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Appendix

Appendix A analyzes long difference estimators. Appendix B reports descriptive
statistics for the empirical setting. Appendix C estimates the effects of climate change
by industry. Appendix D reports robustness checks for the empirical analysis. Ap-
pendix E reports estimates for other weather variables. Appendix F contains proofs.

A Long Difference Estimators

Recognizing the difficulty of accounting for adaptation, some empirical literature
averages outcomes over long timesteps, a procedure known as “long differences” (e.g.,
Dell et al., 2012; Burke and Emerick, 2016).42 In order to obtain sharper results,
assume in this appendix that specialized forecasts are available only one period in
advance and that Σ is diagonal. I use Σij to indicate element (i, j) of Σ. Define

π̆s ≜
1

δ

s+δ−1∑
t=s

πt

as average payoffs over δ timesteps beginning with t = s. Define w̆s and f̆1,s analo-
gously. Consider the following regression:

∆π̆js =ᾰj + Λ̆∆w̆js + λ̆∆f̆j1,s + η̆js,

with observations only every δ timesteps (i.e., no overlap in averaging intervals). The
next proposition shows that estimating this regression does not generally get us closer
to the effect of climate than did estimating regression (17) with δ lags:

Proposition A-1 (Long Differences). Let Σ be diagonal and Σ33 = 0. Then:

plim
(
ˆ̆
Λ +

ˆ̆
λ
)
= plim

δ−1∑
i=0

δ − i

δ

[
Λ̂i + λ̂i

]
+ plim

1

δ

δ−1∑
i=0

Σ22

Σ11 + Σ22

λ̂i+1. (A-1)

If Ψ > 0, then

plim
(
ˆ̆
Λ +

ˆ̆
λ
)
=π̄w + ω̆

[
π̄A + π̄S

h′(Ā)

1− g

](
∂Ā(K,C)

∂C
+ Ω

)
,

where ω̆ ∈ (0, ωδ), with ωδ ∈ (0, ω) from Corollary 3 and ω and Ω from Proposition 2.

Proof. See Appendix F.15.

42The subsequent analysis does not depend on whether the operation is summing or averaging.
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Even though equation (A-1) does not explicitly include lags on the left-hand side, the

estimated coefficients
ˆ̆
Λ and

ˆ̆
λ do incorporate effects of lagged weather and lagged

forecasts owing to correlations between payoffs and lagged weather and forecasts

within a timestep (see also Ghanem and Smith, 2021). As a result,
ˆ̆
Λ+

ˆ̆
λ bears some

resemblance to summing δ lags from regression (17). However, only observations at
the very end of each long timestep have a full δ lags within the same timestep. All
other observations have fewer than δ lags implicitly estimated. Equation (A-1) shows
that the long difference coefficient is analogous to a summation over downweighted
versions of the lag coefficients from regression (17).

As in Corollary 3, the bias introduced by ω̆ is particularly easy to sign when Ψ > 0.
In this case, Corollary 3 showed that summing the first δ lags amplified the bias from
historical restraints relative to summing infinite lags. We now see that implicitly
summing these lags through long timesteps further amplifies that bias because nearly
all observations within the long timestep have fewer than δ lags. Long differences are
not generally superior to simply estimating a standard panel model with δ lags and
summing the coefficients.43

Researchers sometimes compare long difference estimates to standard panel esti-
mates in order to learn whether whether short-run adaptation differs from long-run
adaptation. The hope is that long difference estimators are identified by spatially
heterogeneous rates of climate change that manifest over decades. However, long
difference estimators are in fact identified in the foregoing analysis even though there
is, by construction, no climate change in the present setting (C is here constant
over agents and over time). In fact, they are identified by random differences in
sequences of the same transient weather shocks that identify panel estimators such
as (17). This source of identification is unavoidable in applications, whether or not
there is also variation in C. At best, long difference estimators conflate the identifying
variation of transient weather shocks with differential rates of climate change, but at
worst, they capture nothing but the familiar identifying variation of transient weather
shocks. We should judge the latter case to be especially likely when long difference
and panel estimators produce similar results, as has been reported in previous work
(summarized in Hsiang, 2016).

B Descriptive Statistics

Table A-1 reports descriptive statistics for the empirical application, broken down
by Census Region. The two panels correspond to the time periods covered by the
regressions with output per capita and income per capita.

43Comparing long difference estimates to panel estimates with few lags does tell us something
about the importance of historical restraints (ω̆ vs ωI′), which relates to the difference between
long-run and short-run adaptation, but so too would simply changing the number of lags used, per
Corollary 3.
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Table A-1: Descriptive Statistics

Midwest Northeast South West

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

Years: 2002–2019

Output ($2012,Billion) 3.16 13.62 15.28 40.26 3.91 14.28 9.13 37.90
Output p.c. ($2012,Thous) 40.78 19.83 45.51 25.39 59.90 698.59 49.07 57.27
Change in log output p.c. 0.02 0.10 0.01 0.04 0.01 0.09 0.01 0.10
Days Below 20 degF 33.55 24.38 26.10 19.21 1.98 3.84 18.20 20.70
Days In 20–50 degF 142.05 17.41 157.56 13.02 92.13 37.14 170.38 47.20
Days In 70–80 degF 61.86 21.90 46.88 22.48 91.17 21.33 35.63 30.54
Days Above 80 degF 11.54 13.54 3.29 6.36 50.59 36.94 6.50 19.25
Change in Days Below 20 degF 0.55 14.85 0.47 14.09 0.00 3.12 0.28 9.96
Change in Days In 20–50 degF 0.50 21.00 -0.25 16.98 0.06 13.86 0.24 15.49
Change in Days In 70–80 degF 0.47 16.05 0.30 14.85 -0.43 21.54 -0.22 11.39
Change in Days Above 80 degF -0.31 9.11 0.00 5.29 1.37 18.21 -0.02 5.17

Years: 1970–2019

Income p.c. ($2012,Thous) 28.96 9.68 32.95 13.07 25.79 9.64 29.39 11.72
Change in log income p.c. 0.02 0.08 0.02 0.03 0.02 0.06 0.02 0.06
Days Below 20 degF 34.53 24.30 27.97 19.44 2.54 4.55 19.12 21.71
Days In 20–50 degF 141.52 17.56 159.55 13.58 92.83 36.95 172.71 46.39
Days In 70–80 degF 59.71 21.00 42.48 21.58 90.47 22.07 32.49 30.35
Days Above 80 degF 11.62 13.25 2.71 5.58 45.91 35.27 5.43 17.80
Change in Days Below 20 degF 0.05 15.40 -0.05 12.99 -0.01 3.48 0.02 11.73
Change in Days In 20–50 degF 0.01 19.69 -0.09 17.27 -0.33 13.61 0.02 17.99
Change in Days In 70–80 degF 0.12 16.10 0.08 14.43 0.01 21.48 0.06 11.61
Change in Days Above 80 degF -0.02 10.21 0.04 4.82 0.41 18.92 0.02 5.02
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C Industry-Level Results

This appendix extends the primary empirical specification from the main text to
assess effects on log industry output per capita. Data are again from the Bureau
of Economic Analysis, except now for each industry’s output by county. I group
industries using definitions from Table A2 in Colacito et al. (2019). Each industry
is run in a separate regression. The only changes to the estimating equations are
that they now estimate a single coefficient across Census regions and that the county
weights are now the industry’s initial log output instead of log population.

Table A-2 reports results from the ILS and OLS estimators for the effects of an
extra day with average temperature above 80◦F. For most industries, results are fairly
similar across the two estimators. However, the ILS estimator predicts negative im-
pacts that are much larger—and significantly different from—the OLS estimator’s
predictions for “Agriculture, forestry, fishing”. And the ILS estimator predicts posi-
tive impacts that are significantly different from the OLS estimator’s predictions for
“Retail”. Moreover, in each of these cases the estimated ratio of lagged coefficients
is significantly positive (and, as implied by the theory, overlaps with values strictly
less than 1). The indirect least squares estimator then implies that either actions are
intertemporal complements (as with adjustment costs in capital stocks) or actions
are weak intertemporal substitutes with a stock that is highly persistent. In either
case, the theoretical analysis shows that ex-post adaptation to climate change will be
greater than ex-post adaptation to the weather shocks observed in the data.

D Robustness

Tables A-3 and A-4 contain robustness checks. The main takeaways are fairly ro-
bust: extreme heat reduces both output per capita and income per capita in the
Midwest, ILS estimates in the Northeast are imprecise, estimated effects in the South
are small, extreme heat reduces income per capita in the West, and the OLS estimator
underestimates the steady-state harm from additional days with extreme heat.

The first two checks address time trends. The first check drops the state-specific
quadratic time trends. This change makes the ILS estimate for output per capita in
the South significantly positive (albeit still small). It also substantially increases the
precision of the ILS estimate for income per capita in the Northeast while reducing
precision for the ILS estimate for income per capita in the West. The second check
drops the years around the Great Recession (2007–2009). Estimates of effects on log
output per capita change a bit due to losing more than 15% of the sample. Effects
on the Midwest are dampened a bit, and effects on the South become a bit stronger.
Of most interest, the estimates for the Northeast become much more precise in this
case. The central estimate suggests about twice as great a reduction in log output
per capita from extreme heat as in the Midwest, and the 95% confidence interval now
excludes zero. Dropping these years also flips the sign of the ILS estimate for effects
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Table A-2: Indirect least squares (ILS) estimates of total effects for the effects of days
above 80 degF, from Proposition 7 and regression (21), versus ordinary least squares
(OLS) estimates, from Proposition 1 and regression (22).

