRN(γC,LEG
0

LEGi + γC,LCC
−0.5

LCCi + γC1
0.5

XC
m, σ

C

0.2
, 0, 6).

Each carrier also has a truncated normal fixed cost, Fi,m, that is paid if it enters the market

Fi,m ∼ TRN( θF1
7500

+ θF2
1000

XF
i,m + θF3

5000

XF
m, σ

F

2500
, 0, 30000)

As shown in these equations, demand and cost depend on a combination of observed market

and carrier characteristics. Carrier characteristics include the carrier’s type (legacy/LCC), the

demand shifter XD
i,m (which we loosely interpret as the carrier’s presence at the endpoints, and we

assume that this only affects demand for legacy carriers, reflecting their greater use of frequent-

flyer programs), and the carrier-specific fixed cost shifter XF
i,m. XD

i,m and XF
i,m are drawn from

independent U [0, 1] distributions. Market characteristics, XC
m (which we interpret as distance)

and XF
m (which we interpret as a measure of airport congestion), affect marginal costs and entry
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costs. XC
m is drawn from a U [1, 6] distribution. XF

m is drawn from a U [0, 1] distribution.

We also allow for some additional unobserved market-level heterogeneity that affects demand.

Specifically, a consumer j’s indirect utility for traveling on carrier i is

ui,j,m = βDi,m + ηm − αmpim︸ ︷︷ ︸
δi,m

+ ζj,m + (1− λm)εi,j,m

where there is cross-market unobserved heterogeneity in the level of demand through a market

random effect, ηm, the price sensitivity parameter, αm, and the nesting parameter, λm. εi,j,m is

the standard Type I extreme value logit error. We make the following distributional assumptions:

ηm ∼ TRN(0, ση
0.5
,−2, 2)

αm ∼ TRN(µα
0.45
, σα

0.1
, 0.15, 0.75)

λm ∼ TRN(µλ
0.7
, σλ

0.1
, 0.5, 0.9)

where setting the mean of the random effect to zero is a normalization as we included separate

mean quality coefficients for legacy and LCC carriers. Market size is assumed to be observed,

and is drawn from a uniform distribution on the interval 10,000 to 100,000.

Order of Entry We study Monte Carlos under different assumptions on the equilibrium being

played and what the researcher knows about equilibrium selection. In each case there is complete

information and carriers set prices simultaneously once entry decisions have been made. We

assume that the true model is that there is sequential entry. Legacy carriers are assumed to

move first, ordered by XD
i,m (highest first), followed by low-cost carriers who are ordered randomly.

The firms know the order. Firms enter when they expect their profits from entering to be greater

than zero. Given the specification of the entry game, and the fact that there will be a unique

equilibrium in any of the pricing games that follow entry12, the game will have a unique subgame

perfect Nash equilibrium.

B.3.2 Summary Statistics

We briefly summarize some of the patterns that emerge when we simulate outcomes for 2,000

markets given these parameters. 15.1% of the markets have no entrants, while 51.8%, 28.0%,

12This follows from Mizuno (2003) due to the assumptions that demand has a nested logit structure, each firm
produces a single product and marginal costs are non-decreasing with quantity.
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4.6% and 0.5% of markets have one, two, three and four entrants respectively. In 11.7% of

markets, all of the potential entrants enter. 48.8% and 26.0% of legacy and LCC potential

entrants enter respectively, which partly reflects the demand advantage of legacy carriers, but

also their first mover advantage in the entry game. Variation in market size and the demand

parameters α (price coefficient), λ (nesting coefficient) and η (market demand random effect) have

sensible effects on entry. Moving from the lowest to the highest tercile of market size increases

the average number of entering firms from 0.7 to 1.7. Similarly, going from the lowest to the

highest tercile of −α (demand become less price sensitive), λ (carriers become closer substitutes)

and η (market demand increases) changes the average number of entrants from 1.4 to 2.0, from

2.0 to 1.4 and from 1.5 to 1.9 respectively. There are both direct and indirect (via entry) effects

on prices. For example, going from the lowest to the highest tercile of −α increases average

prices, from 3.2 to 3.8, consistent with demand becoming less elastic, but it also increases the

standard deviation of prices, from 1.0 to 1.4, because prices will tend to fall if more entry occurs.

