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Table A1: Change in Skill Requirements by Occupation Category, 2007-2017

Panel A Social Cognitive Character Creativity Writing Management Finance
(1) (2) (3) (4) (5) (6) (7)

Management 0.073 0.039 0.056 0.011 -0.009 -0.009 *
STEM 0.043 0.037 0.019 0.023 0.008 0.005 *
Business 0.037 0.038 0.037 * * 0.020 -0.016
Social Science / Service 0.083 0.037 0.046 0.009 * * -0.012
Art/Design/Media 0.034 0.023 0.035 0.040 * -0.016 -0.018
Health 0.092 -0.005 0.029 -0.002 * 0.019 *
Sales and Admin 0.027 0.008 -0.022 0.027 -0.011 0.026 0.038

Panel B
Business 
Systems

Customer 
Service

Office 
Software

Technical 
Support

Data 
Analysis

Specialized 
Software ML and AI

Management 0.011 0.018 * -0.046 0.003 -0.007 0.008
STEM -0.004 -0.007 -0.039 -0.087 0.035 -0.006 0.104
Business 0.038 -0.015 -0.026 -0.066 0.009 0.005 0.015
Social Science / Service * 0.030 -0.016 -0.028 * * 0.005
Art/Design/Media * -0.014 -0.049 -0.082 0.012 * 0.014
Health 0.004 0.149 0.027 * * 0.020 0.004
Sales and Admin 0.035 * -0.056 -0.054 -0.005 * *

Notes: Each cell  in this table presents the coefficient on an indicator for the 2017 year from a separate vacancy-level 
regression of the frequency of each skil l  requirement on the 2017 indicator, the total number of skil ls l isted in each 
vacancy, education and experience requirements, and occupation-city-employer fixed effects. The occupations are 
grouped based on 2010 Standard Occupation Classification (SOC) codes. Data come from online job vacancies collected 
by Burning Glass Technologies in 2007 and 2017. Stars indicate a coefficient that was NOT statistically different from zero 
at the 5 percent level or less. See the Data Appendix for detailed descriptions of how each skil l  category is constructed.  



 

SOC code Occupation Title
Rate of Task 

Change
SOC code Occupation Title

Rate of Task 
Change

231 Lawyers, Judges and Related Workers 0.239 173013 Mechanical Drafters 0.404
171 Architects and Surveyors 0.217 151131 Computer Programmers 0.355
192 Physical Scientists 0.207 173011 Architectural and Civil Drafters 0.344
191 Life Scientists 0.203 151133 Software Developers, Systems Software 0.301
172 Engineers 0.197 112011 Advertising and Promotions Managers 0.282
173 Drafters and Engineering Technicians 0.197 172081 Environmental Engineers 0.281
152 Mathematical Scientists 0.184 132053 Insurance Underwriters 0.281
113 Operations Specialties Managers 0.173 291051 Pharmacists 0.281
254 Librarians, Curators and Archivists 0.172 173012 Electrical and Electronics Drafters 0.274
232 Legal Support Workers 0.165 152011 Actuaries 0.244

SOC code Occupation Title
Rate of Task 

Change
SOC code Occupation Title

Rate of Task 
Change

193 Social Scientists and Related Workers 0.099 291065 Pediatricians 0.030
291 Health Diagnosing and Treating Practitioners 0.101 291171 Nurse Practitioners 0.050
252 Pre-K, Primary and Secondary School Teachers 0.104 291021 Dentists 0.052
259 Other Education, Training and Library Occupations 0.105 193031 Clinical Psychologists 0.054
253 Other Teachers and Instructors 0.109 291131 Veterinarians 0.054
292 Health Technologists and Technicians 0.117 292052 Pharmacy Technicians 0.056
111 Managers and Executives 0.122 252059 Special Education Teachers, All Other 0.056
194 Life, Physical and Social Science Technicians 0.126 291066 Psychiatrists 0.057
299 Other Healthcare Practitioners 0.128 291069 Physicians and Surgeons, All Other 0.063
211 Counselors and Social Workers 0.131 291151 Nurse Anesthetists 0.067

Notes: This table uses online job vacancy data from Burning Glass Technologies (BG) to calculate the rate of task change between 2007 and 2017 for each 3- and 6-digit 
Standard Occupational Classification (SOC) code. The task change measure ranges between 0 and 1, with zero indicating that the tasks demanded by employers in the 
occupation in 2007 were exactly the same as in 2017, and 1 indicating that the job has a completely different set of task demands. The average value of the task change 
measure is 0.13 - see the text for details. Professional Occupations are SOC codes where the first digit begins with a 1 or a 2.