ILS OLS ϕ̂2r4/ϕ̂1r4

Agriculture, forestry, fishing -0.0229 -0.0048 1.2923
(-20.0193,-0.0078) (-0.0062,-0.0035) (0.7756,2.4207)

Communication/Information -0.0006 -0.0004 -0.9317
(-0.0015,-0.0002) (-0.0006,-0.0002) (-165.8393,2.2006)

Construction 0.0001 0.0003 0.5016
(-0.0060,0.0012) (0.0001,0.0006) (-10.3796,6.5682)

Finance, insurance, real estate 0.0001 0.0002 -5.1294
(-0.0000,0.0003) (0.0001,0.0003) (-186.2123,9.4091)

Government -0.0001 -0.0002 -0.5031
(-0.0002,0.0001) (-0.0002,-0.0001) (-14.2248,2.3279)

Manufacturing 0.0009 0.0005 0.0494
(0.0002,0.0023) (0.0003,0.0007) (-4.6717,1.7291)

Mining -0.0005 -0.0005 12.6152
(-0.1115,0.0001) (-0.0010,0.0000) (5.1391,1861.6223)

Retail 0.0049 -0.0001 1.1893
(0.0024,0.2667) (-0.0001,0.0000) (0.6079,3.4696)

Services -0.0002 0.0001 -0.6739
(-0.0013,0.0003) (-0.0003,0.0004) (-74.7743,1.7257)

Transportation 0.0002 0.0005 -1.0831
(-0.0007,0.0007) (0.0003,0.0007) (-230.4232,0.9609)

Utilities 0.0004 0.0003 4.0635
(-0.0006,0.1850) (-0.0002,0.0008) (1.5630,4977.6216)

Wholesale 0.0003 0.0000 -0.7007
(-0.0001,0.0009) (-0.0001,0.0002) (-42.0460,0.5987)

95% confidence intervals (in parentheses) bootstrapped from 1000 samples with resampling
at the county level.
Regressions weighted by each county’s log output for that industry in the first year of the
sample.
Years: 2002–2019.
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on income per capita in the Northeast, suggesting that extreme heat is beneficial.
Projections for the Northeast are, in both cases, sensitive to the Great Recession.

The next two checks assess the population weights. Either changing log population
weights to log output weights (based on the first year of the sample) or dropping
weights altogether does not strongly affect estimated effects on output per capita.
Either dropping weights or using log income weights (based on the first year of the
sample) does, however, increase the precision of the ILS estimate for effects on income
per capita in the Northeast. ILS estimates for income per capita in the West are
sensitive to the weighting scheme.

The next checks assess robustness to including longer lags in regression (21). For
both output per capita and income per capita, the deleterious effects of extreme
heat in the Midwest grow larger and even more distinct from the OLS estimate. The
point estimates for effects on output per capita the South switch sign, now suggesting
harmful (albeit still small) effects of extreme heat. The point estimates for effects on
income per capita in the Northeast jump around a bit but are significantly negative
in each case. The point estimates for effects on income per capita in the West lose
their significance.

The next checks assess alternate approaches to clustering standard errors (equiv-
alently, changing the level of resampling for the bootstrap). A first check replaces
county clustering with state-year clustering (i.e., draws samples at the state-year level
for the bootstrap) that accounts for unobserved correlation within a state’s counties
at a point in time. The confidence intervals and standard errors tend to grow. The
effect of extreme heat on output per capita in the Midwest is no longer significant in
this case, but the estimated harmful effect of extreme heat on income per capita in the
Midwest, Northeast, and West remain significant. The estimated benefits of extreme
heat on income per capita in the South are no longer significant. A second check
drops clustering (i.e., draws samples at the county-year level for the bootstrap), so
that standard errors are robust to arbitrary heteroskedasticity but not to correlation
among the residuals. Standard errors and confidence intervals are broadly similar to
the base specification.

The final checks reduce or increase the discount rate by 50% from its base rate of
15% per year. Either change alters the ILS estimate mechanically (see Proposition 7)
and has no effect on the OLS estimator (which does not use the discount rate). In
either case, the effects are quantitatively notable only in the Northeast, because the
ratio that makes the estimates imprecise also determines sensitivity to the discount
rate. Using a smaller (larger) discount rate makes the estimated effect on output per
capita in the Northeast less (more) precise, and the smaller discount rate actually
flips the sign of the estimated effect on income per capita in the Northeast.
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E Results for Other Temperature Variables

This appendix reports results for the other weather variables. Surprisingly, extreme
cold appears to increase output and income per capita. This may be a case where
precipitation is an important omitted variable, as more very cold days could displace
wetter or snowier days. Cool days are also generally beneficial whereas warm days
are generally harmful. In all cases, Wald tests tend to reject the hypothesis that a
given region’s lagged effects on either dependent variable are jointly equal to zero.

Table A-11 reports the projected effects of climate change by Census region and
weather variable. The bottom panel reports the projected changes in each weather
variable. Changes in all four weather variables tend to be harmful because there are
fewer cold and cool days but more warm and hot days.
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Table A-5: Estimating effects of days below 20 degF on county output per capita.

Output p.c. Income p.c.

Regression (21) Regression (22) Regression (21) Regression (22)

Midwest
Contemporary 0.00072∗∗∗ 0.00038∗∗∗ 0.00070∗∗∗ 0.00067∗∗∗

(0.00016) (0.00012) (0.000074) (0.000062)
Lag 1 0.00070∗∗∗ 0.00013∗

(0.00018) (0.000073)
Lag 2 0.00049∗∗ 0.00037∗∗∗

(0.00022) (0.000067)

Northeast
Contemporary 0.00029 0.0000049 0.00042∗∗∗ 0.00019∗∗∗

(0.00019) (0.00013) (0.000064) (0.000047)
Lag 1 0.00068∗∗∗ 0.00049∗∗∗

(0.00023) (0.000069)
Lag 2 0.00041∗ 0.00028∗∗∗

(0.00023) (0.000076)

South
Contemporary 0.00088∗∗∗ 0.00053∗∗∗ 0.00035∗∗∗ 0.00026∗∗∗

(0.00028) (0.00020) (0.000095) (0.000086)
Lag 1 0.0010∗∗∗ 0.00049∗∗∗

(0.00034) (0.000100)
Lag 2 0.00057 0.00012

(0.00037) (0.000088)

West
Contemporary 0.00046∗∗∗ 0.00017 0.00012∗∗ 0.00014∗∗∗

(0.00018) (0.00014) (0.000059) (0.000048)
Lag 1 0.00059∗∗∗ 0.000081

(0.00023) (0.000076)
Lag 2 0.000079 -0.00013∗

(0.00026) (0.000075)

Wald test of the null that the first two lags are jointly zero
p-value Lags 0, Midwest 0.00065 0.00000026
p-value Lags 0, Northeast 0.0083 9.7e-11
p-value Lags 0, South 0.011 0.0000040
p-value Lags 0, West 0.0053 0.0090

Standard errors in parentheses
Standard errors clustered by county.
Regressions weighted by each county’s log population in 2002.
Years: 2002–2019 for output and 1970–2019 for income.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A-6: Indirect least squares estimates for the effects of days below 20 degF, from
Proposition 7 and regression (21).

Direct Effects Ex-Post Adaptation Total Effects ϕ̂2r1/ϕ̂1r1

Output p.c.

Midwest 0.0023 0.00023 0.0025 0.69
(-0.0033,0.011) (-0.00067,0.0015) (-0.0039,0.012) (0.17,1.26)

Northeast 0.0015 0.00018 0.0017 0.59
(0.00015,0.0038) (0.000025,0.00057) (0.00018,0.0043) (-0.14,1.01)

South 0.0026 0.00026 0.0029 0.57
(-0.014,0.0090) (-0.00086,0.0015) (-0.013,0.011) (-0.31,1.18)

West 0.0010 0.000086 0.0011 0.13
(0.00023,0.0025) (0.0000059,0.00027) (0.00025,0.0028) (-2.06,0.78)

Income p.c.

Midwest 0.00062 -0.000012 0.00060 2.78
(0.00023,0.00081) (-0.00014,-0.000000070) (0.00012,0.00079) (-4.00,17.6)

Northeast 0.0013 0.00013 0.0014 0.56
(0.00081,0.0018) (0.000070,0.00021) (0.00087,0.0020) (0.30,0.80)

South 0.00089 0.000081 0.00097 0.24
(0.00050,0.0013) (0.000042,0.00013) (0.00054,0.0014) (-0.13,0.67)

West 0.00015 0.0000044 0.00015 -1.62
(-0.0000092,0.00035) (3.9e-09,0.000025) (-0.000013,0.00036) (-145.7,3.08)

95% confidence intervals (in parentheses) bootstrapped from 1000 samples with resampling
at the county level.
Regressions weighted by each county’s log population in 2002.
Years: 2002–2019 for output and 1970–2019 for income.
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Table A-7: Estimating effects of days in 20–50 degF on county output per capita.

Output p.c. Income p.c.

Regression (21) Regression (22) Regression (21) Regression (22)

Midwest
Contemporary 0.00044∗∗∗ 0.00025∗∗∗ 0.00048∗∗∗ 0.00054∗∗∗

(0.00012) (0.000085) (0.000051) (0.000043)
Lag 1 0.00051∗∗∗ -0.000029

(0.00014) (0.000051)
Lag 2 0.00038∗∗ 0.00032∗∗∗

(0.00017) (0.000050)

Northeast
Contemporary -0.00015 0.000052 0.00014∗∗∗ 0.000065

(0.00013) (0.000096) (0.000052) (0.000043)
Lag 1 -0.000044 0.00018∗∗∗

(0.00015) (0.000057)
Lag 2 0.000030 0.00015∗∗

(0.00017) (0.000065)

South
Contemporary 0.00022∗∗∗ 0.00021∗∗∗ 0.00017∗∗∗ 0.00018∗∗∗

(0.000077) (0.000063) (0.000029) (0.000025)
Lag 1 -0.00011 -0.000018

(0.000098) (0.000029)
Lag 2 0.000092 0.000028

(0.000095) (0.000029)

West
Contemporary 0.000084 -0.000021 0.000031 0.000061∗∗

(0.000094) (0.000076) (0.000032) (0.000027)
Lag 1 0.00035∗∗∗ -0.0000091

(0.00010) (0.000041)
Lag 2 -0.000061 -0.00010∗∗

(0.00010) (0.000041)

Wald test of the null that the first two lags are jointly zero
p-value Lags 0, Midwest 0.0012 1.2e-12
p-value Lags 0, Northeast 0.84 0.0076
p-value Lags 0, South 0.023 0.34
p-value Lags 0, West 0.00020 0.014

Standard errors in parentheses
Standard errors clustered by county.
Regressions weighted by each county’s log population in 2002.
Years: 2002–2019 for output and 1970–2019 for income.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A-8: Indirect least squares estimates for the effects of days in 20–50 degF, from
Proposition 7 and regression (21).

Direct Effects Ex-Post Adaptation Total Effects ϕ̂2r2/ϕ̂1r2

Output p.c.

Midwest 0.0017 0.00019 0.0019 0.74
(-0.0033,0.014) (-0.00049,0.0021) (-0.0038,0.016) (0.16,1.37)

Northeast -0.00018 -0.0000036 -0.00018 -0.68
(-0.0014,0.0043) (-0.00021,0.00049) (-0.0015,0.0050) (-2437.6,0.84)

South 0.00016 -0.0000087 0.00015 -0.81
(-0.00024,0.00036) (-0.000052,-0.000000034) (-0.00028,0.00036) (-37.0,3.61)

West 0.00035 0.000039 0.00038 -0.18
(0.000015,0.00076) (0.0000092,0.000082) (0.000018,0.00084) (-1.27,0.38)

Income p.c.