We also observe the standard deviation of prices increasing with λ (1.1 to 1.5). This reflects the

fact that, because entering carriers will be closer substitutes when the nesting parameter is large,

there will be a greater spread between monopoly and duopoly prices. Observed market marginal

cost and fixed cost shifters also affect both price and entry outcomes. For example, going from

the lowest to the highest tercile of the marginal cost shifter (XC
m) increases average prices from

2.7 to 4.6, while reducing the number of entrants from 1.9 to 1.6. For the market fixed cost

shifter (XF
m) moving from the lowest to the highest tercile reduces expected entry from 1.9 to

1.6 carriers, and because of the reduced entry, average prices increase from 3.4 to 3.7.

B.3.3 Monte Carlo Exercises

There are 17 parameters, Γ = {βD,LEG, βD,LCC , βD1 , σD, γC,LEG, γC,LCC , γC , σC , θF1 , θF2 , θF3 , σF , ση,
µα, σα, µλ, σλ}, to be estimated. Label the true parameters Γ0. We present results for three

Monte Carlo exercises below.

Monte Carlo Exercise 1: Estimation When the True Distributions Are Used To

Form the Importance Sampling Density & Known Order of Entry. Recall that an

importance sampling estimate of the expected value for a particular outcome hm in market m,

Ê(hm), is calculated as

1

S

S∑
s=1

y(Xm, θms)
f(θms|xm,Γ′)
g(θms|Xm)
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where, in our setting, θms is a vector of draws for the market-level parameters and demand

and cost draws for all of the potential entrant carriers, f is the density of these draws given

parameters Γ′, g is the importance density from which θms is drawn, and y(Xm, θms) is the value

of the outcome of interest given observed market characteristics and θms (e.g., a dummy for

whether firm A enters, or the combined market share of entrants).

In the first exercise, we use the true distribution as the importance density, i.e., g(θms|Xm) ≡
f(θms|xm,Γ0). While this estimator is generally infeasible, it is the efficient estimator in the sense

that the variance of the importance sampling estimate of each expected outcome is minimized.

It therefore provides a benchmark against which we can compare other results.

To perform this exercise, we first create one hundred datasets, each with 1,000 markets.

We perform the estimation using 1,000 importance sampling draws per market.13 We use the

following observed outcomes in estimation: the entry decision (represented by a 0/1 dummy),

the price and the market share of each of the firms (A-F)14, and three market outcomes: the

average transaction price (i.e., the average price of the entrants weighted by their market shares),

the sum of squared market shares for the entering carriers15 and the square of the number of

entrants.

These outcome measures are then interacted with several observed variables to create mo-

ments for estimation. Market-level variables include a constant, market size, XC
m, XF

m and the

number of LCC potential entrants. Carrier-level variables are XD
i,m, X

F
i,m and the average of these

variables for other potential entrants, although we do not use XD
i,m for the LCC carriers as, by

assumption, it does not affect their demand or their entry order. We then create moments by

interacting market outcomes with the market-level variables and the carrier variables for each of

the six carriers, and the carrier outcomes with the market level variables and the carrier variables

for that firm. This gives us a total of 237 moments for estimation. We weight these moments

by the inverse of their variances (evaluated at the true parameters, which, recall, we are using

to form the importance densities) in forming the objective function.16

Column (1) of Table B.3 reports the mean and standard deviation of the parameters estimated

13We first create the data and 2,000 draws for 2,000 different markets. Given that the importance density is
the true density of the parameters, this effectively involves doing 2,001 sets of draws, and arbitrarily calling the
first set ‘data’. We then create the one hundred datasets. For each dataset, we draw 1,000 markets from the
sample of 2,000 without replacement and, for each of the drawn markets, taking a sample of one thousand draws,
without replacement, from the 2,000 that were created for that market.

