
Internet Appendix

A Additional Results

Figure A1: Stock of retail credit cards over time

Stock of retail credit cards by month. Time of deletion policy noted with vertical line.



Figure A2: Retail credit cards in use over time

Number of retail credit cards used by month. Time of deletion policy noted with vertical line. Source:
SBIF.

Figure A3: Number of retail credit card uses over time

Amount of retail credit purchases by month. Time deletion policy noted with vertical line. Source: SBIF.
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Table A1: Surplus changes by markup

Additional high cost market markup (%)
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0

0.17
−0.11
0.10

65.52%

5

0.19 0.19 0.19 0.19 0.19 0.20
−0.19 −0.19 −0.19 −0.20 −0.22 −0.25
0.10 0.10 0.10 0.10 0.10 0.09

51.94% 51.40% 50.87% 49.27% 47.95% 44.09%

10

0.21 0.21 0.21 0.21 0.22 0.23
−0.26 −0.27 −0.27 −0.29 −0.33 −0.40
0.10 0.10 0.10 0.10 0.09 0.08

42.35% 41.47% 41.77% 39.16% 37.19% 31.24%

25

0.27 0.27 0.27 0.28 0.30 0.32
−0.48 −0.49 −0.51 −0.57 −0.66 −0.86
0.10 0.10 0.09 0.09 0.08 0.05

26.58% 26.05% 24.66% 22.28% 18.25% 11.01%

50

0.37 0.38 0.38 0.40 0.43 0.49
−0.84 −0.88 −0.92 −1.04 −1.25 −1.68
0.09 0.09 0.08 0.07 0.04 −0.01

15.01% 14.52% 13.43% 10.28% 6.02% −0.72%

100

0.57 0.59 0.60 0.64 0.71 0.85
−1.56 −1.65 −1.74 −2.00 −2.46 −3.38
0.08 0.07 0.06 0.03 −0.02 −0.12

7.23% 6.46% 5.33% 2.49% −1.59% −7.79%

200

0.98 1.01 1.03 1.13 1.28 1.61
−3.00 −3.20 −3.39 −3.97 −4.94 −6.88
0.06 0.04 0.02 −0.04 −0.15 −0.35

2.81% 1.85% 0.71% −1.81% −5.57% −11.18%

This table describes changes in changes in surplus loss before and following deletion.
Cells are additional markups (columns, in percent terms) relative to a given markup
rate in the low cost market (rows). Within each cell, rows are level changes in surplus
loss in the low cost, high cost, mean change in surplus loss across both markets, and
percent change in surplus loss relative to baseline loss the pooled market following
deletion.
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Table A2: Difference-in-difference predictions using long run default measures

Positive exposure Negative exposure
Predicted
Default

Average
Cost

New
Borrowing

Predicted
Default

Average
Cost

New
Borrowing

Jun. 2010 0.01 0.00 −7.09∗ 0.03 0.03 −5.68+

(0.02) (0.02) (3.05) (0.05) (0.05) (3.23)

Dec. 2010 0.01 0.01 −2.11 0.02 0.01 0.30
(0.02) (0.02) (3.52) (0.05) (0.05) (3.25)

Jun. 2011 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Dec. 2011 0.25∗∗∗ 0.12∗∗∗ −13.28∗∗ −0.30∗∗∗ 0.04 17.98∗∗∗

(0.02) (0.02) (4.21) (0.04) (0.04) (3.47)

Elasticity 0.48 −0.24 −0.12 −0.36

Dep. Var. Base Period Mean 0.08 0.08 214.70 0.14 0.14 165.09
N Clusters 307 307 307 299 299 300
N Obs. 2,929,133 4,961,674 13,163,613 1,486,567 2,519,339 8,117,207
N Individuals 1,844,615 2,394,399 4,373,700 1,104,246 1,571,258 3,422,263
N Exposed Individuals 452,132 765,941 1,967,865 79,572 134,306 589,628