Midwest 0.00048 -0.00000037 0.00048 -10.8
(0.00037,0.00058) (-0.0000038,-1.8e-11) (0.00037,0.00058) (-2067.3,-2.58)

Northeast 0.00079 0.000098 0.00089 0.88
(-0.00034,0.036) (-0.000055,0.0054) (-0.00041,0.041) (0.24,1.87)

South 0.00016 -0.00000097 0.00016 -1.58
(0.000066,0.00049) (-0.000010,0.000052) (0.000058,0.00054) (-514092.4,0.82)

West 0.000032 0.00000014 0.000032 11.2
(-0.00088,0.00010) (-0.00038,0.0000017) (-0.0020,0.00010) (4.73,777.8)

95% confidence intervals (in parentheses) bootstrapped from 1000 samples with resampling
at the county level.
Regressions weighted by each county’s log population in 2002.
Years: 2002–2019 for output and 1970–2019 for income.
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Table A-9: Estimating effects of days in 70–80 degF on county output per capita.

Output p.c. Income p.c.

Regression (21) Regression (22) Regression (21) Regression (22)

Midwest
Contemporary -0.00012 -0.000033 -0.00045∗∗∗ -0.00031∗∗∗

(0.00011) (0.000092) (0.000040) (0.000033)
Lag 1 0.00013 -0.00017∗∗∗

(0.00013) (0.000042)
Lag 2 0.00078∗∗∗ 0.00022∗∗∗

(0.00015) (0.000037)

Northeast
Contemporary -0.00027∗∗ -0.00027∗∗∗ -0.000079∗∗ -0.000031

(0.00011) (0.000062) (0.000032) (0.000019)
Lag 1 0.000059 -0.00011∗∗

(0.00015) (0.000052)
Lag 2 -0.000033 -0.00017∗∗∗

(0.00017) (0.000056)

South
Contemporary -0.000042 0.000016 0.000061∗∗∗ 0.000032∗

(0.000049) (0.000038) (0.000022) (0.000016)
Lag 1 -0.000042 0.000043∗

(0.000066) (0.000025)
Lag 2 -0.00017∗∗ -0.000015

(0.000087) (0.000027)

West
Contemporary 0.00011 -0.0000087 -0.000088∗∗ -0.00012∗∗∗

(0.00012) (0.000098) (0.000041) (0.000031)
Lag 1 0.000032 0.000017

(0.00012) (0.000051)
Lag 2 -0.0000095 0.00015∗∗∗

(0.00014) (0.000055)

Wald test of the null that the first two lags are jointly zero
p-value Lags 0, Midwest 7.9e-09 2.0e-24
p-value Lags 0, Northeast 0.59 0.0083
p-value Lags 0, South 0.065 0.0086
p-value Lags 0, West 0.93 0.011

Standard errors in parentheses
Standard errors clustered by county.
Regressions weighted by each county’s log population in 2002.
Years: 2002–2019 for output and 1970–2019 for income.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A-10: Indirect least squares estimates for the effects of days in 70–80 degF,
from Proposition 7 and regression (21).

Direct Effects Ex-Post Adaptation Total Effects ϕ̂2r3/ϕ̂1r3

Output p.c.

Midwest -0.00015 -0.0000041 -0.00015 5.92
(-0.00033,0.000051) (-0.000046,-9.9e-09) (-0.00034,0.000054) (-9.11,682.3)

Northeast -0.00023 0.0000052 -0.00023 -0.56
(-0.0083,0.00083) (-0.0013,0.00016) (-0.0089,0.0010) (-442.3,0.95)

South -0.000028 0.0000022 -0.000025 4.07
(-0.0040,0.000073) (-0.000063,0.000040) (-0.0046,0.000086) (1.39,371.2)

West 0.00014 0.0000034 0.00014 -0.29
(-0.00089,0.0018) (-0.00012,0.00033) (-0.0010,0.0021) (-2212.7,1.43)

Income p.c.

Midwest -0.00051 -0.000010 -0.00052 -1.31
(-0.00064,-0.00040) (-0.000020,-0.0000033) (-0.00066,-0.00041) (-2.87,-0.62)

Northeast 0.00018 0.000039 0.00022 1.56
(-0.0010,0.020) (-0.00014,0.0031) (-0.0012,0.023) (0.90,5.59)

South 0.000090 0.0000043 0.000094 -0.35
(0.000022,0.00023) (0.000000024,0.000018) (0.000023,0.00025) (-10.9,2.15)

West -0.000090 -0.00000033 -0.000091 8.90
(-0.00017,0.0027) (-0.0000051,0.00089) (-0.00017,0.0055) (2.82,437.2)

95% confidence intervals (in parentheses) bootstrapped from 1000 samples with resampling
at the county level.
Regressions weighted by each county’s log population in 2002.
Years: 2002–2019 for output and 1970–2019 for income.
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F Formal Analysis and Proofs

F.1 Deriving equation (7)

With At defined implicitly from the first-order condition πA = 0, approximate At

around wt = C and use the quadratic form for payoffs:

At = Ā+
π̄wA

−π̄AA

(wt − C). (A-2)

Therefore,
E0[At] = Ā.

Approximating the payoff function around wt = C, we have:

E0[π(wt, At, St;K)] =π̄ + π̄w (E0[wt]− C)︸ ︷︷ ︸
=0

+π̄A (E0[At]− Ā)︸ ︷︷ ︸
=0

+
1

2
π̄wwE0[(wt − C)2] +

1

2
π̄AAE0[(At − Ā)2] + π̄wACov0[At, wt],

(A-3)

for t > 2. Differentiating with respect to C, and using that these assumptions imply
Ā = E0[At], we have the expression given in the text. π̄A = 0 and π̄K = 0 follow from
the first-order conditions given just before equation (7).

F.2 Proof of Proposition 1

Following the derivation of equation (A-3) and applying the first-order condition, we
have:

∆πjt =π̄w(wjt − wj(t−1)) +
1

2
π̄ww[(wjt − C)2 − (wj(t−1) − C)2]

+
1

2
π̄AA[(Ajt − Ā)2 − (Aj(t−1) − Ā)2]

+ π̄wA[(wjt − C)(Ajt − Ā)− (wj(t−1) − C)(Aj(t−1) − Ā)].

Substitute from (A-2):

∆πjt =π̄w(wjt − wj(t−1)) +
1

2

[
π̄ww + π̄wA

π̄wA

−π̄AA

]
[(wjt − C)2 − (wj(t−1) − C)2].

The covariance between a mean-zero normally distributed random variable and a
higher power of a mean-zero normally distributed random variable is zero. The wt−C
and wt−1 − C are mean-zero normally distributed random variables. Therefore:

Cov[∆πjt,∆wjt] =π̄wV ar[∆wjt].

And in this setting without unobservables,

Cov[∆πjt − µπ
j ,∆wjt − µw

j ] =Cov[∆πjt,∆wjt].

The result follows.
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F.3 Proof that there is a unique maximizer in the determin-
istic model (ζ = 0)

With ζ = 0, rewrite payoffs as a function of St and St+1 by using At = h−1(St+1−gSt):
π̃(St, St+1) ≜ π(C,At, St;K). If the payoff function is strictly concave and bounded,
then there is a unique maximizer by Theorem 4.8 in Stokey and Lucas (1989). Strict
concavity requires that π̃StSt < 0 and π̃StSt π̃St+1St+1 − (π̃StSt+1)

2 > 0. We have:

π̃StSt π̃St+1St+1 − (π̃StSt+1)
2 =(1/h′)4

[
(h′)2πSS + 2h′πAS + πAA − (h′′/h′)πA

]
[πAA − (h′′/h′)πA]

− (1/h′)4 [h′πAS + πAA − (h′′/h′)πA]
2

=[1/h′]2
(
πSS [πAA − (h′′/h′)πA]− [πAS]

2
)
.

This is strictly positive if and only if inequality (2) holds. By the inequality of
arithmetic and geometric means, inequality (2) in turn implies

h′πAS <
1

2
(−πAA + (h′′/h′)πA)−

1

2
(h′)2πSS,

which is equivalent to π̃StSt < 0. We have therefore established that inequality (2)
implies that payoffs are strictly concave in St and St+1.

F.4 Proof that deterministic model (ζ = 0) has a unique
steady state and is saddle-path stable

Fix ζ = 0, in which case wt = f1,t = f2,t = C at all times t.
The first-order condition for the deterministic model is:

0 = πA(C,At, St;K) + βh′(At)VS(St+1, C, C, C; 0, K).

This implies:

VS(St+1, C, C, C; 0, K) =
−πA(C,At, St;K)

βh′(At)
.

The envelope theorem yields:

VS(St+1, C, C, C; 0, K) = πS(C,At+1, St+1;K) + β g VS(St+2, C, C, C; 0, K).

Advancing the first-order condition by one timestep and substituting in, we have the
Euler equation:

−πA(C,At, St;K) = β h′(At)πS(C,At+1, St+1;K) + β h′(At) g
−πA(C,At+1, St+1;K)

h′(At+1)
.

(A-4)
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The steady state (denoted with a bar) is defined by the following pair of equations:

−πA(C, Ā, S̄;K) =β h′(Ā)πS(C, Ā, S̄;K)− β g πA(C, Ā, S̄;K),

S̄ =gS̄ + h(Ā).

The second implies:

S̄ =
h(Ā)

1− g
. (A-5)

Substituting into the first equation and rearranging, we have:

−(1− βg)πA

(
C, Ā,

h(Ā)

1− g
;K

)
− βh′(Ā)πS

(
C, Ā,

h(Ā)

1− g
;K

)
= 0. (A-6)

By (4), the left-hand side is negative as At goes to −∞, and by (5), the left-hand
side is positive as At goes to ∞. The derivative of the left-hand side of (A-6) with
respect to Ā is

− (1− βg)π̄AA − β

1− g
[h′(Ā)]2π̄SS − βh′′(Ā)π̄S − (1− βg)

h′(Ā)

1− g
π̄AS − βh′(Ā)π̄AS.

Substituting for βπ̄S from (A-4), this becomes:

(1− βg)

[
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

]
− β

1− g
[h′(Ā)]2π̄SS −

[
1− βg

1− g
+ β

]
h′(Ā)π̄AS.

