l. APPENDIX A: DERIVATION OF THE DD DECOMPOSITION THEOREM

A. Derivation of equation (6)
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This yields equation (6).
B. Proof of the Difference-in-Differences Decomposition Theorem
The DD decomposition theorem follows from solving out the covariance between adjusted

variables from equation (6):
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Because D;; and D; equal zero in the control group, and D;; equals zero in all pre-treatment periods,

the first two terms in equation (6) collapse to:
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We can write the unit mean of y as an average between a pre- and post-period: y, = (1 —
Ej)yi REU) +5j§fosm). Equation (Al) therefore contains pre/post averages for each unit

according to its own treatment timing, and these can be further collapsed to averages for treatment

timing groups (rather than individual units):
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The third term in equation (6), a sum over t, can be broken up into pieces based on each groups’

treatment time: no units are treated before t; (D, = 0); only units in group k = 1 are treated

between ¢; and t; — 1 (D, = n,); only units in groups k = 1 and k = 2 are treated between and

t; and t; — 1 (D, = n, + ny), etc. The share of all NT observations that are treated equals D =

> Ny Dy This yields:
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Grouping the sums by their weights (the n and D terms) leads to an expression in terms of every

timing group’s pre- and post-period:
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shows that every group of cross-sectional units contributes a pre/post difference according to every
treatment time. Here k indexes each group, including untreated units, and ¢ indexes treatment
times that determine the periods in which means are taken. Note that the order of the sum matters

because outcome differences for group k according to group £’s timing is not the same as outcome

differences for group ¢ according to group k’s timing:
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Where A(y,, t;) = iZOST(b) — iZRE(b), the change in average outcomes in group a according to

group b’s treatment timing.

Combining equations (A2) and (A5) shows that the covariance equals:
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where ¢ indexes groups of observations (including the control group) so that the double-sum
includes all combinations of the cross-sectional units with treatment timings.
Break out the untreated group from the £ part of the second sum (these are the terms that

compare changes in outcomes in the untreated group according to every possible timing):
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For all k # U, subtract n, (1 — n, — ny)D (1 — Di)A(Yy, t;) so that each n, (1 — ny)Dy (1 —
Dy )A(y, ty) becomes nny Dy (1 — Dy )A(yy, ti) and the two sums in the first line of (A7) can

be combined. This implies that we must add ny Y.exun, Dy (1 — Di) Ay, t) for each k # U,
t2k

which is the same because Y.pzyn, = (1 — n, — ny). This yields an expression only in terms of
t%k

differences across groups in differences between pre/post periods:
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Note that every combination of £ and k appears twice in the double sum so equation (A8) equals:
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The first sum in (A9) contains all the 2x2 DDs that compare one treatment timing group to the
untreated group. Substituting the definition of A(y,, t;) shows that each term in the second line

of (A9) equals:
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Recall that in my notation group k is always treated earlier than group ¢, which means that, as
shown in figure 1, the period POST (k) includes the middle window where treatment status differs,

MID(k,¥) and the POST (¥) period. Therefore, any group’s mean outcome in group k’s post-



period are a weighted average of these two periods where the weights are just the share of periods

in MID(k, €) versus POST (¥):
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Similarly, group £’s pre-period includes PRE (k) and MID (k, ¢), so:
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Substituting these identities into (A10) yields:
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Distributing the D, (1 — D) and D,(1 — D,) terms yields:
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Grouping the y and yPOST(f) for each group shows that their weights each match some of
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the y terms, and that this expression contains the 2x2 DDs from a timing-only comparison

between groups k and ¥:
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Since (1 — Dy )(Dyx — D) + Dy(Dy — Dy) = (1 — (Dy — Dy))(Dy, — D), equation (A1l) yields
equations (7) and (8) in the paper, which define u;, and show that a two-group timing estimate

weights together the 2x2 DDs on the later group’s pre-period and on the early group’s post-period:
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Combining equations (A9) and (A12) shows that:
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To solve for the denominator of AP, we just need to evaluate (A13) using D;, in place of y;;.
Averages of D;; in pre- and post-periods are, obviously, equal to 1 and 0. The definitions of the

non-trivial terms in the denominator:

i 1 D,

A(Dp, ty) = T z Dicor | -0 ==
K\t D

Dy = 1 ZD 1 ZD _, Tp—T; 1-Dy

tzt, t<t;