Significance: + 0.10 * 0.05 ** 0.01 *** 0.001. Difference and difference estimates from
equation 1. Table is identical to Table 4 but uses a one-year ahead measure of default to
compute predicted default rates. See section 3 for details. The first two columns report
the difference-in-difference estimated effect of deletion on outcome variables listed in
column headers, while the third and fourth estimate the dif-in-dif effect on the different
exposure-defined markets. We take the log of ‘Predicted default’ for estimation but
report the base period mean in levels. ‘Elasticity’ is borrowing effect scaled by base
period outcome mean and predicted default effect. ‘N exposed individuals’ reports the
number of individuals not in the zero group included in the regression sample in the
treatment period. Since some individuals appear in multiple snapshots we report both
individuals and observations. Standard errors clustered at market level.
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Table A3: Distribution of deletion effects using long run default measures

Separate Pooled Difference
Positive exposure
Predicted cost 0.065 0.081 0.016
Average cost 0.065 0.073 0.008
New borrowing (1000s CLP) 234.779 222.246 −12.533
Surplus loss (1000s CLP) 1.711 2.138 0.427
Aggregate new borrowing (Bns CLP) 447 424 −24
Aggregate surplus loss (1000s CLP) 3, 261, 672 4, 075, 579 813, 908

24.95%
N individuals 1, 905, 946 1, 905, 946 1, 905, 946
Negative exposure
Predicted cost 0.120 0.081 −0.039
Average cost 0.120 0.125 0.005
New borrowing (1000s CLP) 112.490 132.079 19.589
Surplus loss (1000s CLP) 0.140 1.128 0.988
Aggregate new borrowing (Bns CLP) 67 78 12
Aggregate surplus loss (1000s CLP) 83, 086 668, 656 585, 570

704.77%
N individuals 592, 732 592, 732 592, 732
Combined
Average cost 0.072 0.081 0.008
New borrowing (1000s CLP) 205.770 200.857 −4.913
Surplus loss (1000s CLP) 1.339 1.899 0.560

41.84%
Aggregate new borrowing (Bns CLP) 514 502 −12
Aggregate surplus loss (1000s CLP) 3, 344, 758 4, 744, 236 1, 399, 478

41.84%
N individuals 2, 498, 678 2, 498, 678 2, 498, 678

This table describes changes in key metrics before and following deletion, with inputs to the theoretical
framework using the long-run cost measure, assuming a 0% markup.
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B Detail on the machine learning procedure

We generate cost predictions by regressing an indicator for new default against a large
selection of features using a random forest algorithm. We create four sets of predictions
trained on 10% of the data with new borrowing within each snapshot – approximately
8% of the overall data. Predictions are trained and predicted either contemporane-
ously, within each 6-month post-December snapshot (PDpost), or only in the Decem-
ber 2009 snapshot (PDpre). The random forests for each type are constructed with or
without registry information. We use python’s sklearn package to perform our ma-
chine learning tasks (Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blon-
del, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot
and Duchesnay 2011).

Our random forest regression design constructs regression trees using a feature vec-
tor of the following observable characteristics of each observation: a gender indicator,
and one and two period lags of innovations in borrowing, innovations in total debt,
total borrowing, total debt, average costs, and credit line information. We additionally
include the default history deleted from the credit registry in some of the trees. In total,
these trees have either thirteen or fourteen predictor variables.

We scale our features by binning their nonzero values into quartiles. This reduces
noise in the feature vector and creates parsimonious regression trees. In our dataset, we
find that this additionally decreases the time necessary to construct a random forest.
Finally, we subset over only new borrowers in each period so that our cost estimates
reflect costs conditional on borrowing.

To generate our PDpre predictions, we train a model only using observations in the
December 2009 snapshot. PDpost predictions are generated using a training sample
from each snapshot; these predictions are actually generated using a suite of models
each tied to a particular snapshot.

We use three-fold cross validation combined with a grid search to pick parameters
for each model. The parameters over which we search are the minimum number of
observations in a terminal node (minleaf ) and the number of features over which each
tree can sample. We set the number of trees in a forest to 150. Predictive power is
not sensitive to choices in this range. See figures B1 and B2 to see outcomes from this
procedure.

Constructing random forests is (generally) a supervised learning task. Breiman
(2001) defines a random forest as a set of regression trees, hk = h(x, Θk) where h is
a tree and Θk is a random selection of observations and features from the training data,
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where each tree “votes” on the output given an observation. We pick splits in the data to
reduce mean-squared error, as is common with regression tasks. We use this loss func-
tion and a regression task, despite our target variable existing only in {0, 1}, to ensure
that our outputs are continuous on [0, 1] and reflect probabilities. Our predictions are
best thought of as a weighted average of default rate in pools of observations clustered
together by similarity along a set of their covariates.