This expression is strictly positive if and only if

h′(Ā)π̄AS <
[1− (1 + β)g + βg2]

[
−π̄AA + h′′(Ā) π̄A

h′(Ā)

]
− β[h′(Ā)]2π̄SS

1 + β − 2βg
. (A-7)

From (6), we have

h′(Ā)π̄AS <
[1− 2g(1 + β) + 3βg2]

[
−π̄AA + h′′(Ā) π̄A

h′(Ā)

]
− β[h′(Ā)]2π̄SS

1 + β − 2βg
.

The right-hand side of this last inequality is weakly less than the right-hand side of
inequality (A-7). Therefore inequality (A-7) holds, which in turn implies that the
left-hand side of (A-6) strictly increases in Ā. Then, by (4) and (5), (A-6) defines a
unique Ā ∈ (−∞,∞) and (A-5) then defines the unique S̄ ∈ (−∞,∞).
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The Euler equation (A-4) implicitly defines A∗
t+1(At, St). Using the implicit func-

tion theorem:

∂At+1

∂St

=
h′(At+1)

[
−πAS(C,At,St;K)

h′(At)
− βgπSS(C,At+1, St+1;K) + βg2 πAS(C,At+1,St+1;K)

h′(At+1)

]
βh′(At+1)πAS(C,At+1, St+1;K) + βg

(
−πAA(C,At+1, St+1;K) + h′′(At+1)

πA(C,At+1,St+1;K)
h′(At+1)

) ,
∂At+1

∂At

=
h′(At+1)

[
−βh′(At) πSS(C,At+1, St+1;K) + −πAA(C,At,St;K)

h′(At)
+ h′′(At)

πA(C,At,St;K)
[h′(At)]2

]
βh′(At+1)πAS(C,At+1, St+1;K) + βg

(
−πAA(C,At+1, St+1;K) + h′′(At+1)

πA(C,At+1,St+1;K)
h′(At+1)

)
+

h′(At+1)βgh
′(At)

πAS(C,At+1,St+1;K)
h′(At+1)

βh′(At+1)πAS(C,At+1, St+1;K) + βg
(
−πAA(C,At+1, St+1;K) + h′′(At+1)

πA(C,At+1,St+1;K)
h′(At+1)

) .
Approximate At+1 around the steady state:

At+1 ≈Ā+
−(1− βg2)π̄AS − βgh′(Ā)π̄SS

βh′(Ā)π̄AS + βg
(
−π̄AA + h′′(Ā) π̄A

h′(Ā)

)(St − S̄)

+
−π̄AA + h′′(Ā) π̄A

h′(Ā)
+ βgh′(Ā)π̄AS − β[h′(Ā)]2 π̄SS

βh′(Ā)π̄AS + βg
(
−π̄AA + h′′(Ā) π̄A

h′(Ā)

) (At − Ā).

Linearize the dynamic system around the steady state:[
At+1 − Ā
St+1 − S̄

]
≈

−π̄AA+h′′(Ā)
π̄A

h′(Ā)
+βgh′(Ā)π̄AS−β[h′(Ā)]2 π̄SS

βh′(Ā)π̄AS+βg
(
−π̄AA+h′′(Ā)

π̄A
h′(Ā)

) −(1−βg2)π̄AS−βgh′(Ā)π̄SS

βh′(Ā)π̄AS+βg
(
−π̄AA+h′′(Ā)

π̄A
h′(Ā)

)
h′(Ā) g

[At − Ā
St − S̄

]
.

The determinant is 1/β, which is > 1. Therefore both eigenvalues have the same sign.
The characteristic equation is

0 =z2 −

−π̄AA + h′′(Ā) π̄A

h′(Ā)
+ βgh′(Ā)π̄AS − β[h′(Ā)]2 π̄SS

βh′(Ā)π̄AS + βg
(
−π̄AA + h′′(Ā) π̄A

h′(Ā)

) + g

 z +
1

β
.

This is a parabola that opens up. At z = 1, its value is:

−
(1− g)(1− βg)

(
−π̄AA + h′′(Ā) π̄A

h′(Ā)

)
− (1 + β − 2βg)h′(Ā)π̄AS − β[h′(Ā)]2 π̄SS

βh′(Ā)π̄AS + βg
(
−π̄AA + h′′(Ā) π̄A

h′(Ā)

) .

By inequality (A-7), the numerator is positive. If the denominator is positive, then
the expression is negative, so there is one root ∈ (0, 1) and one root > 1, making
the system saddle-path stable. If the denominator is negative, then the analogous
expression for z = −1 is negative, so there is one root ∈ (−1, 0) and one root < −1,
making the system again saddle-path stable.
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F.5 Optimal actions in the stochastic system

The first-order condition is:

0 = πA(wt, At, St;K) + βh′(At)Et[VS(St+1, wt+1, f1,t+1, f2,t+1; ζ,K)].

This implies:

Et[VS(St+1, wt+1, f1,t+1, f2,t+1; ζ,K)] =
−πA(wt, At, St;K)

βh′(At)
.

The envelope theorem yields:

VS(St+1, wt+1, f1,t+1, f2,t+1; ζ,K) = πS(wt+1, At+1, St+1;K)+βgEt+1[VS(St+2, wt+2, f1,t+2, f2,t+2; ζ,K)].

Advancing the first-order condition by one timestep and substituting in, we have the
stochastic Euler equation:

−πA(wt, At, St;K)

h′(At)
=β Et[πS(wt+1, At+1, St+1;K)] + β g Et

[
−πA(wt+1, At+1, St+1;K)

h′(At+1)

]
.

(A-8)

For ζ = 0, the weather in period t + 2 matches the forecast f2,t and the weather
is always C after period t + 2. So we are back to the deterministic system in period
t+3. Consider some distant time T at which the world ends. We will work backwards
from there, solving for time t+ 3 policy as T → ∞. Once we have that, we solve for
time t + 2 policy given wt+2 = f2,t and f1,t+2 = f2,t+2 = C; then we solve for time
t + 1 policy given wt+1 = f1,t, f1,t+1 = f2,t, and f2,t+1 = C; and finally we solve for
time t policy given wt, f1,t, and f2,t.

Write At as A(St, wt, f1,t, f2,t; ζ) and define Ãt ≜ A(St, wt, f1,t, f2,t; 0). At time T ,
we have a static problem. The first-order condition is πA = 0. Note that ∂ÃT/∂ST =
πAS/[−πAA]. Using the time T − 1 Euler equation, first-order approximate ÃT−1

around ST−1 = S̄. This approximation is exact when payoffs are quadratic and
(ST−1 − S̄)2 is small. We thereby obtain ÃT−1 as a function of ST−1:

ÃT−1 =Ā+
βgπ̄SS + (1− βg2) π̄AS

h′(Ā)
+
[
βgπ̄AS + βg2

(
−π̄AA

h′(Ā)
+ h′′(Ā) π̄A

[h′(Ā)]2

)]
π̄AS

−π̄AA

χT−1

(ST−1 − S̄),

where

χT−1 ≜
−π̄AA

h′(Ā)
+ h′′(Ā)

−π̄A

[h′(Ā)]2
− βh′(Ā)π̄SS + βgπ̄AS

−
[
βh′(Ā)π̄AS + βgh′(Ā)

(
−π̄AA

h′(Ā)
+ h′′(Ā)

π̄A

[h′(Ā)]2

)]
π̄AS

−π̄AA

.
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Denote the coefficient on St − S̄ in Ãt as Zt. Stepping backwards through time, we
find the following relationships:

Zt =
βgπ̄SS + (1− βg2) π̄AS

h′(Ā)
+
[
βgπ̄AS + βg2

(
−π̄AA

h′(Ā)
+ h′′(Ā) π̄A

[h′(Ā)]2

)]
Zt+1

χt

,

χt =
−π̄AA

h′(Ā)
+ h′′(Ā)

−π̄A

[h′(Ā)]2
− βh′(Ā)π̄SS + βgπ̄AS

−
[
βh′(Ā)π̄AS + βgh′(Ā)

(
−π̄AA

h′(Ā)
+ h′′(Ā)

π̄A

[h′(Ā)]2

)]
Zt+1.

Consider the fate of Zt and χt as the terminal time T recedes to infinity. The steady
state is:

Z̄ =
βgπ̄SS + (1− βg2) π̄AS

h′(Ā)
+
[
βgπ̄AS + βg2

(
−π̄AA

h′(Ā)
+ h′′(Ā) π̄A

[h′(Ā)]2

)]
Z̄

χ̄
, (A-9)

χ̄ =
−π̄AA

h′(Ā)
+ h′′(Ā)

−π̄A

[h′(Ā)]2
− βh′(Ā)π̄SS + βgπ̄AS

−
[
βh′(Ā)π̄AS + βgh′(Ā)

(
−π̄AA

h′(Ā)
+ h′′(Ā)

π̄A

[h′(Ā)]2

)]
Z̄.

Substitute χ̄ into Z̄ and rearrange:

0 =Z̄2 −
(1− βg2)

(
−π̄AA + h′′(Ā) π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS

βh′(Ā)π̄AS + βg
(
−π̄AA + h′′(Ā) π̄A

h′(Ā)

) 1

h′(Ā)
Z̄

− 1

[h′(Ā)]2
−βg[h′(Ā)]2π̄SS − (1− βg2)h′(Ā)π̄AS

βh′(Ā)π̄AS + βg
(
−π̄AA + h′′(Ā) π̄A

h′(Ā)

) .
From the quadratic formula, the solution is

Z̄ =

[
(1− βg2)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS ±

√
discrim

]
[
2h′(Ā)

(
βh′(Ā)π̄AS + βg

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

))]−1

,

where the discriminant is

discrim =

(
(1− βg2)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS

)2

+ 4
(
−βg[h′(Ā)]2π̄SS − (1− βg2)h′(Ā)π̄AS

)(
βh′(Ā)π̄AS + βg

[
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

])
.

(A-10)
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The proof of Lemma 2 will show that (6) implies that discrim is positive.
In order to analyze stability, linearize the difference equations. Substituting χt

into Zt, we find:

Zt =

[
βgπ̄SS + (1− βg2)

π̄AS

h′(Ā)
+

[
βgπ̄AS + βg2

(
−π̄AA

h′(Ā)
+ h′′(Ā)

π̄A

[h′(Ā)]2

)]
Zt+1

]
[
−π̄AA

h′(Ā)
+ h′′(Ā)

−π̄A

[h′(Ā)]2
− βh′(Ā)π̄SS + βgh′(Ā)

π̄AS

h′(Ā)

−
[
βh′(Ā)π̄AS + βgh′(Ā)

(
−π̄AA

h′(Ā)
+ h′′(Ā)

π̄A

[h′(Ā)]2

)]
Zt+1

]−1

.

