
Internet Appendix

A Additional Results

Figure A1: Simulated separating and pooling equilibria

Each panel shows simulated separate-market (left two panels) and pooled market (right panel) equilibria
under different assumptions about market sizes and slopes of average cost and demand curves in the
high-cost and low-cost market. Text in each panel displays aggregate market quantities transacted (“Q”
column) and welfare loss relative to the efficient quantity (“WL” column) under the separate (“baseline”)
equilibrium and the “pooled” equlibrium. To see changes in aggregate welfare from pooling compare the
“pooled” and “baseline” welfare loss columns in the rightmost panel of each row. Pooling causes welfare to
rise in Panel A, fall in Panel B, and rise in Panel C. The number of individuals in high- and low-cost market
are normalized to one. Separate equilibrium price and quantity (p, q) are the same in each panel, with
(p, q) = (0.25, 50) in the high market and (p, q) = (0.15, 100) in the low-cost market. dAC0

dq and AC1
dq are the

slopes of average cost curves in the low- and high-cost markets, respectively, with analogous definitions
for demand curves. Slopes parameters vary across rows as follows. Panel A: (0,−0.001,−400,−200) Panel
B: (−0.0003,−0.001,−400,−200). Panel C: (0,−0.001,−400,−350). See text for model details.
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Figure A2: Stock of retail credit cards over time

Stock of retail credit cards by month. Time of deletion policy noted with vertical line.

Figure A3: Retail credit cards in use over time

Number of retail credit cards used by month. Time of deletion policy noted with vertical line. Source:
SBIF.
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Figure A4: Number of retail credit card uses over time

Amount of retail credit purchases by month. Time deletion policy noted with vertical line. Source: SBIF.

Figure A5: Correlates of exposure under counterfactual deletion policy – no gender

Binscatters of correlates of exposure under the counterfactual policy of deleting a gender indicator. See
text for details.
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Figure A6: Correlates of exposure under counterfactual deletion policy – all default
information

Binscatters of correlates of exposure under the counterfactual policy of deleting all default information.
See text for details.
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Table A1: Difference-in-difference predictions using long run cost measures

Low cost market High cost market
Predicted

Cost
Average

Cost
New

Borrowing
Predicted

Cost
Average

Cost
New

Borrowing
Jun. 2010 0.01 0.00 −7.09∗ 0.03 0.03 −5.68+

(0.02) (0.02) (3.05) (0.05) (0.05) (3.23)

Dec. 2010 0.01 0.01 −2.11 0.02 0.01 0.30
(0.02) (0.02) (3.52) (0.05) (0.05) (3.25)

Jun. 2011 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Dec. 2011 0.25∗∗∗ 0.12∗∗∗ −13.28∗∗ −0.30∗∗∗ 0.04 17.98∗∗∗

(0.02) (0.02) (4.21) (0.04) (0.04) (3.47)

Elasticity 0.48 −0.24 −0.12 −0.36

Dep. Var. Base Period Mean 0.08 0.08 214.70 0.14 0.14 165.09
N Clusters 307 307 307 299 299 300
N Obs. 2,929,133 4,961,674 13,163,613 1,486,567 2,519,339 8,117,207
N Individuals 1,844,615 2,394,399 4,373,700 1,104,246 1,571,258 3,422,263
N Exposed Individuals 452,132 765,941 1,967,865 79,572 134,306 589,628

Significance: + 0.10 * 0.05 ** 0.01 *** 0.001. Difference and difference estimates from
equation 2. Table is identical to Table 4 but uses a one-year ahead measure of default
to compute predicted costs. See section 5.5 for details. The first two columns report
the difference-in-difference estimated effect of deletion on outcome variables listed
in column headers, while the third and fourth estimate the dif-in-dif effect on the
different exposure-defined markets. We take the log of ‘Predicted cost’ for estimation
but report the base period mean in levels. ‘Elasticity’ is borrowing effect scaled by
base period outcome mean and predicted cost effect. ‘N exposed individuals’ reports
the number of individuals not in the 0 group included in the regression sample in the
treatment period. Since some individuals appear in multiple snapshots we report both
individuals and observations. Standard errors clustered at market level.
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Table A2: Distribution of deletion effects using long run cost measures