We additionally estimate a regression tree21 to bin borrowers into smaller markets.
We define a market as a set of observations M such that h(xi, Θ) returns a prediction
stemming from the same terminal node for all i ∈ M. We use this method to cluster
borrowers into borrowers with similar features and default rates. These clusters there-
fore represent infered groups in the data at the level which we believe the treatment is
applied and are analagous to the clusters defined in each tree in the forest.

Finally, we recreate the analysis above, exchanging the random forest algorithm for
two other machine learning procedures that return classification probabilities. These
are a naive Bayes classifier and a logistic LASSO. Our naive Bayes classifier first bins
nonzero values along the feature vector into quartiles. Under the naive assumption
of independence of features in the feature vector, the classifier constructs P(default|X)

using Bayes’ formula under the assumption that P(X|default) is Gaussian, though this
is functionally irrelevant due to binning.

For the logistic LASSO, we take the log of nonzero values of continuous features,
dummying out zero values using indicator variables. We perform a logistic regression
with a λ penalty term of the sum absolute value of the coefficients and use three-fold
cross validation to pick λ for each model.

Finally, we classify observations’ socioeconomic status by training a random for-
est classifier on observations for whom the bank defined socioeconomic status group.
Our three-fold cross validation procedure indicates that we are able to do this with ap-
proximately 35% accuracy using a random forest composed of 100 trees and built on a
feature vector consisting of continuous measures of consumer debt, mortgage amount,
debt balance, credit line, bank default, average cose, age, total default amount, and in-
dicators for gender, new borrowing, and having positive borrowing cap. See figure B3
for cross-validation output.

21We estimate CART-style regression trees that split using variance reduction (Breiman, Friedman, Stone
and Olshen 1984).
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Figure B1: Cross-validation output forPDpre random forest predictions
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Figure B2: Cross-validation output for PDpost random forest predictions
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Figure B3: Cross-validation output for PDpost logistic LASSO predictions
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C Model details

C.1 Model setup

This Appendix presents the details of main text Section 4. Model setup is as in the
text. Let there be a unit measure of borrowers in the market, of whom a fraction α have
Zi = 0 and a fraction 1− α have Zi = 1. Demand and cost functions may vary across
values of Zi. Let qz(R), MCz(R), and ACz(R) denote the demand for credit, marginal
cost, and average cost functions for type Zi = z as a function of the lender’s (gross)
offer rate R. qz(R) denotes the average quantity of credit purchased for individuals in
the market, so that total market quantity is given by αq0(R) for Zi = 0 and (1− α)q1(R)
for Zi = 1. To guarantee unique equilibria, we assume that the (inverse) demand curve
crosses the marginal cost curve from above exactly once in each market. For analytic
tractability, we further assume that the demand and cost curves are linear.

C.1.1 Pre-deletion equilibria

When lenders observe Zi, equilbria are defined by the intersection of inverse demand
and average cost curves in each market. Letting Rz(q) represent the inverse demand
curve in each market, equilibrium quantities qe

z are determined by Rz(qe
z) = ACz(Rz(qe

z)).
Let ACe

z = ACz(Rz(qe
z)) denote the equilibrium average cost in each market. We focus

on the empirically relevant case where there is adverse selection in both markets; i.e.,
where marginal cost curves are downward sloping. The surplus-maximizing quantity
q∗z is determined by Rz(q∗z ) = MCz(q∗z ). We denote the surplus-maximizing rate as
R∗z = Rz(q∗z ). Deadweight loss due to asymmetric information in market z is the area
of the shaded triangle (denoted by “A” in the high cost market and “B” in the low-cost
market in Figure 11, respectively), with total surplus loss in each market given by the
formula:

DWLz =
1
2
(q∗z − qz(ACe

z))× (ACe
z −MCz(ACe

z)) . (4)

C.1.2 Deletion policy

In the pooling equilibrium lenders no longer observe Zi. Demand in the pooled market
at price R is given by q(R) = q0(R) + q1(R), and the pooled market average cost is
AC(R) = s(R)AC0(R) + (1− s(R))AC1(R), where the low-cost share s(R) is defined as
s(R) = αq0(R)

αq0(R)+(1−α)q1(R) ,. The equilibrium price/average cost ACe and quantity qe are
determined by ACe = AC(R(qe)). The changes in average borrowing from pooling in
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each market are then given by:

∆qz = qz(ACe)− qz(ACe
z),

and the average welfare loss by:

DWLz =
1
2
(q∗z − qz(ACe))× (ACe −MCz(ACe)) .