Linearizing and evaluating at the steady state:

∂Zt

∂Zt+1

∣∣∣∣
Z̄

=

[
2βgh′(Ā)π̄AS + (1 + βg2)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS ±

√
discrim

]
[
2βgh′(Ā)π̄AS + (1 + βg2)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS −

(
±
√
discrim

)]−1

.

(A-11)

The terms outside the square root are positive if

−2βgh′(Ā)π̄AS < (1 + βg2)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS. (A-12)

The following lemma establishes that those terms are in fact positive:

Lemma 1. Inequality (2) implies inequality (A-12).

Proof. By the inequality of arithmetic and geometric means, inequality (2) implies

− h′(At)πAS <
1

2

(
−πAA +

h′′(At)

h′(At)
πA

)
− 1

2
[h′(At)]

2πSS.

Multiplying both sides by β and using inequality (3) and 1+βg2 > β, this inequality
implies

−βh′(At)πAS <
1

2
(1 + βg2)

(
−πAA +

h′′(At)

h′(At)
πA

)
− 1

2
β[h′(At)]

2πSS.

Using g < 1, this last inequality in turn implies inequality (A-12).

Because the terms outside the square root in (A-11) are positive, the numerator and
denominator are both larger when the square root is added rather than subtracted.
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The stable steady state (with eigenvalue < 1 in magnitude) is therefore the one with
a negative sign in the numerator of (A-11). The steady state of interest is therefore

Z̄ =

[
(1− βg2)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS −

√
discrim

]
[
2h′(Ā)

(
βh′(Ā)π̄AS + βg

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

))]−1

. (A-13)

Substituting into χ̄, we find:

χ̄ =
1

2h′(Ā)

[
(1 + βg2)

(
−π̄AA + h′′(Ā)

−π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS + 2βgh′(Ā)π̄AS +

√
discrim

]
.

(A-14)

From Lemma 1 and inequality (2), h′(Ā) χ̄ > 0. Lemma 2 below will imply that
limg→0 Z̄ ∝ π̄AS.

Now return to the case in which ζ = 0 from some time t onward. We have derived
an expression for Ãt as T → ∞. Using this,

Ãt+3 = Ā+ Z̄(St+2 − S̄).

At time t+ 2, the relevant Euler equation is:

0 =
πA(f2,t, Ãt+2, St+2;K)

h′(Ãt+2)
+ βπS(C, Ãt+3, St+3;K) + βg

−πA(C, Ãt+3, St+3;K)

h′(Ãt+3)
,

where we recognize that wt+2 = f2,t. A first-order approximation to Ãt+2 around
St+2 = S̄ and f2,t = C is exact when (St+2 − S̄)2 is small and payoffs are quadratic.
We thereby obtain

Ãt+2 =Ā+ Z̄(St+2 − S̄) +
π̄wA

h′(Ā) χ̄
(f2,t − C).

When (St+1 − S̄)2 is small and payoffs are quadratic, approximating At+1 around
St+1 = S̄, wt+1 = f1,t = C, f1,t+1 = f2,t = C, and ζ = 0 in a version of the stochastic
Euler equation (A-8) advanced by one timestep yields:

At+1 =Ā+ Z̄(St+1 − S̄) +
π̄wA

h′(Ā) χ̄
(f1,t − C) +

βΓ

h′(Ā)χ̄
(f2,t − C),

where

βΓ ≜ βh′(Ā)π̄wS − βgπ̄wA + β

≜Ψ︷ ︸︸ ︷[
h′(Ā)π̄AS + g

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)]
π̄wA

h′(Ā) χ̄
.

(A-15)
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When (St − S̄)2 is small and payoffs are quadratic, approximating At around St = S̄,
wt = C, f1,t = C, f2,t = C, and ζ = 0 in the stochastic Euler equation (A-8) yields:

At =Ā+ Z̄(St − S̄) +
π̄wA

h′(Ā) χ̄
(wt − C) +

βΓ

h′(Ā)χ̄
(f1,t − C) +

βΨ

h′(Ā)χ̄

βΓ

h′(Ā)χ̄
(f2,t − C).

(A-16)

Throughout, the terms with ζ drop out due to the expectation operator in the stochas-
tic Euler equation, and the terms with ζ2 drop out due being close to the steady state
and payoffs being quadratic.

F.6 Evolution of expected actions and states

For t ≥ 2,

E0[At] =Ā+ Z̄(E0[St]− S̄).

Approximate St around At−1 = Ā and St−1 = S̄:

St ≈S̄ + h′(Ā)(At−1 − Ā) + g(St−1 − S̄).

We then have:

E0[At] =Ā+ Z̄h′(Ā)(E0[At−1]− Ā) + Z̄g (E0[St−1]− S̄]).

Repeatedly substituting, we find:

E0[At] =Ā+ [Z̄h′(Ā) + g]x−1

[
Z̄h′(Ā)(E0[At−x]− Ā) + Z̄g(E0[St−x]− S̄])

]
for x ∈ {1, ..., t− 1}. Analogously,

E0[St] =S̄ + [Z̄h′(Ā) + g]x−1

[
h′(Ā)(E0[At−x]− Ā) + g(E0[St−x]− S̄])

]
.

We have geometric series. The following lemma establishes that the common ratio is
less than 1 in magnitude.

Lemma 2. (6) implies |Z̄h′(Ā) + g| < 1.

Proof. From (A-9) and (A-14),

Z̄h′(Ā) + g =

=2Ψ︷ ︸︸ ︷
2g

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
+ 2h′(Ā)π̄AS

(1 + βg2)
(
−π̄AA + h′′(Ā) −π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS + 2βgh′(Ā)π̄AS +

√
discrim

,

(A-17)
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where the numerator is equal to 2Ψ by (A-15). Recalling that inequality (2) implies
inequality (A-12) (Lemma 1), the denominator is clearly positive. Rewrite (A-17) as:

Z̄h′(Ā) + g =

[
g

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
+ h′(Ā)π̄AS

]
[(

−π̄AA + h′′(Ā)
−π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS + βgh′(Ā)π̄AS

+
1

2

√
discrim− 1

2

(
(1− βg2)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS

)]−1

.

(A-18)

We desire to show Z̄h′(Ā) + g < 1 if Z̄h′(Ā) + g > 0 and to show Z̄h′(Ā) + g > −1 if
Z̄h′(Ā) + g < 0.

First consider Z̄h′(Ā) + g > 0. The first line of the denominator in (A-18) is
positive and is larger than the numerator. The second line in the denominator is
positive if and only if{
−βg[h′(Ā)]2π̄SS−(1−βg2)h′(Ā)π̄AS

}{
βh′(Ā)π̄AS+βg

[
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

]}
> 0.

The expression contained in the second curly braces is positive because it is propor-
tional to Z̄h′(Ā) + g. The expression contained in the first curly braces is positive if
h′(Ā)π̄AS ≤ 0. In this case, the inequality does hold and the second line of the de-
nominator reinforces the first. So Z̄h′(Ā)+g < 1 if Z̄h′(Ā)+g > 0 and h′(Ā)π̄AS ≤ 0.

If, instead, Z̄h′(Ā)+ g > 0 with h′(Ā)π̄AS > 0, the second line of the denominator
in (A-18) can be negative if h′(Ā)π̄AS is sufficiently large. So we seek the largest
value of h′(Ā)π̄AS compatible with Z̄h′(Ā) + g ≤ 1. Rearranging the inequality
Z̄h′(Ā) + g < 1, we find:44

1 >Z̄h′(Ā) + g

⇔
√
discrim > [2g − 1− βg2]

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
+ β[h′(Ā)]2π̄SS + 2(1− βg)h′(Ā)π̄AS.

The right-hand side is positive in the region of interest, around where the inequality
binds. Squaring both sides, this inequality becomes:

0 <g(1− g)(1− βg)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)2

− βg

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
[h′(Ā)]2π̄SS

− β[h′(Ā)]2π̄SSh
′(Ā)π̄AS + [1− 2g(1 + β) + 3βg2]h′(Ā)π̄AS

[
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

]
− [1 + β − 2βg]

(
h′(Ā)π̄AS

)2
. (A-19)

44Doing so, it is easy to see that discrim > 0 if Z̄h′(Ā) + g < 1 which validates one half of an
earlier claim (i.e., only for the case with Z̄h′(Ā) + g > 0) once we establish that Z̄h′(Ā) + g < 1.
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This is a quadratic in h′(Ā)π̄AS. It opens down. So the acceptable values of h′(Ā)π̄AS

will be in an intermediate range (if they exist). We already saw that the inequality
must hold for small positive values of h′(Ā)π̄AS, so it should be the case that any
roots are on either side of zero with the y-intercept strictly positive (as is easy to
verify).45 So Z̄h′(Ā) + g < 1 only if h′(Ā)π̄AS is less than the positive root. Observe
that the product of the constant and the quadratic coefficient is negative. Therefore,
from the quadratic formula, inequality (A-19) holds if

h′(Ā)π̄AS <
[1− 2g(1 + β) + 3βg2]

[
−π̄AA + h′′(Ā) π̄A

h′(Ā)

]
− β[h′(Ā)]2π̄SS

1 + β − 2βg
.

Indeed, this holds by (6). Therefore Z̄h′(Ā)+g < 1 if Z̄h′(Ā)+g > 0 and h′(Ā)π̄AS >
0.

Finally, consider the case with Z̄h′(Ā)+g < 0. It must be true that h′(Ā)π̄AS < 0.
Rearranging the inequality Z̄h′(Ā) + g > −1, we find:46

1 >− [Z̄h′(Ā) + g]

⇔
√
discrim >[−2g − 1− βg2]

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
+ β[h′(Ā)]2π̄SS + 2(−1− βg)h′(Ā)π̄AS.

The right-hand side must be positive in the region where h′(Ā)π̄AS is sufficiently large
in magnitude to make this inequality bind. Squaring both sides, this becomes:

0 <− g(1 + g)(1 + βg)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)2

+ βg

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
[h′(Ā)]2π̄SS

+ β[h′(Ā)]2π̄SSh
′(Ā)π̄AS + [−1− 2g(1 + β)− 3βg2]h′(Ā)π̄AS

[
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

]
− [1 + β + 2βg]

(
h′(Ā)π̄AS

)2
. (A-20)

This quadratic opens down. The y-intercept is strictly negative. The derivative at
the y-intercept is:

β[h′(Ā)]2π̄SS + [−1− 2g(1 + β)− 3βg2]

[
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

]
< 0.