Table A2: Occupations with the Highest and Lowest Rates of Task Change - Alternative Method of Calculation
Panel B: Fastest-Changing Professional Occupations (6-digit)

Panel D: Slowest-Changing Professional Occupations (6-digit)Panel C: Slowest-Changing Professional Occupations (3-digit)

Panel A: Fastest-Changing Professional Occupations (3-digit)



SOC code Occupation Title
Software 

Task Change
SOC code Occupation Title

Software Task 
Change

171 Architects and Surveyors 0.062 151131 Computer Programmers 0.140
151 Computer Occupations 0.058 151133 Software Developers, Systems Software 0.133
173 Drafters and Engineering Technicians 0.030 151134 Web Developers 0.098
172 Engineers 0.030 173011 Architectural and Civil Drafters 0.094
152 Mathematical Scientists 0.029 173013 Mechanical Drafters 0.094
271 Art and Design Workers 0.028 271014 Multimedia Artists and Animators 0.076
273 Media and Communications Workers 0.025 151142 Network and Computer Systems Administra 0.069
274 Media and Communications Equipment Workers 0.024 271024 Graphic Designers 0.067
131 Business Operations Specialists 0.022 151141 Database Administrators 0.065
132 Financial Specialists 0.019 151141 Software Developers, Applications 0.065

SOC code Occupation Title
Software 

Task Change
SOC code Occupation Title

Software Task 
Change

291 Health Diagnosing and Treating Practitioners 0.002 291065 Pediatricians 0.000
252 Pre-K, Primary and Secondary School Teachers 0.004 291151 Nurse Anesthetists 0.000
253 Other Teachers and Instructors 0.004 292021 Dental Hygienists 0.001
292 Health Technologists and Technicians 0.004 291131 Veterinarians 0.001
211 Counselors and Social Workers 0.008 291171 Nurse Practitioners 0.001
251 Postsecondary Teachers 0.009 291066 Psychiatrists 0.001
259 Other Education, Training and Library Occupations 0.010 252011 Preschool Teachers 0.001
299 Other Healthcare Practitioners 0.010 291021 Dentists 0.001
191 Life Scientists 0.010 292055 Surgical Technologists 0.001
193 Social Scientists 0.010 291062 Family and General Practitioners 0.001

Notes: This table uses online job vacancy data from Burning Glass Technologies (BG) to calculate the rate of change for software-related tasks between 2007 and 2017 for 
each 3- and 6-digit Standard Occupational Classification (SOC) code. The task change measure ranges between 0 and 1, with zero indicating that the tasks demanded by 
employers in the occupation in 2007 were exactly the same as in 2017, and 1 indicating that the job has a completely different set of task demands. We restrict the set of 
occupations in the table to those with at least 10,000 total vacancies posted in both 2007 and 2017. The average value of the software task change measure is 0.016 - see 
the text for details. Professional Occupations are SOC codes where the first digit begins with a 1 or a 2.

Table A3: Occupations with the Highest and Lowest Rates of Software-Related Task Change
Panel A: Fastest-Changing Professional Occupations (3-digit) Panel B: Fastest-Changing Professional Occupations (6-digit)

Panel C: Slowest-Changing Professional Occupations (3-digit) Panel D: Slowest-Changing Professional Occupations (6-digit)



Table A4: Selection into Graduate School in the NLSY
Outcome is an indicator for graduate education (1) (2) (3)

Cognitive Skill (AFQT, standardized) 0.099*** 0.099*** 0.131***
[0.022] [0.022] [0.032]

STEM Major -0.034 -0.110*** -0.013
[0.032] [0.041] [0.073]

NLSY Wave 0.103*** 0.063** 0.089*
[0.027] [0.031] [0.051]

STEM Major * NLSY Wave 0.181*** 0.162
[0.064] [0.121]

AFQT * NLSY Wave -0.028
[0.044]

STEM Major * AFQT -0.100*
[0.062]

STEM Major * AFQT * NLSY Wave 0.027
[0.100]

R-squared 0.030 0.035 0.038
Number of Observations 1,360 1,360 1,360

Notes: Each column reports results from a regression of an indicator for graduate 
school attendance on the Armed Forces Qualifying Test (AFQT) score, indicators for 
college major, an indicator for whether the respondent is in the National Longitudinal 
Survey of Youth (NLSY) 1997 survey wave, and other variables as shown. The regression 
also includes controls for race. The sample pools the 1979 and 1997 NLSY waves 
together and is restricted to men with at least a college degree. STEM majors are defined 
following Peri, Shih and Sparber (2015). "Pure" Science majors include biology, 
chemistry, physics, mathematics and statistics, while "Applied" Science includes 
engineering and computer science. We normalize scores across NLSY waves using the 
crosswalk developed by Altonji, Bharadwaj and Lange (2012). The sample is restricted to 
ages 23-34 to maximize comparabil ity across survey waves. *** p<0.01, ** p<0.05, * 
p<0.10.  