Changes in surplus from pooling are determined by the relationship between the
group-specific demand and cost curves and the pooled average costs. For individuals
with Zi = 0 at baseline, rising rates due to pooling increase surplus losses due to un-
derprovision of credit. These additional losses are denoted by D in the right panel of
Figure 11, the low-cost market. For individuals with Zi = 1 , the effects of pooling on
total surplus are ambiguous. If ACe > R∗1 , then the effects of the policy for this group
are unambiguously positive, as pooling reduces the underprovision of credit due to
adverse selection. If ACe < R∗1 , then the effects are unclear. Losses from overprovi-
sion in the pooled market may outweigh losses from underprovision in the segregated
market. Figure 11 in the main text illustrates the latter case, with surplus losses from
overprovision equal to the area of triangle C in the left panel.

C.1.3 Measuring the effects of pooling

The effects of pooling on equilibrium borrowing and surplus are determined by the
slopes of the demand and cost curves in the high- and low-cost markets. Given observa-
tions of unpooled quantities qe

z, costs ACe
z, and slopes dqz

dR and dACz
dR , pooled equilibrium

average costs and quantities are given by the solution to the system of equations

ACp =
αqp

0

αqp
0 + (1− α)qp

1
ACp

0 +
(1− α)qp

1

αqp
0 + (1− α)qp

1
ACp

1

qp
z = qe

z +
dqz

dR
(ACp − ACe

z) for z ∈ {0, 1}

ACp
z = ACe

z +
dACz

dR
(ACp − ACe

z) for z ∈ {0, 1}

There are five equations and five unknowns, yielding an analytic solution for each
value. Multiple equilibria are possible but, as we discuss below, not empirically rel-
evant in the setting we consider here.

Computing effects on surplus requires knowledge of the levels and slopes of marginal
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cost curves in addition to the demand and average cost curves. Here we exploit the ob-
servation that the equilibrium value of marginal cost MCe

z = dACz
dq qe

z + ACe
z, and that

with linear average cost curves dMCz
dq = 2 dACz

dq .
In Appendix Figure C1, we simulate equilibrium outcomes from pooling a low-cost

and high-cost market under different assumptions of the slopes of the demand and cost
curves in each market. The figure illustrates how the effects of pooling on aggregate
borrowing and total surplus are ambiguous, even in this simple model, and how they
relate to the slopes of demand and costs.

C.1.4 Alternative modeling approaches

The framework we use to evaluate the consequences of the deletion policy on sur-
plus here is one of several plausible modeling approaches. Most notably, we assume
that lenders set prices rather than offering contracts consisting of rate-quantity pairs
(Rothschild and Stiglitz 1976), and that the form of contract does not change follow-
ing policy implementation. This rules out separating equilibria where lenders screen
borrowers based on their contract choice (Bester 1985). In a simple screening model
equilibrium, however, good types–non-defaulters– would have less credit than in the
full information setting, while bad types–defaulters– would not have more credit. Be-
cause there is no counteracting positive effect for bad types, deletion increases surplus
losses.
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Figure C1: Simulated separating and pooling equilibria