14Obviously, if a carrier is not a potential entrant in a particular market these outcomes will be zero.
15For this calculation, market shares are defined allowing for some consumers to purchase the outside good so

this is not the same as the HHI.
16We found that in practice the estimator performed more reliably from a wider range of starting values when

we used a diagonal weighting matrix rather than the usual inverse covariance matrix of the moments.
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for the one hundred repetitions. For all of the parameters, the mean estimated value is close

to the true value, indicating that there is no systematic bias, and the standard deviations are

small enough that, if they were interpreted as standard errors, all of the parameters whose true

values are not equal to zero, would be statistically different from zero at the 5% level, with the

exception of θF2 .

Another way of assessing the accuracy of the Monte Carlo estimates is by looking at how

accurately we are able to predict how market outcomes would change in response to a change

in the market environment. As an illustration we consider an increase in mean fixed costs of all

legacy carriers by 10,000 (taking their mean fixed cost from 10,500 to 20,500). The fixed costs

of LCC carriers are not affected. The first column of Table B.4 reports the expected changes

in entry, the cumulative market share of entering carriers and average prices under the true

parameters.17 As expected, fewer legacy carriers enter, while there is some increased entry by

LCCs. The reduction in entry causes weighted average prices to rise and the number of travelers

to fall.18 The second column reports the mean changes and standard deviations (in parentheses)

across the 100 Monte Carlo repetitions.19 We can see that the Monte Carlo counterfactuals

predict the true effects accurately, with small standard deviations.20

Column (3) of Table B.3 shows the results when there are only 500 markets, rather than

1,000, in each of the datasets (we continue to use 1,000 importance draws for each market). In

this case, the standard deviation of the parameter estimates increase, but only by a relatively

small amount, while the means remain very close to the true values of the parameters. We also

note that with either 500 or 1,000 markets, estimation is quite quick: each optimization takes

less than four hours even when we rely on numerical derivatives. We also get similar Monte Carlo

results when starting each optimization at parameters that are significantly perturbed from their

true values.21

17We use the outcomes for the 2,000 markets in our “data”, and then re-compute outcomes increasing the fixed
costs of legacy carriers but leaving the other draws unchanged.

18Average prices are only calculated for markets where entry occurs, so average prices are calculated for the
subset of markets where entry occurs before the increase in fixed costs.

19To isolate the effects of using different parameters, we use the same percentile for each parameter draw as in
our “data” for each market, before calculating predicted outcomes with and without the increase in legacy carrier
fixed costs. So, for example, suppose that in market 17 (out of 2,000), αm was drawn from the 43rd percentile of
the true distribution that has (untruncated) mean -0.45 and standard deviation 0.1. When we are considering a
Monte Carlo repetition where the estimates of the mean and standard deviation of α are -0.6 and 0.2, we would
use the 43rd percentile draw from this distribution.

20The standard deviation for the predicted change in prices is larger simply because differences in predictions
of entry, either with or without the change in fixed costs, can have a large effect on prices. However, the mean
prediction is close to the true value.

21This comment comes with the caveat that in a small number of cases when we start with perturbed parameters,
a parameter drifted to some very extreme value (e.g. an estimated mean of the untruncated distribution of the
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Table B.3: Monte Carlo Results with Known Order of Entry

(1) (2) (3)
IS Density: Same As True 50% Increase Same As True

Distribution in Std. Devs. Distribution
# of Mkts.: 1000 1000 500

# of IS Draws: 1000 1000 1000

True Values

Market Demand Std. Dev. 0.5 0.494 0.473 0.511
Random Effect (ση) (0.073) (0.151) (0.089)

Mkt Demand Slope Mean -0.45 -0.421 -0.429 -0.425
(µα) (0.024) (0.026) (0.022)

Std. Dev. 0.1 0.038 0.075 0.051
(σα) (0.039) (0.056) (0.044)

Nesting Parameter Mean 0.7 0.694 0.689 0.701
(µλ) (0.033) (0.035) (0.054)

Std. Dev. 0.1 0.051 0.062 0.089
(σθ) (0.039) (0.033) (0.072)

Carrier Quality Legacy 0.2 0.189 0.190 0.188
(βD,LEG) (0.064) (0.103) (0.076)

LCC 0 0.000 -0.031 0.003
(βD,LCC) (0.064) (0.087) (0.069)