  



Table A5: Ability Sorting into STEM Majors in the NLSY
Outcome is AFQT Score (standardized) (1) (2) (3)

STEM Major 0.083** 0.076
[0.039] [0.051]

NLSY 97 Wave 0.048 0.044 0.051
[0.053] [0.056] [0.055]

STEM Major * NLSY Wave 0.019
[0.079]

Applied Science Major 0.083
[0.056]

Applied Science Major * NLSY Wave -0.021
[0.089]

R-squared 0.217 0.217 0.217
Number of Observations 1,360 1,360 1,360
Notes: Each column reports results from a regression of the Armed Forces Qualifying 
Test (AFQT) score on indicators for college major and an indicator for whether the 
respondent is in the National Longitudinal Survey of Youth (NLSY) 1997 survey wave. 
The regression also includes controls for race and the age at which the test was taken. 
The sample pools the 1979 and 1997 NLSY waves together and is restricted to men 
with at least a college degree. STEM majors are defined following Peri, Shih and 
Sparber (2015). "Pure" Science majors include biology, chemistry, physics, 
mathematics and statistics, while "Applied" Science includes engineering and 
computer science. We normalize scores across NLSY waves using the crosswalk 
developed by Altonji, Bharadwaj and Lange (2012). The sample is restricted to ages 23-
34 to maximize comparabil ity across survey waves. *** p<0.01, ** p<0.05, * p<0.10.  

 

  



Figure A1 

 

Notes: The figure plots coefficients and 95 percent confidence intervals from an estimate of the returns to majors 
over time for women, following equation (10) in the paper.  "Pure" Science includes biology, chemistry, physics, 
mathematics and statistics, while "Applied" Science includes engineering and computer science.  
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Figure A2 

 

Notes: The figure plots coefficients and 95 percent confidence intervals from an estimate of equation (10) in the 
paper, except with an indicator for working in a STEM occupation as the outcome.  "Pure" Science includes biology, 
chemistry, physics, mathematics and statistics, while "Applied" Science includes engineering and computer 
science. STEM occupations are defined using the 2010 Census Bureau classification. 
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Figure A3 

 

Notes: The figure plots coefficients and 95 percent confidence intervals from an estimate of equation (10) in the 
paper, except the sample is restricted to full-time working men with exactly a bachelor’s degree.  "Pure" Science 
includes biology, chemistry, physics, mathematics and statistics, while "Applied" Science includes engineering and 
computer science. 
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Figure A4 

 

Notes: The figure plots coefficients and 95 percent confidence intervals from an estimate of equation (10) in the 
paper, except the sample includes all  working men (not just full-time).  "Pure" Science includes biology, chemistry, 
physics, mathematics and statistics, while "Applied" Science includes engineering and computer science. 
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Figure A5 

 

Notes: The figure plots coefficients and 95 percent confidence intervals from an estimate of equation (10) in the 
paper, except with industry fixed effects also included in the regression.  "Pure" Science includes biology, 
chemistry, physics, mathematics and statistics, while "Applied" Science includes engineering and computer 
science. 
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Figure A6 

 

Notes: The figure plots coefficients and 95 percent confidence intervals from an estimate of equation (10) in the 
paper, except with Engineering and Computer Science majors estimated separately.  

  

.1
.2

.3
.4

.5

25 30 35 40 45 50
Age (2 -year bins)

Engineering Majors Computer Science Majors

Sample is full-time working men with at least a college degree; 2009-2016 ACS
Left-out category is all other majors; includes demographic controls and age and year fixed effects

Outcome is log wages
Life-Cycle Returns to STEM Majors



Figure A7 

 

Notes: The figure plots coefficients and 95 percent confidence intervals from an estimate of the returns to majors 
over time, following equation (10) in the paper, but adding occupation and major interactions as well  as industry 
fixed effects.  "Applied" Science majors include engineering and computer science. 
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Figure A8 

 

Notes: The figure plots coefficients and 95 percent confidence intervals from two separate estimates of equation 
(10) in the paper, restricting the sample to Applied Science majors and with indicators for working in STEM and 
management occupations as the outcome variables. STEM occupations are defined using the 2010 Census Bureau 
classification. Includes demographic controls, age and year fixed effects, and controls for cognitive and non-
cognitive skil ls. 
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Figure A9 

 