Plugging in shows that:
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This is the sum of the weights on each § term in (A13), which defines the decomposition weights

Sku and Ske-



Il.  APPENDIX B: DERIVATION OF THE DECOMPOSITION WITH UNIT-SPECIFIC TRENDS
The unit-specific trend specification is:

yie = aj+a+A D (t—1)+BE2uDi + e
Before turning to the decomposition, we need to know how unit-specific trends work in general.
To apply the Frisch-Waugh theorem we would first fit a linear trend to D, for every unit: D;, =
A¥D(t —t) + Dy;. The notation A¥® indicates that the slopes only vary by timing group. The
residuals from these detrending regressions (D;; = D;; — A"‘(i)(t — f)) are the “new” identifying

variation. S22 . equals the following univariate regression coefficient:
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The detrended estimator equals the unadjusted estimate, § , minus a function of g , the

relationship between y and the fitted trends. This is the sense in which trends “take out” underlying
trends in the outcome. Moreover, the variance ratios are functions of the R? from the regression

that fits trends to D;,. Unit-specific matter more when they fit D;, better.

. . : ~trend . .

In this appendix | first solve for R? and B "™ in the two-group cases with one treated and
one untreated group, and with two treated groups (timing only). Next, | solve for the full trend-
adjusted estimator and show that it is a weighted average of the two-group detrended estimators.*

Finally, I apply these expression to a potential outcomes model with a trend.

! To solve for the trend adjustment I rely on the algebra of sums, including the following results:

T
Ye-n= r+Dr-1 DS(T —D (B0.1)

8



C. Fitted Trend through a fixed-effects adjusted treatment variable (4%)
The Frisch-Waugh expression for the linear trend through D;, for each unit i is:
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i.  The group-specific covariance between D;, and a linear trend
The numerator of each of those regressions is:
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We are essentially fitting a line through the difference between a dummy D;; and an increasing
step function D,.2 Consider D,: no units are treated before t; (D, = 0); only units in group k = 1
are treated between t} and t; — 1 (D, = n;); only units in groups k = 1 and k = 2 are treated
between and t; and t; — 1 (D, = n, + n,), etc. Therefore, for group k, the covariance between

(Di; — D) and the time trend is:
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Pull out a (1 — n,) from every sum starting at ¢, or later, and then all other n;’s enter negatively

in all sums starting at ¢;" or later, which yields:

| (c-7) -],
(1—nk)z Z njz T foriek+U
— . (t—0 t= tk jEkU t=t:
> 0u-D)——==1{" / (B4)
: (D) |
— Z n; Z 7 forieU
\| Jj=U t=t;

2 The step function part is the same for all units because it equals the cumulative share of the sample that has D;, = 1.
The dummy turns on earlier or later across timing groups (and not at all for untreated units). If it turns on right away,
most of the time periods just have one added to them, so most period-to-period variation comes from the declining
—D, part. If it turns on only at the very end of the panel, the same thing is true: most period-to-period variation comes
from the declining —D, part. If it turns on in the middle, though, the earliest periods are zero or negative and the latest

periods are all positive, and the slope will be relatively more positive. Therefore, it fits a more positive trend in the
middle treated unit than earlier/later treated units.

10



Note that every term is negative for untreated units because their adjusted treatment variable is
weakly falling. It is straightforward, if tedious, to use the properties of sums of integers to simplify
these expressions. We know that every sum from ¢, to T is positive because it only includes some,

if any, of the negative t — t terms:

i(t—f)z it -t(T- (t; - 1)

The sum can be rewritten as running from 1to T — (¢, — 1):
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Where to save space | define the variance of the treatment dummy in group k as V, =

D, (1 — Dy), so the numerator equals:

.
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ii.  The variance of a linear trend

The denominator of the Frisch-Waugh expression is the variance of t — t. We can rewrite the sums

over demeaned time not as sums from 1 to T, but from 1 —t =1 — % = —% =—(t-1)to
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T—t="———= % = (t — 1). The variance then is just the sum of squared integers, so the

negative and the positive portions are equal:
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Where the last equality follows because our assumption that T is odd implies that (2t — 1) =T,

and t(t _ 1) (T+1) (E) — (T+1)(T—1).