XD
i,m ∗ LEGi 0.3 0.295 0.295 0.293

(βD1 ) (0.067) (0.142) (0.097)
Std. Dev. 0.2 0.176 0.209 0.170

(σD) (0.043) (0.064) (0.050)

Carrier Marginal Legacy Constant 0 0.031 0.040 0.054
Cost (γC,LEG) (0.111) (0.133) (0.130)

LCC Constant -0.5 -0.507 -0.470 -0.483
(γC,LCC) (0.135) (0.141) (0.158)

XC
m 0.5 0.500 0.479 0.489

(γC) (0.034) (0.047) (0.042)
Std. Dev. 0.2 0.216 0.169 0.205

(σC) (0.069) (0.081) (0.072)

Carrier Fixed Constant 0.75 0.738 0.725 0.743
Cost (θF1 /10, 000) (0.096) (0.131) (0.101)

XF
i,m 0.1 0.110 0.118 0.121

(θF2 /10, 000) (0.081) (0.166) (0.130)
XF
m 0.5 0.556 0.599 0.548

(θF3 /10, 000) (0.126) (0.163) (0.142)
Std. Dev. 0.25 0.210 0.246 0.209

(σF /10, 000) (0.065) (0.084) (0.086)

Notes: Reported numbers are the mean estimates of each parameter across 100 repetitions, with the standard
deviations reported in parentheses.
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Table B.4: Illustrative Counterfactual: The Effects of Increasing the Fixed Entry Costs of Legacy
Carriers Using Parameters Estimated Using IS Distributions that are the Same as True Distri-
bution of the Parameters and 1,000 Markets

Using Mean (Std. Dev.) Prediction
Change in ... True Parameters Across MC Repetitions
Total Number of Entrants -0.335 -0.332

(0.0254)
Number of Legacy Entrants -0.493 -0.478

(0.0332)
Number of LCC Entrants +0.158 +0.145

(0.0241)
Total Market Share -0.054 -0.053

(0.003)
Average Price (conditional on +0.228 +0.219

at least one firm entering) (0.056)

Monte Carlo Exercise 2: Estimation When Wider Distributions Are Used To Form

the Importance Sampling Density & Known Order of Entry Our second exercise con-

siders the case where we use an importance distribution that is more dispersed than the true

parameters. This reflects the fact that in practice we do not know what the true parameters are

and that, when estimating unknown parameters, it makes sense to use an importance distribu-

tion that will contain some draws that will still have reasonable density when the parameters

are changed. As an illustration, we therefore repeat the first exercise, but the importance dis-

tributions are formed by increasing all of the standard deviation parameters by 50%. The mean

parameters remain unchanged. Column (2) of Table B.3 reports the results when each dataset

contains 1,000 markets. The mean estimates continue to be very close to the true parameter

values. The standard deviations increase for most parameters, as one might expect, but the

magnitude of the increases is fairly small.

Monte Carlo Exercise 3: Estimation When the Econometrician Only Knows that a

Pure Strategy Nash Equilibrium is Played Our third exercise considers estimation when

we relax the assumption that entry decisions are made in a known sequential order. Instead,

we follow the strand of the literature (most notably, Ciliberto and Tamer (2009)) that has based

estimation on moment inequalities formed under the assumption that firms play some pure

nesting parameter λ of -9.96, whereas only values of λ between 0 and 1 can be rationalized if consumers maximize
their utility) in which case we rejected the repetition and added a new repetition. We only drop estimates that
are truly extreme as in this example. We also observed examples where µα drifted to extreme values.
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strategy Nash equilibrium in a simultaneous move game.22 The idea is that, as long as the set

of equilibrium outcomes (i.e., entry decisions, prices and market shares) can be enumerated, one

can use the set to calculate lower and upper bound predictions for moments of the data, and

then, in estimation, search for the parameters that make inequalities based on these lower and

upper bounds hold.