Notes: The figure plots coefficients and 95 percent confidence intervals from an estimate of equation (11) in the 
paper, a regression of log wages on interactions between two-year age bins and the skil l  change measure ∆𝑗𝑗 that is 
estimated using 2007-2017 online job vacancy data from Burning Glass Technologies. The sample is restricted to 
non-STEM occupations only. STEM occupations are defined using the 2010 Census Bureau classification. See the 
text for details. 
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Figure A10 

 

Notes: The figure plots coefficients and 95 percent confidence intervals from an estimate of equation (11) in the 
paper, a regression of log wages on interactions between two-year age bins and the skil l  change measure ∆𝑗𝑗 that is 
estimated using 2007-2017 online job vacancy data from Burning Glass Technologies. The sample is restricted to 
STEM occupations only. STEM occupations are defined using the 2010 Census Bureau classification. See the text for 
details. 
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Figure A11 

 

Notes: The figure plots coefficients and 95 percent confidence intervals from an estimate of equation (11) in the 
paper, a regression of log wages on interactions between two-year age bins and the skil l  change measure ∆𝑗𝑗 that is 
estimated using 2007-2017 online job vacancy data from Burning Glass Technologies. The regression also controls 
for an alternative measure of ∆𝑗𝑗 that is calculated within-occupation but across experience requirements. STEM 
occupations are defined using the 2010 Census Bureau classification. See the text for details. 
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Figure A12 

 

Notes: The figure plots coefficients and 95 percent confidence intervals from an estimate of equation (12) in the 
paper, a regression of the task change measure ∆𝑗𝑗 (which is constructed using 2007-2017 online job vacancy data 
from Burning Glass Technologies) on occupation by age group interactions. The regression also controls for an 
alternative measure of ∆𝑗𝑗 that is calculated within-occupation but across experience requirements. STEM 
occupations are defined using the 2010 Census Bureau classification. See the text for details. 
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Data Appendix to “STEM Careers and the Changing Skill Content of Work” 
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This paper uses data from Burning Glass Technologies (BG), an employment analytics and labor market 
information firm that scrapes job vacancy data from more than 40,000 online job boards and company 
websites. BG applies an algorithm to the raw scraped data that removes duplicate postings and parses 
the data into a number of fields, including job title and six digit Standard Occupational Classification 
(SOC) code, industry, firm, location, and education and work experience. BG also codes key words and 
phrases into a large number of unique skill requirements.  

The BG database only covers job vacancies that are posted on the Internet. Rothwell (2014) compares 
the distribution of occupations in an extract of BG data to state vacancy surveys for select metropolitan 
areas for which data are available. He finds that computer, management, and business occupations are 
overrepresented relative to the state vacancy surveys, while health care support, transportation, 
maintenance, sales, and food service workers are underrepresented. 

Carnevale, Jayasundera, and Repnikov (2014) show that the occupation-industry composition of the BG 
data are similar to another database of online job vacancies, the Help-Wanted Online (HWOL) Index 
collected by the Conference Board. Carnevale, Jayasundera, and Repnikov (2014) also compare a sample 
of job postings in the BG database to the actual text of the postings and find a high degree of accuracy 
for verifiable measures such as occupation and education and experience requirements. Additionally, BG 
has refined its algorithm over time to increase accuracy relative to the early extract studied by 
Carnevale, Jayasundera, and Repnikov (2014) 

Hershbein and Kahn (2018) and Deming and Kahn (2018) provide more detail on the representation of 
vacancies and occupations in BG data compared to other external sources such as JOLTS, OES and CPS. 
The bottom line is that while the BG data do have a higher share of technical, STEM jobs than other 
external sources, this relative representation has not changed over time. Similarly, the BG data 
underrepresent blue-collar and low-paid service jobs in fields such as food preparation and serving, 
production, and construction, although this has also not changed very much over time. 

One of the most novel features of the BG data is the information available on job skills. BG use a parsing 
algorithm to identify key words and phrases and code them up as a set of skill requirements. BG 
regularly update the algorithm to pick up new skills, but then they apply the new algorithm to all years 
of data retrospectively. More than 93 percent of all job ads have at least one skill requirement, and the 
average number is 9. There are 13,544 unique skills in our analysis dataset.  

We further refine the list of skills by creating a set of common categories that capture major features of 
the BG data. The table below lists the most common skill strings that we use to create our measures of 
skills in the paper. For the full list, please see the replication file. 