2 4

iii.  The group-specific linear trend in D,
Combining (B6) and (B7) shows that the coefficient on a linear trend fit through group k’s

treatment variable equals:

6T

AF = TiD0-D (1 —n )V, — Z s (B8)
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D. Solving for two-group trend-adjusted estimators
To write a two-group detrended estimator in the form of (27), we need to know the value of the

fitted trends for sub-samples with just two groups. The only way that equation (B8) changes in the
two-group case is that the sample shares refer to the two-group sample and not the full estimation

sample. For example, in the two group estimator that uses groups k and U, group k’s share is

Nk

n - - .
= —X which implies:
ng+ny ng+ny

ny
ng+ny
Ak 6T (1 Ny )V _ 6T ( ny )V (B9)
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And
AY, = of ( T )V B10
U= T+ DT -D\ng +ny/ * (B10)
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In a two-group timing-only estimator, we can calculate the

|— nkrfn{; ]
6T 7 ne N\ n
Kk _ M _ ’
ke = (T+1D(T-1) (1 ny +W>Vk nk+anf
T TADT D) \n+n) KT (B11)
and
6T n
L _ k _
Ae = ~TFDT-D (nk T n) W = Ve) (B12)

i.  What do linear trends partial out of each two-group estimator?
With the definitions of these trend coefficients, it is straightforward to calculate the regression

coefficient that relates the outcome to the fitted trends. For 2x2 estimators that compare a treated

group to the untreated group, we have

1 i
A;Zend _ WZiek,U YAyt =)y (B13)
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Where the second line follows because the sums over units, i, collapse to weighted sums over
groups, k.

The sum of each group’s time means, y;, times (t — t) has a positive part when t > ¢,
and a negative part when t < t. Each portion equals a mean of y before or after t that use |t — t|

as weights. We have:
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Where the second line uses 4*y; to denote the weighted differences in y before and after ¢, and the

(B15)

fact that the sum of integers 5;%] = t(tz_l) = (TH)S(T_D. The denominator also contains the

variance of t, which was defined in equation (B7). Substituting (B7) and (B15) into (B14) yields
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strend _ 8T n +ny (316)
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Substituting the definitions of fitted trends from equations (B9) and (B10) shows that S£7¢¢ is:
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ptrend __

I replace the % with V*, which | define as the variance of a dummy that equals one after t.

A similar derivation for a two-group timing-only estimator yields:

~ T+1)(T-1) Vv*
trend __ T
ke = T V.=V, A"y — 4"Yp) (B19)
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Equations (B18) and (B19) show that the coefficient that relates outcomes and a trend line fitted

through each group’s treatment variable equals the difference in a time-weighted average before

and after time ¢, scaled by a term measuring how close to the middle of the panel they are treated.
ii.  What is the R? from a two-group regression of D;, on A¥(t — £)?

RZ

> from the
1-R

To calculate a trend-adjusted estimator, in this case for two groups, we need

regression of the fixed-effects-adjusted treatment variable on the unit-specific trends, which equals

var(AJO-1)
var(Dy)—var(AJD(t-1))’

For the 2x2 DD comparing groups k and U we already have:

_(T+D(T-1)
B 12

2

var (Aj(i)(t - E)) (nkAllgU + nUAILcIUZ)

_ s T T VZ( 1 )2
T AT — 1k (o g

P 1y
var (Dit) = (nk n nu> nnyVy
Ry
- _ T T
Riy var (A/O(t - 1)) 3 —1% (520)
—R2,. war(D.) — var (AIDt —1)) T T
1—-Rgy wvar (D) —var (AIO( —1)) 1-3rr17—1Vk
For a timing-only comparison between groups k and £ we have:
Riy
3 I T (Vi = Vo)?
Ri,  "TH1T—=1(Dy—Dy)(1— (Dx —Dp)) (B21)
1-RE ;_5 T T i = V,)?