So both roots are negative. The root that is closer to zero does not bind the inequality
of ultimate interest. (Indeed, Z̄h′(Ā) + g is not even negative for h′(Ā)π̄AS close to

45We also saw that the inequality must hold for negative values of h′(Ā)π̄AS , so readers may be
confused by the fact that there is a negative root as well. But observe that sufficiently negative
h′(Ā)π̄AS is incompatible with Z̄h′(Ā) + g > 0.

46Doing so, it is easy to see that discrim > 0 if Z̄h′(Ā)+g > −1 which validates the remaining half
of an earlier claim (i.e., now for the case with Z̄h′(Ā)+g < 0) once we establish that Z̄h′(Ā)+g > −1.
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0.) Observe that the product of the constant and the quadratic coefficient is positive.
Therefore, from the quadratic formula, inequality (A-20) holds if

h′(Ā)π̄AS >
[−1− 2g(1 + β)− 3βg2]

[
−π̄AA + h′′(Ā) π̄A

h′(Ā)

]
+ β[h′(Ā)]2π̄SS

1 + β + 2βg
.

Indeed, this holds by (6). Therefore Z̄h′(Ā) + g > −1 if Z̄h′(Ā) + g < 0.

We therefore have, when (S0 − S̄)2 is not too large and payoffs are quadratic,

lim
t→∞

E0[At] = Ā and lim
t→∞

E0[St] = S̄.

F.7 Deriving equation (10)

Expand πt around wt = C, At = Ā, and St = S̄:

πt =π̄ + π̄w(wt − C) + π̄A(At − Ā) + π̄S(St − S̄)

+
1

2
π̄ww(wt − C)2 +

1

2
π̄AA(At − Ā)2 +

1

2
π̄SS(St − S̄)2

+ π̄wA(wt − C)(At − Ā) + π̄wS(wt − C)(St − S̄) + π̄AS(At − Ā)(St − S̄),
(A-21)

where higher order terms vanish because payoffs are quadratic. Appendix F.6 showed
that

lim
t→∞

E0[At] = Ā and lim
t→∞

E0[St] = S̄

if (S0 − S̄)2 is not too large and payoffs are quadratic. Using these and E0[wt] = C
for t > 1, we find:

lim
t→∞

E0[πt] =π̄ +
1

2
π̄wwtrace(Σ)ζ

2 +
1

2
π̄AAE0[(At − Ā)2] +

1

2
π̄SSE0[(St − S̄)2]

+ π̄wAE0[(wt − C)(At − Ā)] + π̄wSE0[(wt − C)(St − S̄)] + π̄ASE0[(At − Ā)(St − S̄)].

Differentiating and using the quadratic nature of payoffs, we find

lim
t→∞

dE0[πt]

dC
=π̄w + π̄A

dĀ

dC
+ π̄S

dS̄

dC
+ π̄K

dK

dC
.

Using the quadratic nature of payoffs, the first-order condition for the infrastructure
problem is:

0 =
∞∑
t=0

βt

{
π̄K + π̄AKE[A∗

t − Ā] + π̄SKE[St − S̄]

}
.

From analysis in Appendix F.6 and using S0 = S̄ and that expectations in the in-
frastructure problem do not contain specialized forecasts, the expected actions and
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stock are here just Ā and S̄. The first-order condition for the infrastructure problem
becomes

π̄K = 0.

From equation (A-5),
dS̄

dC
=

h′(Ā)

1− g

dĀ

dC
.

Therefore

lim
t→∞

dE0[πt]

dC
=π̄w +

[
π̄A + π̄S

h′(Ā)

1− g

]
dĀ

dC
.

F.8 Deriving equation (13)

Implicitly differentiating equation (A-6), we have:

dĀ

dC
=

(1− βg)π̄wA + βh′(Ā)π̄wS

−(1− βg)π̄AA − βh′′(Ā)π̄S − βh′(Ā)h
′(Ā)
1−g

π̄SS − 1−βg
1−g

h′(Ā)π̄AS − βh′(Ā)π̄AS

+
(1− βg)π̄AK + βh′(Ā)π̄SK

−(1− βg)π̄AA − βh′′(Ā)π̄S − βh′(Ā)h
′(Ā)
1−g

π̄SS − 1−βg
1−g

h′(Ā)π̄AS − βh′(Ā)π̄AS

dK

dC
.

Substitute for βπ̄S from equation (A-6):

dĀ

dC
=

(1− βg)π̄wA + βh′(Ā)π̄wS

(1− βg)
[
−π̄AA + h′′(Ā) π̄A

h′(Ā)

]
− β

1−g
[h′(Ā)]2π̄SS − 1+β−2βg

1−g
h′(Ā)π̄AS

+
(1− βg)π̄AK + βh′(Ā)π̄SK

(1− βg)
[
−π̄AA + h′′(Ā) π̄A

h′(Ā)

]
− β

1−g
[h′(Ā)]2π̄SS − 1+β−2βg

1−g
h′(Ā)π̄AS

dK

dC
.

(A-22)

The denominator is strictly positive if and only if inequality (A-7) holds, which we
saw indeeds hold when (6) holds. Therefore

dĀ

dC
∝(1− βg)π̄wA + βh′(Ā)π̄wS + [(1− βg)π̄AK + βh′(Ā)π̄SK ]

dK

dC
.

We have established the result we sought. For later use, note that if (S0 − S̄)2 is not
too large and payoffs are quadratic, then, from equation (12),

lim
t→∞

dE0[πt]

dC
=π̄w − 1− β

β
π̄A

(1− βg)π̄wA + βh′(Ā)π̄wS + [(1− βg)π̄AK + βh′(Ā)π̄SK ]
dK
dC

D
,

(A-23)
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where

D ≜ (1− g)(1− βg)

[
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

]
− β[h′(Ā)]2π̄SS − (1 + β − 2βg)h′(Ā)π̄AS

(A-24)

and D > 0 from (6). And observe that, from equations (A-14) and (A-24),

h′(Ā)χ̄ =D + [1 + β(1− g)]

{
g

[
−π̄AA − h′′(Ā)

π̄A

h′(Ā)

]
+ h′(Ā)π̄AS

}
+

1

2

√
discrim− 1

2

(
(1− βg2)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS

)
.

(A-25)

F.9 Proof of Proposition 2

Expanding St around Ā and S̄, we have, from Taylor’s theorem,

St = S̄ + h′(Ā)(At−1 − Ā) + g(St−1 − S̄) + higherorderterms1t,

where higherorderterms1t is a linear function of terms with (At−1 − Ā)α1(St−1 −
S̄)α2 for α1, α2 ∈ Z+ and α1 + α2 > 1. Substituting for St then St−1 and so on,
equation (A-21) becomes:

πt =π̄ + π̄w(wt − C) + π̄A(At − Ā) + π̄Sh
′(Ā)

∞∑
i=0

gi(At−1−i − Ā) + higherorderterms2t,

(A-26)

where higherorderterms2t is a linear function of terms with (wt − C)α1(At−1−k −
Ā)α2(St−1−k − S̄)α3 for k ≥ 0, α1, α2, α3 ∈ Z+, and α1 + α2 + α3 > 1. Using that
payoffs are quadratic and substituting for St and then for At1 and St−1 and so on,
equation (A-16) becomes:

At =Ā+
π̄wA

h′(Ā) χ̄
(wt − C) +

βΓ

h′(Ā)χ̄
(f1,t − C) +

βΨ

h′(Ā)χ̄

βΓ

h′(Ā)χ̄
(f2,t − C)

+ Z̄h′(Ā)
∞∑
i=0

[Z̄h′(Ā) + g]i
[

π̄wA

h′(Ā) χ̄
(wt−1−i − C) +

βΓ

h′(Ā)χ̄
(f1,t−1−i − C)

+
βΨ

h′(Ā)χ̄

βΓ

h′(Ā)χ̄
(f2,t−1−i − C)

]
+ higherorderterms3t,

where higherorderterms3t is a linear function of terms with (wt−k − C)α1(f1,t−k −
C)α2(f2,t−k − C)α3 for k > 0, α1, α2, α3 ∈ Z+, and α1 + α2 + α3 > 1. Using this and
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its analogues in (A-26), we find

∆πt =

[
π̄w + π̄A

π̄wA

h′(Ā) χ̄

]
∆wt + π̄A

βΓ

h′(Ā)χ̄
∆f1,t + π̄A

βΨ

h′(Ā)χ̄

βΓ

h′(Ā)χ̄
∆f2,t

+

{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
[

π̄wA

h′(Ā) χ̄
∆wt−1 +

βΓ

h′(Ā)χ̄
∆f1,t−1 +

βΨ

h′(Ā)χ̄

βΓ

h′(Ā)χ̄
∆f2,t−1

]
+

∞∑
i=2

{
π̄AZ̄h

′(Ā)[Z̄h′(Ā) + g]i−1 + π̄Sh
′(Ā)gi−1 + π̄SZ̄[h

′(Ā)]2
i−1∑
j=1

[Z̄h′(Ā) + g]i−j−1gj−1

}
[

π̄wA

h′(Ā) χ̄
∆wt−i +

βΓ

h′(Ā)χ̄
∆f1,t−i +

βΨ

h′(Ā)χ̄

βΓ

h′(Ā)χ̄
∆f2,t−i

]
+∆higherorderterms4t, (A-27)

where higherorderterms4t is a linear function of higherorderterms2t and higherorderterms3t.
The vector of estimated coefficients is

α̂

Λ̂

λ̂
γ̂

 = E[X⊺X]−1E[X⊺π],

where α̂ is a J × 1 vector stacking the α̂j; Λ̂, λ̂, and γ̂ are I × 1 vectors stacking the

Λ̂i, λ̂i, and γ̂i; π is a JT × 1 vector with rows πjt; and X is a JT × (J + 3I) matrix
with the final 3I columns of each row being[

∆wjt ... ∆wj(t−I) ∆fj1,t ... ∆fj1,t−I ∆fj2,t ... ∆fj2,t−I

]
.

By the Frisch-Waugh Theorem,Λ̂λ̂
γ̂

 = E[X̃⊺X̃]−1E[X̃⊺π̃],

where X̃ is a JT × 3I matrix with rows[
∆wjt − µw

j ... ∆wj(t−I) − µw
j ∆fj1,t − µf1

j ... ∆fj1,t−I − µf1
j ∆fj2,t − µf2

j ... ∆fj2,t−I − µf2
j

]
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and π̃ is similarly demeaned π. Observe that:

E[X̃⊺π̃] =JT



Cov[∆wjt − µw
j ,∆πjt − µπ

j ]
...