Each panel shows simulated separate-market (left two panels) and pooled market (right panel) equilibria
under different assumptions about market sizes and slopes of average cost and demand curves in the
high-cost and low-cost market. Text in each panel displays aggregate market quantities transacted (“Q”
column) and welfare loss relative to the efficient quantity (“WL” column) under the separate (“baseline”)
equilibrium and the “pooled” equlibrium. To see changes in aggregate welfare from pooling compare the
“pooled” and “baseline” welfare loss columns in the rightmost panel of each row. Pooling causes welfare to
rise in Panel A, fall in Panel B, and rise in Panel C. The number of individuals in high- and low-cost market
are normalized to one. Separate equilibrium price and quantity (p, q) are the same in each panel, with
(p, q) = (0.25, 50) in the high market and (p, q) = (0.15, 100) in the low-cost market. dAC0

dq and AC1
dq are the

slopes of average cost curves in the low- and high-cost markets, respectively, with analogous definitions
for demand curves. Slopes parameters vary across rows as follows. Panel A: (0,−0.001,−400,−200) Panel
B: (−0.0003,−0.001,−400,−200). Panel C: (0,−0.001,−400,−350). See text for model details.
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Figure C1: (Cont’d) Simulated separating and pooling equilibria

Each panel shows simulated separate-market (left two panels) and pooled market (right panel) equilibria
under different assumptions about market sizes and slopes of average cost and demand curves in the
high-cost and low-cost market. Text in each panel displays aggregate market quantities transacted (“Q”
column) and welfare loss relative to the efficient quantity (“WL” column) under the separate (“baseline”)
equilibrium and the “pooled” equlibrium. To see changes in aggregate welfare from pooling compare the
“pooled” and “baseline” welfare loss columns in the rightmost panel of each row. Pooling causes welfare to
rise in Panel A, fall in Panel B, and rise in Panel C. The number of individuals in high- and low-cost market
are normalized to one. Separate equilibrium price and quantity (p, q) are the same in each panel, with
(p, q) = (0.25, 50) in the high market and (p, q) = (0.15, 100) in the low-cost market. dAC0

dq and AC1
dq are the

slopes of average cost curves in the low- and high-cost markets, respectively, with analogous definitions
for demand curves. Slopes parameters vary across rows as follows. Panel A: (0,−0.001,−400,−200) Panel
B: (−0.0003,−0.001,−400,−200). Panel C: (0,−0.001,−400,−350). See text for model details.
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Figure C1: (Cont’d) Simulated separating and pooling equilibria

Each panel shows simulated separate-market (left two panels) and pooled market (right panel) equilibria
under different assumptions about market sizes and slopes of average cost and demand curves in the
high-cost and low-cost market. Text in each panel displays aggregate market quantities transacted (“Q”
column) and welfare loss relative to the efficient quantity (“WL” column) under the separate (“baseline”)
equilibrium and the “pooled” equlibrium. To see changes in aggregate welfare from pooling compare the
“pooled” and “baseline” welfare loss columns in the rightmost panel of each row. Pooling causes welfare to
rise in Panel A, fall in Panel B, and rise in Panel C. The number of individuals in high- and low-cost market
are normalized to one. Separate equilibrium price and quantity (p, q) are the same in each panel, with
(p, q) = (0.25, 50) in the high market and (p, q) = (0.15, 100) in the low-cost market. dAC0

dq and AC1
dq are the

slopes of average cost curves in the low- and high-cost markets, respectively, with analogous definitions
for demand curves. Slopes parameters vary across rows as follows. Panel A: (0,−0.001,−400,−200) Panel
B: (−0.0003,−0.001,−400,−200). Panel C: (0,−0.001,−400,−350). See text for model details.

69


	1 Introduction 
	2 Empirical setting 
	2.1 Formal consumer credit and credit information in Chile
	2.2 The policy change
	2.3 Data and summary statistics

	3 Equilibrium effects of information deletion 
	3.1 The effects of deletion for defaulters relative to non-defaulters
	3.2 The causal effects of deletion on consumer borrowing
	3.2.1 Constructing bank default predictions
	3.2.2 The distribution of exposure to changes in predicted default
	3.2.3 Effects of deletion by exposure to changes in predicted bank default
	3.2.4 Comparison to no-deletion group
	3.2.5 Cross-time comparison

	3.3 Additional evidence: borrowing from non-banks 
	4 The effects of information deletion on total surplus
	4.1 Benchmark estimates
	4.2 Markups over average cost

	5 Evaluation of counterfactual deletion policies 

	6 Conclusion
	References
	A Additional Results

	B Detail on the machine learning procedure
	C Model details
	C.1 Model setup
	C.1.1 Pre-deletion equilibria
	C.1.2 Deletion policy
	C.1.3 Measuring the effects of pooling
	C.1.4 Alternative modeling approaches