T+1T —1(D, —D,)(1— (Dx — Dp))

iii.  What are the detrended 2x2 estimators?

2x2 ptrend

Equation (27) already shows what each 2x2 detrended estimator is in terms of §2%2, girend and
R2,, but equations (B16), (B17), (B20), and (B21) allow us to write it explicitly in terms of sample

means and shares:
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T T V,—
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£

Note that because RZ, has V, — V, in the numerator, it equals zero when the variance of treatment
is the same for two timing groups. This happens when they are treated equally close to the ends

the panel, in which case unit-specific linear trends have no effect on the 2x2 point estimate.

E. Solving for a general trend-adjusted estimator
We know that:

~DD cov (Eit , yit) — cov (Aj(i) (t— E)’ Yit)
trend = ygr (D) — var (AJO(t - t))
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The first covariance comes from the typical two-way fixed effects estimator. We can write the

second covariance as a function of the 4*y; terms:

1 . _ nyAU _ n Ak
WZ A](l) Z(t - t)yit = th(t - t)yUt + Z
i t

_(T+D)(T-1)
N 8T

> -0,

(B24)

nyAVA*y, + Z n A A g,
k

Then using equation (B7) we can substitute for AV and A*:

nU"'Zj::k unj

ny anvj AYU+an 1—ng) Vi — Z iV |47y
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ol w

each pair appears twice

Z nynV;(4°y; = 4'yy) + Z Vi Z n(V; = Vk)j

S w

kU k j£kU

=3| ) V(45— 85) + ) eV Vi VD@ T - 47 | (B25)
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Where again, | replace iwith V*, the variance of a dummy that turns on at t. We can multiply

(T+1) (T-1) T T

each term by ] (or ”) as well as ——
T T+1T 1’

, and write equation (B25) as a function of

the two-group £7¢"? terms and the R? values:

Htrend
2 ﬁ

T T T+1)(T -1V
ZZ"U"JV(3T+1T—1V1>< T T Myf_AyU))

k+U
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So
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Note that the weights on each R U,Bf{,e"d term are the same as in the DD decomposition theorem,
so the whole numerator is:

> nn V(B35 - REBET) + )Y mene(By — D)(1 ~ Oy - D) (B2 — REBE™)

k+U k+U >k

2

Ry
— Z nUnjVj(l U)( 2x2 + RZ [ 2x2 _ ﬁ]rend]>

k+U

z z ey (D — Dp)(1 — (D — Dp))(1 — RE,) ( 2x2

k+U £>k

[,8 2x2 __ trend] )

1—R2

18



Z nUnjl/}-(l U) 2x2 trend

k+U

+ ) ) mene(By = D)(1 = (i = D)) (1 — REIBEP" (B28)

k+U £>k

F. The detrended denominator
Substituting D for y in (B28) shows that the denominator of S22, , equals the sum of the terms

that multiply each £ in (B28):

var(Dy) = Z nynV;(1—R%) + Z Z nne(Dy — Dp)(1 — (D, — Dp))(1 — RZ,) (B29)

k+U k+U £>k

Combining (B29) and (B28) proves the following decomposition theorem for the detrended

estimator:

Theorem B1. Detrended Difference-in-Differences Decomposition Theorem

The OLS estimate of Z?DD in a two-way fixed-effects model with unit-specific linear time trends is
a weighted average of all possible two-group detrended DD estimators.

E,iﬁz,trend E,iz)cz,trend
2
~DD Z ~2x2 Ry 52x2 Z z:
— trend Atrend
ﬁtrend - Oku <'BkU + 1 — R2 ﬁk ) Oke (:ka +—— Rz [:ka kf > (330)
k=U ku kU ?>k

,'B\Z]z is defined in theorem 1 and Sy, is defined in equation (8). The two-group trend terms are:

serena _ (2= 1) (A"y = A"Yy)

— _ - B31
kU 4T2  D,(1—Dy) (B31)
Atrend — (Tz - 1) _ (A*_:)_’k - Ll*)_/f) _ (332)
"*’ 4T%  Dy(1—Dy) — D,(1 — D)

A*y; is difference in the average of y before and after ¢ weighted by |t — £|. The weights on the
two-group terms are:
nym D (1 — D) (1 — RI%U)