Cov[∆wj(t−I) − µw
j ,∆πjt − µπ

j ]

Cov[∆fj1,t − µf1
j ,∆πjt − µπ

j ]
...

Cov[∆fj1,t−I − µf1
j ,∆πjt − µπ

j ]

Cov[∆fj2,t − µf2
j ,∆πjt − µπ

j ]
...

Cov[∆fj2,t−I − µf2
j ,∆πjt − µπ

j ]


.

Following the proof of Proposition 1, Λ̂, λ̂, and γ̂ are independent of ∆higherorderterms4t
because the ϵ are normally distributed. From here, drop the j subscript to save on
unnecessary notation.

Observe that Cov[∆wt−k,∆wt−k−j] = Cov[∆wt−k,∆f1,t−k−j] = Cov[∆wt−k,∆f2,t−k−j] =
0 for j > 3, that Cov[∆f1,t−k,∆wt−k−j] = Cov[∆f1,t−k,∆f1,t−k−j] = Cov[∆f1,t−k,∆f2,t−k−j] =
0 for j > 2, and that Cov[∆f2,t−k,∆wt−k−j] = Cov[∆f2,t−k,∆f1,t−k−j] = Cov[∆f2,t−k,∆f2,t−k−j] =
0 for j > 1. It is obvious from standard regression results on omitted variables bias
(and verifiable through tedious algebra) that, for i < I − 2, the probability limits of
Λ̂i, λ̂i, and γ̂i are identical to the coefficients on, respectively, ∆wt−i, ∆f1,t−i, and
∆f2,t−i in equation (A-27). We then find:

lim
I→∞

plim
I−3∑
i=0

[
Λ̂i + λ̂i

]
=π̄w + π̄A

[
π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
+
[
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

] [ π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
+

∞∑
i=2

{
π̄AZ̄h

′(Ā)[Z̄h′(Ā) + g]i−1 + π̄Sh
′(Ā)gi−1 + π̄SZ̄[h

′(Ā)]2
i−1∑
j=1

[Z̄h′(Ā) + g]i−j−1gj−1

}
[

π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
=π̄w + π̄A

[
π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
+
[
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

] [ π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
+

∞∑
i=2

{
π̄AZ̄h

′(Ā)[Z̄h′(Ā) + g]i−1 + π̄Sh
′(Ā)(Z̄h′(Ā) + g)i−1

}[
π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
=π̄w + π̄A

[
π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
+

π̄AZ̄h
′(Ā) + π̄Sh

′(Ā)

1− [Z̄h′(Ā) + g]

[
π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
,

where we used Lemma 2 to establish that the common ratio is less than 1 in magni-
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tude. Substituting for π̄S from equation (A-6),

π̄AZ̄h
′(Ā) + π̄Sh

′(Ā)

1− [Z̄h′(Ā) + g]
=− 1

β
π̄A

1− β[Z̄h′(Ā) + g]

1− [Z̄h′(Ā) + g]
.

Then, using equations (A-14) and (A-17),

lim
I→∞

plim
I−2∑
i=0

[
Λ̂i + λ̂i

]
=π̄w

− 1− β

β
π̄A

{
(1− βg)π̄wA + βh′(Ā)π̄wS +

[
βh′(Ā)π̄AS + βg

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)]
π̄wA

h′(Ā) χ̄

}
{
1

2

[
(1− βg2)

(
−π̄AA + h′′(Ā)

π̄AA

h′(Ā)

)
− β[h′(Ā)]2π̄SS +

√
discrim

]
− g(1− βg)

(
−π̄AA + h′′(Ā)

π̄AA

h′(Ā)

)
− (1− βg)h′(Ā)π̄AS

}−1

=π̄w

− 1− β

β
π̄A

{
(1− βg)π̄wA + βh′(Ā)π̄wS +

[
βh′(Ā)π̄AS + βg

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)]
π̄wA

h′(Ā) χ̄

}
{
D + β(1− g)Ψ +

1

2

√
discrim− 1

2

[
(1− βg2)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS

]}−1

,

where the last equality uses equation (A-24). Using equations (A-6), (A-22), and (A-23),

lim
I→∞

plim
I−2∑
i=0

[
Λ̂i + λ̂i

]
=π̄w + ω

[
π̄A + π̄S

h′(Ā)

1− g

](
∂Ā(K,C)

∂C
+ Ω

)
,

where

Ω ≜
βΨ π̄wA

h′(Ā) χ̄

D/(1− g)
, (A-28)

ω ≜D

{
D

+ β(1− g)Ψ

+
1

2

√
discrim− 1

2

[
(1− βg2)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS

]}−1

,

(A-29)
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and, from equation (16),

Ψ ≜ h′(Ā)π̄AS + g

(
−π̄AA +

h′′(Ā)

h′(Ā)
π̄A

)
︸ ︷︷ ︸

>0 by (3)

.

D, from equation (A-24), is positive if and only if inequality (A-7) holds, which we
saw indeeds hold by (6). Observe that, from (A-22), the denominator of dĀ/ dC is
D/(1− g).

Analyze ω by considering the divergence between the terms in curly braces in (A-29)
and D. First, if βΨ = 0, then the second line in curly braces is zero and, from equa-
tion (A-10), so is the third line in curly braces. Therefore ω = 1 if βΨ = 0.

Next, if βΨ < 0, then the second line in curly braces is strictly negative. Further,
h′(Ā)π̄AS must be weakly negative. From equation (A-10), βΨ < 0 and h′(Ā)π̄AS ≤ 0
imply that the third line in curly braces is negative. Using (A-25), the denominator
of ω is strictly greater than h′(Ā)χ̄ when Ψ < 0. From equation (A-14), Lemma 1,
and inequality (2), h′(Ā) χ̄ > 0. Therefore the denominator of ω is strictly positive
when Ψ < 0. And because the combined terms in curly braces in (A-29) are strictly
less than D, we have established that ω > 1 if βΨ < 0.

If βΨ > 0, then the second line in curly braces in (A-29) is strictly positive. From
equation (A-10), the third line in curly braces is positive if βΨ > 0 and h′(Ā)π̄AS is
not too much greater than 0. In that case, ω < 1.

Finally, consider βΨ > 0 with h′(Ā)π̄AS strictly positive and sufficiently large to
make the third line in curly braces negative. Consider whether that line can be so
negative as to overwhelm the positive second line in curly braces and make ω > 1.
Those final two lines in curly braces are strictly positive with h′(Ā)π̄AS > 0 if and
only if

√
discrim > [1 + βg2 − 2βg]

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
− 2β(1− g)h′(Ā)π̄AS − β[h′(Ā)]2π̄SS.

Squaring both sides, this inequality holds if and only if

0 <g(1− g)(1− βg)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)2

− βg

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
[h′(Ā)]2π̄SS

− β[h′(Ā)]2π̄SSh
′(Ā)π̄AS + [1− 2g(1 + β) + 3βg2]h′(Ā)π̄AS

[
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

]
− [1 + β − 2βg]

(
h′(Ā)π̄AS

)2
.

This last inequality is identical to inequality (A-19), which we saw holds by (6).
Therefore ω < 1 if βΨ > 0.

A-34



Lemoine Estimating Climate from Weather May 6, 2024

F.10 Proof of Corollary 3

First consider I ′ > 1. As described in the proof of Proposition 2, the probability
limits of Λ̂i and λ̂i are, for i < I − 2, identical to the coefficients on ∆wt−i and ∆ft−i

in equation (A-27). Using Lemma 2 to establish that the common ratio is not equal
to 1, we obtain:

plim
I′∑
i=0

[
Λ̂i + λ̂i

]
=π̄w + π̄A

[
π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
+
[
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

] [ π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]

+
I′∑
i=2

{
π̄AZ̄h

′(Ā)[Z̄h′(Ā) + g]i−1 + π̄Sh
′(Ā)(Z̄h′(Ā) + g)i−1

}[
π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
=π̄w + π̄A

[
π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
+

[
1− [Z̄h′(Ā) + g]I

′
]
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

1− [Z̄h′(Ā) + g]

[
π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
.

Substituting for π̄S from equation (A-6),

π̄A +

[
1− [Z̄h′(Ā) + g]I

′
]
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

1− [Z̄h′(Ā) + g]

=− 1− β

β
π̄A

1

1− [Z̄h′(Ā) + g]

{
1− [Z̄h′(Ā) + g]I

′ 1− β[Z̄h′(Ā) + g]

1− β

}
.

For I ′ = 1, we have:

plim
1∑

i=0

[
Λ̂i + λ̂i

]
=π̄w + π̄A

[
π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
+
[
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

] [ π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
.

Substituting for π̄S from equation (A-6) and rearranging, we find:

π̄A + [π̄AZ̄h
′(Ā) + π̄Sh

′(Ā)] =− 1− β

β
π̄A

1

1− [Z̄h′(Ā) + g]

[
1− [Z̄h′(Ā) + g]

1− β[Z̄h′(Ā) + g]

1− β

]
.

Using these results and following the analysis of Proposition 2, we have, for I ′ ≥ 1,

plim
I′∑
i=0

[
Λ̂i + λ̂i

]
=π̄w + ωI′

[
π̄A + π̄S

h′(Ā)

1− g

](
∂Ā(K,C)

∂C
+ Ω

)
,

where

ωI′ ≜

{
1− [Z̄h′(Ā) + g]I

′ 1− β[Z̄h′(Ā) + g]

1− β

}
ω. (A-30)
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and where Ω and ω are as in Proposition 2. From equation (A-17), Z̄h′(Ā) + g ∝ Ψ.
Thus Z̄h′(Ā) + g = 0 if g = π̄AS = 0. In that case, ωI′ = ω for all I ′ ≥ 1. If Ψ > 0,
then, using Lemma 2, the combined terms in curly braces in (A-30) are strictly
positive, strictly less than 1, and strictly increasing in I ′. In that case, following the
analysis in Proposition 2, ωI′ ∈ (0, ω) and ωI′ increases in I ′. If Ψ < 0, then the
combined terms in curly braces in (A-30) are strictly greater than 1 for I ′ odd. The
statement of the corollary follows from the analysis of Proposition 2.

F.11 Proof of Corollary 4

It is obvious that
lim
β→0

Ω = 0

From equation (A-10),

lim
β→0

discrim =

(
(1− βg2)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS

)2

.

Using (A-29), this implies

lim
β→0

ω =1.

Also observe that
lim
β→0

λ̂i = 0

because
lim
β→0

βΓ = 0.

The corollary follows from Proposition 2.

F.12 Proof of Corollary 5

First, observe that, with πAS = 0,

lim
g→0

Ω = 0

because
lim
g→0

Ψ = 0.