Job Skills Keywords and Phrases
Social Communication, Collaboration, Negotiation, "Team", Persuasion, Listening, Presentation

Cognitive Solving, Research, "Analy", Decision, Thinking, Math, "Statistic", Calculation

Character
Organizational Skills, Time Management, Detail-Oriented, Meeting Deadlines, Multi-Tasking, 
Energetic, Self-Starter, Initiative, Self-Motivation

Creativity "Creativ"
Writing Writing, Editing, Preparing Reports, Preparing Proposals

Management
Supervisory, Leadership, Mentoring, Staff Supervision/Development, Performance/Personnel 
Management

Finance "Financ", Budgeting, Accounting, Cost

Business Systems
Systems Development/Integration/Architecture, Business Intelligence/Systems/Planning/Strategy, 
Six Sigma, KPIs

Customer Service Customer, Sales, Patient, Client

Office Software Microsoft Word/Excel/Outlook/PowerPoint/Office/Windows, Computer Literacy, Basic Internet Skills

Technical Support
Computer Installation/Repair/Maintenance/Troubleshooting, Web Development/Site Design, 
Software Installation, Help Desk Support

Data Analysis
Data Analysis/Analytics/Engineering/Modeling/Visualization/Mining/Science, Predictive 
Analytics/Models, Spreadsheets, Tableau

Specialized Software Specific software that is tracked by BG and not otherwise categorized (e.g. SQL, Javascript, Adobe)

ML and AI
Artificial Intelligence, Machine Learning, Decision Trees, Apache Hadoop, Python, Bayesian Networks, 
Automation Tools, Neural Networks, Support Vector Machines (SVM), Decision Trees, Supervised 
Learning, TensorFlow, MapReduce, Splunk, Convolutional Neural Network (CNN), Cluster Analysis  

 



Model Appendix to “STEM Careers and the Changing
Skill Content of Work”
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1 Wage Growth across Careers as a function of ∆j

The first prediction of the model is that wage growth over time is lower in careers with higher
rates of task change ∆j. This is equivalent to showing that the derivative of the difference
in wages between year t and year zero with respect to ∆ (∂(Wj0−Wjt)

∂∆
) is positive for t ≥ 1.

Proposition 1. ∂(Wj0−Wjt)

∂(∆)
≥ 0 ∀t ≥ 1

Proof. Rearranging equation (10) - the expression for wages Wjt in section 3.4 - and taking
the difference between year 0 and year t, we obtain:

Wj0 −Wjt = FS(1− (1−∆)t)) + a[1− (1−∆)t(t+ 1)

−
t∑

v=1

∆(1−∆)t−v(t− v + 1). (1)

1



The derivative of this expression is

∂(Wj0 −Wjt)

∂(∆)
= tFS(1−∆)t−1 + at(t+ 1)(1−∆)t−1

+
t∑

v=1

(t− v + 1)(1−∆)t−v−1[∆(t− v + 1)− 1], (2)

∂(Wj0 −Wjt)

∂(∆)
= tFS(1−∆)t−1 + at(t+ 1)(1−∆)t−1

+
t−1∑
x=0

(x+ 1)(1−∆)x−1[∆(x+ 1)− 1], (3)

∂(Wj0 −Wjt)

∂(∆)
= tFS(1−∆)t−1 + at(t+ 1)(1−∆)t−1

−

(
(∆2x2(1−∆)t−1 +∆2(1−∆)t−1 + 2∆2x(1−∆)t−1

∆2

)

−

(
∆(t− 1)(1−∆)t−1 + (1−∆)t−1 − 1)

∆2

)
. (4)

Where the final expression substitutes in the closed form solution for the summation com-
ponent. We show that this derivative is positive in two steps. First, we demonstrate that
it is monotonically increasing in t for all relevant values of the parameters. Then, we show
that this derivative is positive for all values of ∆ when t = 1. Thus we conclude that the
derivative is always positive on the parameter space.

To begin, assume that F = 0. Because the first term is always positive, increasing F

will only tend to make ∂(Wj0−Wjt)

∂(∆)
larger. So if the derivative is positive for F = 0, it is also

positive for F > 0. Furthermore, set a = 1, the lowest possible value. Taking the derivative
of the remaining expression with respect to t yields:

∂2(Wj0 −Wjt)

∂(∆)∂(t− 1)
=
((∆− 1)(1−∆)(t−1)((∆(t− 1) + ∆ + 1)log(1−∆) +∆))

∆2

Note that the first term in the numerator will be negative, so for this expression to be positive
we need

(∆(t− 1) + ∆ + 1)log(1−∆) +∆ < 0

or
t− 1 > − 1

log(1−∆)
− 1

∆
− 1.

Because the right hand side of this inequality is always negative, we know that t ≥ 1 =⇒

2



∂2(Wj0−Wjt)

∂(∆)∂(t−1)
> 0. Thus, it suffices to demonstrate that ∂(Wj0−Wjt)

∂(∆)
> 0 when t = 1. If we

evaluate the derivative at t = 1 we get 2a− 1 which is greater than zero for all a > 1/2.