Oy = — B33
e var (Dy) ( )
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_ meng(Dy — Dp)(1 = (D — D)) (1 — Riyp)

Tkt = var (D) (B34)
31?2  _ _

Riy = (’1"2——1)Dk(1 — D) (B35)

RZ, = 3T? (Dx(1—Dy) — Dp(1 = Dy))? (B36)

(T2 —=1) (D, —Dy)(1— (D, — Dy))
and Ygzy Oxy + Zkzv Desk Oke = 1.
The weights closely resemble the weights in the main DD decomposition theorem, but also

incorporate how well linear trends fit the treatment variable in each pair via the (1 — R%)).

Trends thus change a DD estimate in two ways. First, they change the value of each 2x2

component by netting out a trend. Second, they alter the weights placed on each two-group

comparison. Because it is a function of the variance of the treatment dummy, R]-ZU =3 %% T s
will be highest for groups treated toward the middle of the panel. Trends thus downweight these

terms relative to an unadjusted estimator.

Note that the detrended decomposition is in terms of two-group DD’s not 2x2 DD. | did

not attempt to decompose S5¢™% into pieces that would be subtracted from the two components

. . . . ~2x2,k A2x2,t’
of a given timing comparison, p, 8,, and (1 — uke) B,

G. When do unit-specific trends work and when do they fail?
This detrended decomposition result makes it straightforward to learn what problems unit-specific

time-trends can fix and what problems they create. Rewrite counterfactual outcomes as a constant,
c’, plus a linear component a*(t — ), plus mean-zero deviations from that trend, dY,%; and group-

time ATTs as a time average as in equation (9) plus deviations, dAT T, (W):3

3 These deviations have a zero mean during period W, but not in other post-treatment windows. When W = POST (k),
for example, ATT, (W) = ATT, (POST (k)) and the mean of dATT, (POST (k)) does equal 0.
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0
Yiee ATT (1)

Ve = [ck + ak(t — ©) + dV%] + Dy, [ATT (W) + dATT,;(W)] (B37)

Here I analyze consistency for a two-group DD comparing treated to untreated units by substituting
this definition of potential outcomes into the two-group version.* For comparison, rewrite B2

from equation (11a):

2x2 (ak — aU) T 0
o = ATT (POST(k)) + — + A ydY (B38)

k_ U
Bias comes from differential linear trends, % and differential deviations from those trends,

AkUdYO—(dYOPOST(k) dYOPRE(k)) (dYg‘POST(k) dYOPRE(k)) The corresponding

estimator with unit-specific trends equals:

3
3 dATT Ay dY® — 7 DjeydY®
2xztrend _ ATT, (POST(K)) — Ll 4 | (B39)

Equation (B39) shows that unit-specific trends successfully eliminate bias from differential linear
trends—no terms involving a® — aV appear—but can introduce bias from two other sources.
Unit-specific trends over control when treatment effects grow over time. Equation (B39)

i f(t-E)DiedATTiee(W) St (6~1) Dyt dATTje(W)

subtracts A*dATT), = — Eadlia
‘ R CD) (o)

, the change in time-weighted

mean of treatment effect deviations before and after t. A*dATT), would put the most weight on the

largest effects at T, making A*dATT,, > 0 and biasing the treatment effect toward zero. This shows

4ppD Lisa proper weighed average of two-group estimators like (27), but because treatment variances and the scaling

factor o  appear in  both gf"d and RZ,, the detrended terms simplify to:
B}?(sz trend _ ,?l;;z _ Z (A*}—/j _ A*}—/U)
3 Ve = Ve) . .
:BIZ’CZ frend = g{;}cz A"y — A4%ye)

4(D, — D)(1 — (D — Dp))
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formally that unit-specific trends conflate time-varying treatment effects with underlying trends
and take out “too much.”
Unit-specific trends are also sensitive to deviations in unobservables at the beginning or

Zfzf(t—f)dY]?t _ ZE:}(E_t)dYI?t —
Zzzz(t_z) ZE=1(E_t)

end of the panel. Equation (34) also subtracts Ay,dY° =

Tig(t-D)avg, ZE:E(E—t)dYSt
DHECD) i (E-1)