We keep the same assumptions on the set of potential entrants, demand and costs as in

the previous exercises. The change is that now we assume that the potential entrants make

entry decisions simultaneously and that they play a complete information, pure strategy Nash

equilibrium (as competition always reduces profits, at least one pure strategy Nash equilibrium

will exist). With at most six potential entrants it is straightforward to find all of the pure

strategy Nash equilibria for a given draw of all of the cost and demand shocks. When creating

our data, we choose an equilibrium randomly if more than one equilibrium exists for a given set

of draws. Given the assumed parameters, there are multiple equilibrium outcomes in 24.2% of

the 2,000 sample data markets. In most cases, the equilibria differ only in the identity of entrants

rather than the number of firms that enter.

The details of estimation are explained in Appendix B.2 and we follow Exercise 1 in using

the true distributions of the parameters when taking our importance sample draws. The one

difference to what we do in the text is that we restrict ourselves to examining pure strategy

equilibria in a simultaneous move game, rather than also allowing for sequential move games

with any order.

There are now many papers that propose approaches for inference for moment inequality mod-

els (for example, Chernozhukov, Hong, and Tamer (2007) Rosen (2008), Andrews and Soares

(2010), Andrews and Barwick (2012), Andrews and Shi (2013), Pakes, Porter, Ho, and Ishii

(2015)), and these methods often involve a significant amount of simulation making them some-

what impractical for a Monte Carlo where the procedure would have to be repeated multiple

times. For our example, we therefore restrict ourselves to minimizing the objective function

and reporting the mean and standard deviations (across Monte Carlo runs) of the objective

function-minimizing parameters. While asymptotically the objective function should be equal to

zero at the true parameters (all of the inequalities satisfied), in practice we always found that the

objective function was minimized slightly above zero by a unique set of parameters (the mean

minimized value is 0.0026, with a standard deviation of 0.001 across our Monte Carlo runs).23

22In our application we also allow for the observed outcome to be the equilibrium outcome in a sequential move
game with any order.

23As before we use the inverse of the variance of the moments, evaluated at the true parameters, as the weighting
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Table B.5 reports the Monte Carlo results, using 1,000 markets and 1,000 IS draws for each

market in each Monte Carlo run.24

Comparing the results to those from column (1) of Table B.3 (which used the same number

of observation and the same distribution to generate the importance sample draws), we see that

the estimator performs almost as well, with all of the mean parameters close to their true values

with the exception of the standard deviation of the carrier quality which is underestimated. The

standard deviations of the estimated parameters also remain similar. Of course, it is possible

that estimates would become less accurate if we assumed parameters that generated multiple

equilibria in a higher proportion of markets.

One of the advantages of using importance sampling, with or without equilibrium selection,

is that the objective function is smooth, so that we can use derivatives to find the minimum. In

Figure B.2 we examine the the shape of the objective function using moment inequalities based

on the first Monte Carlo run when we change each of the parameters in turn. The black dot

on each horizontal axis marks the true value of the parameter. On the other hand, for three

parameters (γC , βD,LEG, βD,LCC) it is also clear that there are multiple local minima even when

we are only changing a single parameter at a time. The fact that objective function can have

multiple local minima makes the a second feature of the importance sampling approach, the

ability to calculate the value of the objective function quickly, without having to re-solve a large

number of games, particularly valuable.

B.4 Performance of the Estimation Algorithm Using the Actual Data

In this section we examine two features of the estimator in the context of our application for

the case where we assume a known, sequential order of entry (i.e., the estimates in column (1)

of Table 3). Figure B.3 shows the shape of the continuous objective function when we vary the

parameters one-at-a-time around their estimated values. While these pictures do not show the

shape of the objective function is well-behaved in multiple dimensions, there is at least some

grounds for optimism that a global minimum has been found.

We also address the question of whether our importance sampling estimator satisfies the

condition that the variance of y(θms, Xm)f(θms|Xm,Γ)
g(θms|Xm)

must be finite, identified by Geweke (1989).

One informal way to assess this property in an application (Koopman, Shephard, and Creal

matrix.
24As in Exercise 1 we initially create a sample of 2,000 markets and 2,000 IS draws for each market, and then

randomly sample from these sets when creating datasets for each Monte Carlo run.
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Table B.5: Monte Carlo Results with Unknown Equilibrium Selection in a Simulta-
neous Move Game

Estimated Value
Parameters True Value Mean (Std. Dev.)