2 Showing Career Choice and Selection on Ability in a
Three Period Model

A clear way to see the predictions of this model are with a simple three-period and two-
industry example. Let the only industries be STEM (j = T ) and non-STEM (j = N). Assume
STEM education is more technical than the non-STEM education. Specifically, assume that
S = 1 in for STEM and S = 0 for non-STEM. Furthermore, assume that the rate of task
change is higher in STEM than in non-STEM (i.e. ∆T > ∆N) and the initial productivity in
STEM is higher than in non-STEM (i.e. FT > FN). Finally, assume that the cost function
is C(s, a, u) = s(c− a− u) where c ∈ R+ is a constant such that, ∀a and u, (c− a− u) > 0.

We solve this problem in two parts. First, we find the optimal choice of schooling (S = 0

or S = 1 in this simplified case) given each chosen career path. Second, we solve for the
payoffs of each career choice and characterize the conditions under which workers of a given
(a, u) type will make each choice. There are eight possible career paths in the three-period
case, so we begin by finding the optimal choice of S for each of them. We will refer to these
eight cases in shorthand as TTT, TTN, TNN, TNT,NTT,NTN,NNTand NNN , with the
order of letters representing the order of periods.

If we restrict industry choice to STEM in all periods, the optimization problem becomes

max
s

(FT (1− |S − s|) + a) +
(
(1−∆T )(FT (1− |S − s|) + 2a) + ∆Ta

)
+(1−∆T )

2[FT (1− |S − s|) + 3a] + ∆T (1−∆T )2a+∆Ta− s(c− a− u) (5)
max

s
(FT (s) + a) +

(
(1−∆T )(FT (s) + 2a) + ∆Ta

)
+(1−∆T )

2[FT (s) + 3a] + ∆T (1−∆T )2a+∆Ta− s(c− a− u) (6)

Where equation (6) is equivalent to equation (5) because S = 1 and 0 ≤ s ≤ 1.1 Taking the
derivative of equation (6) with respect to s and setting it equal to zero yields:

FT + (1−∆T )FT + (1−∆T )
2FT︸ ︷︷ ︸

MB of Technical Education

− (c− a− u)
MC of Technical Education

= 0.

1We suppress discount factors for simplicity - including them does not change any of the model’s quali-
tative predictions.
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This first order condition can be easily separated into two interpretable sections. The first
section is the marginal benefit of an additional unit of technical education, the second section
is the marginal cost of an additional unit of technical education. Satisfaction of this first order
condition implies a solution where an individual is indifferent between all levels of technical
education. Because the likelihood that this condition holds exactly is zero, we ignore this
case.

Thus, individuals will always select completely technical coursework (STEM) or com-
pletely non-technical coursework (non-STEM). We have the following individual demand
curve for technical education

s∗ =

1 if FT + (1−∆T )FT + (1−∆T )
2FT − (c− a− u) > 0

0 if FT + (1−∆T )FT + (1−∆T )
2FT − (c− a− u) < 0

where s∗ represents the optimal level of technical education. To avoid the trivial case where
individuals never choose any technical education, assume that, for every type, the marginal
benefit of technical education, conditional on choosing strictly a STEM career, is larger in
magnitude than the marginal cost. From these assumptions we derive our first proposition.

Proposition 2. Individuals that choose to work in STEM for all three periods (TTT ) will
allocate all education time to technical fields (s∗ = 1).

Using the analogous assumptions, we can derive the individual demand curve for technical
education if we restrict industry choice to non-STEM in both periods. Specifically, we get

s∗ =

1 if − FN − (1−∆N)FN − (1−∆N)
2FN − (c− a− u) > 0

0 if − FN − (1−∆N)FN − (1−∆N)
2FN − (c− a− u) < 0.

As long as wages in non-STEM fields are greater than zero, case one (complete technical
education) is never optimal. Thus, we arrive at our second proposition

Proposition 3. Individuals that choose to work in non-STEM for all three periods (NNN)

will allocate all education time to non-technical fields (s∗ = 0).