, the change in time-weighted means of trend deviations in

counterfactual outcomes before and after t. If these deviations lead to bias in the unadjusted
estimator (4,,dY° # 0), unit-specific trends can help if the time-weighted changes, A},,;dY°, are
of a similar magnitude. Unfortunately, this term may also induce bias. If these deviations average
out before and after t,, but the time-weighted averages do not, then unit-specific trends will

generate bias by emphasizing the end points.®

5 We cannot draw firm conclusions about whether unit-specific trends lead to more or less bias without additional
assumptions on the dY; terms. It is clear, though, that these estimates are “noisier” because var (ﬁit) < var (D;)
so the trend-adjusted estimator exploits less variation and has higher standard errors. In terms of point estimates,
however, the imprecision of trend-adjusted estimates increases the probability that a given sample’s result is spurious.
Assume that there are no linear trends (a* = 0) and that dY;%, is a classical error term so that in repeated sampling it
averages to zero on any subset of time with or without the time weights. In repeated sampling, the trend-adjusted
estimator in this case is unbiased. But by putting disproportionate weight on errors at the ends of the panel, the
probability that the trend adjusted estimator yields a biased estimate in a given sample is high.
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I1l.  APPENDIX C: GROUP-SPECIFIC LINEAR PRE-TRENDS
Using data from before t;, estimate a pre-trend in y;, for each timing group.® The potential

outcome model in (B37) shows that this slope will equal the linear component of unobservables

plus a linear approximation to trend deviations before before ¢;:

dak
V(T t —Elt<t;) . cov(dYg,t—E|t <t],) 1)
p— =a -
var(t — t|t < t]) var(t — t|t < t])

The fitted pre-trends equal the linear component of unobservables, a*, plus any non-linear
deviations that vary systematically with time in the pre-period, da®*. Removing this trend from the
full panel means that the outcome variable will be:

Vit = —da*(t - 1) + ngt + Dy ATTy (1) (C2)
Where da® is the amount by which group k’s pre-trend estimate deviates from the true linear
component, a®. The two-group estimate then equals:

(@a* — dav)T
2

A}?lyjz,pretrend _ ATTk(POST(k)) _ + AkUdYO(POST(k),PRE(k)) (CB)

Bias from non-linear unobservables remains because a linear detrending strategy does not attempt
to control for it. (Controlling for unit-specific linear trends suffers from this source of bias as well,
so partialling out pre-trends is not obviously any worse in this regard.) Bias from linear pre-trends,

however, is addressed. Unless pre-treatment nonlinearities lead to the wrong slope estimates

(dak-da¥yT

(which becomes less likely with more pre-tratement periods), should be smaller than

(ak—aU) T
> .

& This detrending, and actually the strategy of adding linear trends as a control, only needs to happen at the group
level, not the individual level. Point estimates are the same while standard errors are generally smaller, especially
errors from misspecification of the trend during the extrapolated period which well tend to be smaller for groups of
units compared to individual units.
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IV.  APPENDIX D: DERIVATION OF THE DECOMPOSITION WITH DISAGGREGATED TIME
FIXED EFFECTS
With disaggregated time fixed effects, the only difference is that there are now R-specific year

effects taken out, so the covariance equals:

v (Fie:Die) = Z%[ﬁzz (yit B §R ) (Dit B 3R) a NLRZ (yl _§R) (Ei _ER)
R i€ER t

i€ER

L5565

t

The simplification does not change, but now it happens within each R. The first two terms are:

. [Z 15,(1- D) (7,27 ~ 57 )
k

(D2)

And the third term is:

Combining equations (D2) and (D3) shows that the covariance equals:

X [Z nfDi(1 = D)Aicw, 1) = Z > nnED(1 - D)AG t;:)] (D4
R

”5”551’(1 - Ef)A(Yf,R:ti:)l (D3)
=U

k+U k+C

Following the derivation in appendix A, we know the covariance within each region essentially
follows the decomposition theorem and that the whole estimate is divided by V(D ) the variance

of D conditional on unit and region-by-year fixed effects:

Z V(D/R) Z Dk(l - Dk)nan ﬁkUR

k+U

+ 3> (B~ D1~ B~ D)nfnf [mee B + (L~ ) B |

k+U £>k

(D5)

Consider the weight on the terms that compare group k to group U within each region:
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D.(1—Dy) cr.ra2x2 _ D(1=Dy) Xgnfngng nfnfnk 22
R kU = —
V(Di/tR) 4 KU,R V(Di/tR) 4 Y p nRnEnR P kUR
Dy (1 — D) Y g nRnRknk R 52X2
= 5 ~/R zpkU ﬁkU,R (D6)
V(D) R

The same type of expression holds for the other two-group terms. The analogy of equation (7)

for the disaggregated fixed effects specification is:

~DD ~2X2,RXt ~2x2,k ~2x2,8
ﬁth = Z Sl§l>]<t :BkU + Z Z SI§€Xt [.ukf ﬁk{)’th + (1 — tre) ﬁk{)’th] (D7)

k+U k+U ¥>k
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V. APPENDIX E: TREATMENTS THAT TURN OFF

Many treatments turn on and off. To characterize how these models work, write the treatment
dummy as the difference between a dummy for whether the treatment has ever turned on and a

dummy for whether the treatment has ever turned off: W;, = D3N — D3FF. The fixed-effects

adjusted version of W;; is just LN)?tN — LN)ZFF, so the DD estimate equals:

—~ [~ =ON _— (~ <OFF
R cov (yl.t,Dl-t ) — cov (yit,Dit )
gﬁow = — (E1)
' var (W)

The fact that the decomposition theorem applies to both terms in the numerator shows that DD
estimates combine estimated effects when treatments turn on and when they turn off. To show how
these comparisons are made, | consider a 2x2 comparison between a group, j, whose treatment
turns on and off and another, U, that never receives treatment. Both covariances have the DD form,

and are multiplied by the product of the sample shares and the treatment variance:

nnyDPN (1 - DPV) [(7;’0”‘01"(1') _ y{’RE(j)) _ (yPOST—ON(j) _ yPRE(,'))] N

] U U
niny 5]-0”(1 _ Ejppp) [(y;)FF(j) _ ijE—OFF(j)) _ (yZFF(j) _ yZRI:*—OFF(J'))] (E2)
SON_5OFF

: : : : : D :
The time periods used in these comparisons overlap, though. A portion JET} the period when
J

. o . . _ pUFF
DAY =1 contains the “middle window” when W;, = D" — DZFF =1 and a portion ow
]

contains the period after treatment turns off, W;, = 1 — 1 = 0. Similarly, the period when D3F =

0 contains the same “middle window” and the period before treatment starts and W;; = 0—0 =
0. This matches the two-group timing-only estimator, and equation (E2) can be written in the same

way:
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52x2,0N
Biu

I e [(yowm ~ yszE(n) ~ (yozvo') ~ yPRE(;'))] N

j j u U
E]g[a]cz,OFF
(1 _ H}fu) [(y?N(j) _ y]_ FF(j)) _ (yZN(j) _ yZFF(j))] (E3)

" 1- BJ'ON
Hjuy = NON _ 1 OFF

(E4)

Equations (E3) and (E4) show that a DD model with a treatment that turns off averages the 2x2
DD that compares the middle window to the pre-treatment period and the 2x2 DD that compares
the middle window to the period when treatment has turned off. The weights come from how close
to the middle of the panel is the treatment’s start date versus its end date. The analogous version
with two treated groups would be more complicated and depend on the overlap between the periods

when each unit’s treatment has not yet turned on, is on, or has already turned off.
Note that while 277" is a typical 2x2 estimator, 37*°"" compares outcomes in the

period when treatment is turned on to a period when treatment is turned off but, by definition, has
been on in the past. If treatment effects persist after treatment stops, we do not observe the

counterfactual outcome in the OFF (j) period. Outcomes may not actually change when treatment

turns off, making 77" and therefore the overall DD estimate too small. A version of the DD

decomposition theorem and plots like figure 4 could be used to analyze the extent to which the
estimates based on treatments turning off differ systematically from estimates based on treatments

turning on.
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