Market Demand Random Std. Dev. (ση) 0.5 0.472
Effect (0.078)

Market Demand Slope Mean (µα) -0.45 -0.422
(0.020)

Std. Dev. (σα) 0.1 0.072
(0.037)

Nesting Parameter Mean (µλ) 0.7 0.744
(0.057)

Std. Dev. (σλ) 0.1 0.113
(0.085)

Carrier Quality Legacy constant (βD,LEG) 0.2 0.191
(0.081)

LCC constant (βD,LCC) 0 0.004
(0.066)

XD
i,m ∗ LEGi (βD1 ) 0.3 0.281

(0.121)
Std. Dev. (σD) 0.2 0.091

(0.036)
Carrier Marginal Cost Legacy constant (γC,LEG) 0 -0.020

(0.127)
LCC constant (γC,LCC) -0.5 -0.562

(0.126)
XC
m 0.5 0.488

(0.032)
Std. Dev. (σC) 0.2 0.189

(0.059)
Carrier Fixed Cost Constant (θF1 /10, 000) 0.75 0.696

(0.104)
XF
i,m (θF2 /10, 000) 0.1 0.213

(0.147)
XF
m (θF3 /10, 000) 0.5 0.586

(0.109)
Std. Dev. (σF /10, 000) 0.25 0.204

(0.060)

Notes: Reported numbers are the mean estimates of each parameter across 100 repetitions,
with the standard deviations reported in parentheses.

24



Figure B.2: Shape of the Objective Function Based on Inequalities Around the Estimated Pa-
rameters for the First Monte Carlo Run (black dot marks the true value of the parameter)

-0.7 -0.6 -0.5 -0.4 -0.3
0

5

10

15
Mkt. Demand Slope 7,

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6
Mkt Demand Slope <,

0.4 0.6 0.8 1
0

0.5

1

1.5

2
Nesting Parameter 76

0 0.1 0.2 0.3
0

0.5

1

1.5
Nesting Parameter <6

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
Mkt. Demand RE <2

0 0.1 0.2 0.3 0.4
0

1

2

3

4
Carrier Quality <D

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2
Carrier MC <C

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2
Carrier Fixed Cost <F

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2
Carrier Quality -D,LEG

-0.4 -0.2 0 0.2 0.4
0

0.5

1

1.5

2
Carrier Quality -C,LCC

0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

2
Carrier Quality -D

1

-0.4 -0.2 0 0.2 0.4
0

0.5

1

1.5

2
Carrier MC .C,LEG

-0.8 -0.6 -0.4 -0.2 0
0

0.5

1

1.5

2
Carrier MC .C,LCC

0.2 0.4 0.6 0.8 1
0

50

100

150
Carrier MC .C

0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2
Carrier Fixed Cost 3F

1
/10k

-0.1 0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4
Carrier Fixed Cost 3F

2
/10k

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
Carrier Fixed Cost 3F

3
/10k

25



Figure B.3: Shape of the Objective Function Around the Estimated Parameters For the Param-
eter Estimates in Column (1) of Table 3 (black dot marks the estimated value)
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Figure B.4: Sample Variance of Three Moments as the Number of Simulation Draws is Increased
(logarithm of the number of draws on the x-axis)
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(2009)) is to plot how an estimate of the sample variance changes with S, and, in particular, to

see how ‘jumpy’ the variance plot is as S increases. The intuition is that if the true variance

is infinite, the estimated sample variance will continue to jump wildly as S rises. Figure B.4

shows these recursive estimates of the sample variance for the moments associated with the

three market-level outcomes, namely the weighted nonstop fare, the weighted connecting fare

and the quantity-based sum of squared market shares for the carriers in the market, for the

estimated parameters. The log of the number of simulations is on the x-axis and the variance of

1
M

∑
y(θms, Xm)f(θms|Xm,Γ)

g(θms)
across simulations s = 1, .., S is on the y-axis. Relative to examples

in Koopman, Shephard, and Creal (2009), the jumps in the estimated sample variance are quite

small for S > 500. In our application we are using S = 1, 000.
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