There are six ways individuals can choose to split their career between STEM and non-
STEM occupations over their life cycle. As long as ∆T > ∆N and FT > a, the cases where
workers switch from non-STEM to STEM (e.g. TNT,NTT,NTN,NNT ) are never optimal.
This is because switching into a career with a higher rate of task change will diminish
both the value of what was learned in school and the value of future accumulated learning.
Furthermore, it can be shown that it never makes sense to switch from STEM to non-STEM
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in the last period (TTN). This is because there is always an immediate loss from switching
associated with losing the value previous learning.2

Because of this, the only relevant alternative to consider other than full specialization
(TTT or NNN) is when a worker chooses STEM initially but switches to non-STEM in the
final two periods (TNN). The maximization problem for the TNN career path is:

max
s

(FT (1− |S − s|) + a) + (1−∆N)(FN(1− |S − s|)) + a

+ (1−∆N)
2(FN(1− |S − s|)) + (1−∆N)2a+∆Na+−s(c− a− u)

max
s

(FT (s) + a) + (1−∆N)(FN(1− s)) + a

+ (1−∆N)
2(FN(1− s)) + (1−∆N)2a+∆Na+−s(c− a− u)

Proposition 4. Workers on the TNN career path will allocate all education time to technical
fields (s∗ = 1).

Proof. The proof above shows that individuals will always choose either s∗ = 0 or s∗ = 1.
Any individual who chooses s∗ = 0 will earn more by choosing NNN rather than working in
STEM in the first period (TNN), because FN(1)+a > Ft(0)+a = a and (1−∆N)(FN(1)+

2a) +∆Na+ (1−∆N)
2[FN(1) + 3a] +∆N(1−∆N)2a+∆Na > (1−∆N)(FN(1)) + a+ (1−

∆N)
2(FN(1)+(1−∆N)2a+∆Na. Thus, any worker who chooses the TNN career path must

have chosen s∗ = 1.

Now that we have determined the optimal education choice conditional on each career
path, we can move to the second part of the problem: given the total utility of each option,
which individuals should select which career path? This is equivalent to a discrete choice
problem where each relevant career path is the choice variable. Mathematically, individuals
solve the following maximization problem

Max(W TTT − C(1, u, a),WNNN − C(0, u, a),W TNN − C(1, u, a))

2We exclude these proofs but can reproduce them upon request.
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where

W TTT − C(1, u, a) =FT + a+ (1−∆T )(FT + 2a) + ∆Ta

+(1−∆T )
2(FT + 3a) + ∆T (1−∆T )2a+∆ta− (c− a− u) (7)

WNNN − C(0, u, a) =FN + a+ (1−∆N)(FN + 2a) + ∆Na

+(1−∆N)
2(FN + 3a) + ∆N(1−∆N)2a+∆Na (8)

W TNN − C(1, u, a) =FT + a+ (1−∆N)(a) + ∆Na

+(1−∆N)
2(2a) + ∆N(1−∆N)2a+∆Na− (c− a− u). (9)

To figure out exactly which types of individuals will select into each career track, we can
compare the payoffs for each track and derive indifference conditions that allow us to split
the type space by preference orderings over the three options. First, we compare the TNN

career path to the TTT career path.
To figure out exactly who will choose the TNN career path, we derive the conditions

under which an individual would choose TNN over TTT . The gains from switching can be
obtained by subtracting the payoff for TNN (equation 9) from the payoff for TTT (equation
7):

W TNN −W TTT ≡(1−∆N)a+∆Na+ (1−∆N)
22a+ (1−∆N)∆N(2a)

−(1−∆T )(FT + 2a)−∆Ta− (1−∆T )
2(FT + 3a)−∆T (1−∆T )2a−∆Ta

(10)

Workers will major in STEM, work in STEM initially and then switch in the second period
(e.g. choose s∗ = 1 and then the TNNcareer path) when the expression above is greater
than zero. This results in a clear prediction for ability sorting:

Proposition 5. For every ∆N ∈ [0, 1], there exists a minimum difference in rates of change
across sectors ∆T −∆N > k∆N

such that workers who choose TNN will have higher ability
that workers who choose TTT. Furthermore, ∆T −∆N > k∆N

is a necessary condition for
W TNN −W TTT > 0.

Proof. Differentiating the expression above with respect to ability yields:

∂
(
W TNN −W TTT

)
∂a

= (3−∆N)− (5− 4∆T +∆2
T ). (11)

This is greater than zero if ∆T > 2 −
√
2−∆N . Thus, as long as ∆T is sufficiently large

relative to ∆N , workers who choose TNNwill have higher ability than workers who choose
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TTT .3 For ∆T ,∆N ∈ [0, 1], k∆N
∈ (0, .59] and is monotonically decreasing in ∆N .

To prove the second part of proposition 5, we need to show that W TNN − W TTT > 0

only if ∆T − ∆N > k∆N
. We can use equation (10) to represent the the switching returns

inequality as follows.