From equation (A-10),

lim
g→0

discrim =

(
(1− βg2)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS

)2

.
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Using (A-29), this implies

lim
g→0

ω = 1.

Finally, recall that Corollary 3 established that ωI′ = ω when Ψ = 0. The corollary
follows from Proposition 2.

F.13 Proof of Proposition 6

Following the proof of Proposition 2 and using equation (A-27), we have:

plim Λ̂0 =π̄w + π̄A
π̄wA

h′(Ā) χ̄
,

plim Λ̂1 =

{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
π̄wA

h′(Ā) χ̄
,

plim Λ̂2 =[Z̄h′(Ā) + g]

{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
π̄wA

h′(Ā) χ̄
,

plim λ̂0 =π̄A
βΓ

h′(Ā)χ̄
,

plim λ̂1 =

{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
βΓ

h′(Ā)χ̄
,

plim λ̂2 =[Z̄h′(Ā) + g]

{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
βΓ

h′(Ā)χ̄
.

Observe that

plim
λ̂0

λ̂1

=
π̄A

π̄AZ̄h′(Ā) + π̄Sh′(Ā)

and

plim
Λ̂2

Λ̂1

= Z̄h′(Ā) + g. (A-31)

Substitute for π̄Sh
′(Ā) from (A-6):

plim
λ̂0

λ̂1

=
1

Z̄h′(Ā) + g − 1
β

.

This is strictly less than 0 by Lemma 2. And, using equations (A-17) and (A-31),

Ψ ∝ plim
Λ̂2

Λ̂1

.
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Substituting for dĀ/ dC from Appendix F.8, equation (12) becomes:

lim
t→∞

dE0[πt]

dC
=

direct effects︷︸︸︷
π̄w

ex-post adaptation︷ ︸︸ ︷
− 1− β

β
π̄A

π̄wA

D

ex-ante adaptation︷ ︸︸ ︷
− 1− β

β
π̄A

β[h′(Ā)π̄wS − g π̄wA]

D

−1− β

β

π̄A

D

[
(1− βg)π̄AK + βh′(Ā)π̄SK

] dK

dC︸ ︷︷ ︸
interactions with long-lived infrastructure

, (A-32)

with D > 0 itself a function of cross-partials.47

Rearranging the foregoing results, we find:

π̄A
βΓ

h′(Ā) χ̄
=plim λ̂0, π̄A

π̄wA

h′(Ā) χ̄
= plim Λ̂1

λ̂0

λ̂1

, π̄w = plim

(
Λ̂0 − Λ̂1

λ̂0

λ̂1

)
.

Using these results and labeling pieces as in (A-32), we can calculate the overall effect
of climate:

plim

(
Λ̂0 − Λ̂1

λ̂0

λ̂1

− 1− β

β

[
Λ̂1

λ̂0

λ̂1

+ λ̂0

])

=π̄w − 1− β

β
π̄A

{
π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā) χ̄

}
=π̄w − D

h′(Ā)χ̄

1− β

β
π̄A

(
π̄wA

D
+

β[h′(Ā)π̄wS − g π̄wA]

D
+

Ω

1− g

)
=π̄w +

D

h′(Ā)χ̄

[
π̄A + π̄S

h′(Ā)

1− g

](
∂Ā(K,C)

∂C
+ Ω

)
. (A-33)

The second line uses foregoing results to express the calculation in terms of model
primitives. The third line substitutes for Γ. Substituting dĀ/ dC and also π̄S from
the Euler equation (11), the final line indicates how close we get to the true effect of
climate from (10).

Consider the bias Ω. Following the proof of Proposition 2 and using equa-
tion (A-27), we have:

plim γ̂0 = π̄A
βΨ

h′(Ā)χ̄

βΓ

h′(Ā)χ̄
.

Therefore

plim
γ̂0

λ̂0

=
βΨ

h′(Ā)χ̄
.

47See equations (A-23) and (A-24) in Appendix F.8. Note that D absorbs the 1 − g in the
denominator of (12).
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From equation (A-28),

π̄A
Ω

1− g
= π̄A

h′(Ā)χ̄

D

γ̂0

λ̂0

π̄wA

h′(Ā) χ̄
.

Substituting from foregoing results for π̄Aπ̄wA/[h
′(Ā) χ̄], we find:

D

h′(Ā)χ̄
π̄A

Ω

1− g
= plim

γ̂0

λ̂0

Λ̂1
λ̂0

λ̂1

.

Combining this with (A-33) and defining ω̃ ≜ D/[h′(Ā)χ̄] yields equation (19) in the
proposition.

Using equation (A-25), we have:

D

h′(Ā)χ̄
=D

{
D

+ [1 + β(1− g)]Ψ

+
1

2

√
discrim− 1

2

(
(1− βg2)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS

)}−1

.

Comparing to equation (A-29), we here have a coefficient of [1+β(1−g)] on Ψ instead
of β(1−g). The analysis of Ψ ≤ 0 is as in the case of βΨ ≤ 0 from before, except now
β = 0 does not bring the second line in curly braces to zero. For Ψ > 0, note that
it is now even harder for the third line in curly braces to overwhelm the second line,
so if that could not happen for ω with βΨ > 0, then it cannot happen here either for
Ψ > 0.

F.14 Proof of Proposition 7

Following the proof of Proposition 2 and using equation (A-27), we have:

plim ϕ̂0 =π̄w + π̄A
π̄wA

h′(Ā) χ̄
,

plim ϕ̂1 =

{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
π̄wA

h′(Ā) χ̄
,

plim ϕ̂2 =[Z̄h′(Ā) + g]

{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
π̄wA

h′(Ā) χ̄
.

Substitute for π̄Sh
′(Ā) from (A-6):

plim ϕ̂1 =

{
Z̄h′(Ā) + g − 1

β

}
π̄A

π̄wA

h′(Ā) χ̄

A-39



Lemoine Estimating Climate from Weather May 6, 2024

Observe that

plim
ϕ̂2

ϕ̂1

=Z̄h′(Ā) + g. (A-34)

From Lemma 2, ∣∣∣∣∣plim ϕ̂2

ϕ̂1

∣∣∣∣∣ <1.

And using equations (A-17) and (A-34),

Ψ ∝ plim
ϕ̂2

ϕ̂1

.

Rearranging the foregoing results, we have:

π̄A
π̄wA

h′(Ā) χ̄
= plim

ϕ̂1

ϕ̂2

ϕ̂1
− 1

β

, π̄w = plim

ϕ̂0 −
ϕ̂1

ϕ̂2

ϕ̂1
− 1

β

 .

The proposition follows the proof of Proposition 6 from here.

F.15 Proof of Proposition A-1

Let there be N aggregated timesteps in total. We seek[
ˆ̆
Λ
ˆ̆
λ

]
=E[X̃⊺X̃]−1E[X̃⊺ ˜̆π], (A-35)

where, guided by previous proofs, X̃ is a JN × 2 matrix with rows[
∆w̆js − µw

j ∆f̆j1,s − µf1
j

]
and ˜̆π is demeaned π̆. Observe that:

E[X̃⊺ ˜̆π] =JN

[
Cov[∆w̆js − µw

j ,∆π̆js − µπ
j ]

Cov[∆f̆j1,s − µf1
j ,∆π̆js − µπ

j ]

]
.

From here, drop the j subscript to avoid excess notation. Observe that

∆w̆js =
1

δ

s+δ−1∑
t=s

∆wt
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and analogously for other variables. After applying the Frisch-Waugh Theorem to
partial out the effects of forecasts, correlations between payoffs and weather within
a timestep are controlled by the coefficients on weather in equation (A-27), with
weather earlier in the timestep appearing as a lag for payoffs later in the timestep. In
addition, variation in ∆ws (i.e., the first difference within the long timestep) also picks
up the effect of ∆f1,s−1 (i.e., the last forecast issued in the previous long timestep)

because the latter variable is missing from ∆f̆1,s. We then have:

plim
ˆ̆
Λ =plim

δ−1∑
i=0

δ − i

δ
Λ̂i + plim

1

δ

δ−1∑
i=0

Σ22

Σ11 + Σ22

λ̂i+1.

Analogously, we find:

plim
ˆ̆
λ =plim

δ−1∑
i=0

δ − i

δ
λ̂i.

Therefore:

plim
(
ˆ̆
Λ +

ˆ̆
λ
)
=plim

(
δ−1∑
i=0

δ − i

δ

[
Λ̂i + λ̂i

]
+

1

δ

δ−1∑
i=0

Σ22

Σ11 + Σ22

λ̂i+1

)

=plim

(
Λ̂0 + λ̂0 +

δ−1∑
i=1

δ − i

δ
Λ̂i +

δ−1∑
i=1

δ − i+ Σ22

Σ11+Σ22

δ
λ̂i +

Σ22

Σ11+Σ22

δ
λ̂δ

)
.

(A-36)

The coefficients on Λ̂i and λ̂i are each ∈ [0, 1]. In the proof of Corollary 3 (Ap-
pendix F.10), we established that, for I ≥ I ′ + 3,

plim
I′∑
i=0

[
Λ̂i + λ̂i

]
=π̄w + π̄A

[
π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
+

[
1− [Z̄h′(Ā) + g]I

′
]
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

1− [Z̄h′(Ā) + g]

[
π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
=π̄w − 1− β

β
π̄A

1

1− [Z̄h′(Ā) + g]

{
1− [Z̄h′(Ā) + g]I

′ 1− β[Z̄h′(Ā) + g]

1− β

}
[

π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
.

In equation (A-36), each of the coefficients Λ̂i and λ̂i is weighted by a fraction. Using
I ′ = δ in the previous expression, there exist x1 ∈ (0, 1) and x2 ∈ (0, 1) such that, for
Ψ > 0,

plim
(
ˆ̆
Λ +

ˆ̆
λ
)
=π̄w − 1− β

β
π̄A

1

1− [Z̄h′(Ā) + g]

{
1− [Z̄h′(Ā) + g]I

′ 1− β[Z̄h′(Ā) + g]

1− β

}
[
x1

π̄wA

h′(Ā) χ̄
+ x2

βΓ

h′(Ā)χ̄

]
.
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Following the proof of Corollary F.10, there exists x ∈ [x1, x2] (or x ∈ [x2, x1] if
x2 < x1) such that, for Ψ > 0,

plim
(
ˆ̆
Λ +

ˆ̆
λ
)
=π̄w + xωδ

[
π̄A + π̄S

h′(Ā)

1− g

](
∂Ā(K,C)

∂C
+ Ω

)
.

The statement of the proposition follows from defining ω̆ ≜ xωδ.
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