W TNN −W TTT = (3−∆N)a− (5− 4∆T +∆2
T )a−∆T (1−∆T )FT > 0. (12)

If the inequality in equation (11) does not hold, then (3−∆N)a−(5−4∆T+∆2
T )a is negative,

and because ∆T (1 − ∆T )FT is positive, it is impossible for the inequality in equation (12)
to hold. Thus if the gap between ∆T and ∆N is not large enough, workers simply won’t
switch at all and the only career paths will be TTT and NNN . This means that any career
switching we observe from T to N over time will always be among higher-ability workers.

We can also solve for the ability threshold aTTT,TNN at which workers would choose TNN

over TTT by setting the expressions for the gains from switching equal to zero. With some
simplification, we obtain the indifference condition:

aTTT,TNN =
FT (2− 3∆T +∆2

T )

−2−∆N + 4∆T −∆2
T

.

By a similar logic, we can generate indifference conditions for other career trajectories
assuming that workers make optimal education choices. Specifically, we solve for u as a
function of a, which yields indifference curves along the (a, u) type space:

uTTT,NNN(a) =YN(3−∆N +∆2
N)− YT (3−∆T +∆2

T ) + C︸ ︷︷ ︸
k1

+ a[4(∆S −∆N)− 1− (∆2
T −∆2

N)]︸ ︷︷ ︸
k2

(13)

uNNN,TNN(a) =YN(3− 3∆N +∆2
N)− YT + C︸ ︷︷ ︸

k3

+ a[−1− 5∆N +∆2
N ]︸ ︷︷ ︸

k4

(14)

where uTTT,NNN(a) defines the indifference threshold between TTT and NNN - a fully
STEM vs. non-STEM career - and uTTT,TNN(a) defines the indifference threshold between
TTT and TNN . To reduce notational clutter, we abbreviate the subscripts for each in-
diference condition such that uTTT,NNN(a) = uT,N(a), uNNN,TNN(a) = uN,TNN(a), and
aTTT,TNN = aswitch.

3We have also analyzed this result for models with four or more periods. While the exact values that
satisfy the ∆T >> ∆N condition vary somewhat depending on the number of periods, the basic structure
remains unchanged.
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These indifference curves allow us to divide the two-dimensional type-space into six sec-
tions that represent all of the possible preference combinations over TTT,NNN and TNN .

Figure M.A1 shows a visual example of the optimal career choice for individuals of each
(a, u) type, under the assumption that ∆T −∆N > k∆N

, so there will be career switching.
Sections 1 and 2 represent types who choose NNN , sections 3 and 4 represent types who

choose TTT , and sections 5 and 6 represent types who choose TNN (we call these types
“switchers” as shorthand).

Since we have assumed u and a are joint uniformly distributed, we can solve analytically
for the average ability in each career path by using the indifference conditions as a weighting
function:

aTTT =

∫ aT,TNN

1
(umax − uT,N(a)) ∗ a da∫ aT,TNN

1
(umax − uT,N(a)) da

(15)

aNNN =

∫ aT,TNN

1
uT,N(a) ∗ a da+

∫ u−1
T,N (0)

aT,TNN
uN,TNN(a) ∗ a da∫ aT,TNN

1,
uTN(a) da+

∫ u−1(0)

aT,TNN
uN,TNN(a) da

(16)

aTNN =

∫ u−1
T,N (0)

aT,TNN
(umax − uN,TNN(a)) ∗ a da+

∫ amax

u−1
T,N (0)

umax ∗ a da∫ u−1
T,N (0)

aT,TNN
(umax − uN,TNN(a)) da+

∫ amax

u−1
T,N (0)

umax da
(17)

where aTTT is the average ability of those who select into a STEM career, aNNN is the average
ability for those who select into a non-STEM career, and aTNN is the average ability of those
who select into a STEM occupation the first period and switch into non-STEM afterward.

As long as ∆T − ∆N is large enough to cause ability selection out of STEM, then
aTNN > aTTT because min(aTNN) > max(aTTT ). Furthermore, as long as uN,TNN(a) slopes
downward, aW > aN . This is because if uN,TNN(a) slopes downward, the weighting func-
tion in equation 17 is monotonically increasing in a over [aT,TNN , amax], meaning that
aTNN >

amax+aT,TNN

2
. Furthermore, if we overestimate aNNN by limiting our calculation

those whose abilities are greater than aT,TNN , we know that this overestimate is less than
amax+aT,TNN

2
because the weighting function uN,TNN(a) is monotonically decreasing in a.

Thus aNNN <
amax+aT,TNN

2
< aTNN =⇒ aNNN < aTNN . Also, in this case, we can verify

from equation 14 that uN,TNN(a) always slopes downward because k4 < 0 for ∆N ∈ [0, 1].
Thus, under fairly general conditions, non-STEM occupations will attract higher ability
workers over time.
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