Separate Pooled Difference
Low cost market
Predicted cost 0.065 0.081 0.016
Average cost 0.065 0.073 0.008
New borrowing (1000s CLP) 234.779 222.246 −12.533
Welfare loss (1000s CLP) 1.711 2.138 0.427
Aggregate new borrowing (Bns CLP) 447 424 −24
Aggregate welfare loss (1000s CLP) 3, 261, 672 4, 075, 579 813, 908

24.95%
N individuals 1, 905, 946 1, 905, 946 1, 905, 946
High cost market
Predicted cost 0.120 0.081 −0.039
Average cost 0.120 0.125 0.005
New borrowing (1000s CLP) 112.490 132.079 19.589
Welfare loss (1000s CLP) 0.140 1.128 0.988
Aggregate new borrowing (Bns CLP) 67 78 12
Aggregate welfare loss (1000s CLP) 83, 086 668, 656 585, 570

704.77%
N individuals 592, 732 592, 732 592, 732
Combined
Average price 0.072 0.081 0.008
Average cost 0.072 0.081 0.008
New borrowing (1000s CLP) 205.770 200.857 −4.913
Welfare loss (1000s CLP) 1.339 1.899 0.560

41.84%
Aggregate new borrowing (Bns CLP) 514 502 −12
Aggregate welfare loss (1000s CLP) 3, 344, 758 4, 744, 236 1, 399, 478

41.84%
N individuals 2, 498, 678 2, 498, 678 2, 498, 678

This table describes changes in key welfare metrics before and following deletion, with inputs to the
theoretical framework using the long-run cost measure, assuming a 0% markup.

66



B Detail on the machine learning procedure

We generate cost predictions by regressing an indicator for new default against a large
selection of features using a random forest algorithm. We create four sets of predictions
trained on 10% of the data with new borrowing within each snapshot – approximately
8% of the overall data. Predictions are trained and predicted either within each 6-month
post-December snapshot (ACpost), or only in the December 2009 snapshot (ACpre). The
random forests for each type are constructed with or without registry information. We
use python’s sklearn package to perform our machine learning tasks (Pedregosa, Varo-
quaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Van-
derplas, Passos, Cournapeau, Brucher, Perrot and Duchesnay 2011).

Our random forest regression design constructs regression trees using a feature vec-
tor of the following observable characteristics of each observation: a gender indicator,
and one and two period lags of innovations in borrowing, innovations in total debt,
total borrowing, total debt, average costs, and credit line information. We additionally
include the default history deleted from the credit registry in some of the trees. In total,
these trees have either thirteen or fourteen predictor variables.

We scale our features by binning their nonzero values into quartiles. This reduces
noise in the feature vector and creates parsimonious regression trees. In our dataset, we
find that this additionally decreases the time necessary to construct a random forest.
Finally, we subset over only new borrowers in each period so that our cost estimates
reflect costs conditional on borrowing.

To generate our ACpre predictions, we train a model only using observations in the
December 2009 snapshot. ACpost predictions are generated using a training sample
from each snapshot; these predictions are actually generated using a suite of models
each tied to a particular snapshot.

We use three-fold cross validation combined with a grid search to pick parameters
for each model. The parameters over which we search are the minimum number of
observations in a terminal node (minleaf ) and the number of features over which each
tree can sample. We set the number of trees in a forest to 150. Predictive power is
not sensitive to choices in this range. See figures B1 and B2 to see outcomes from this
procedure.

Constructing random forests is (generally) a supervised learning task. Breiman
(2001) defines a random forest as a set of regression trees, hk = h(x, Θk) where h is
a tree and Θk is a random selection of observations and features from the training data,
where each tree “votes” on the output given an observation. We pick splits in the data to
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reduce mean-squared error, as is common with regression tasks. We use this loss func-
tion and a regression task, despite our target variable existing only in {0, 1}, to ensure
that our outputs are continuous on [0, 1] and reflect probabilities. Our predictions are
best thought of as a weighted average of default rate in pools of observations clustered
together by similarity along a set of their covariates.

We additionally estimate a regression tree16 to bin borrowers into smaller markets.
We define a market as a set of observations M such that h(xi, Θ) returns a prediction
stemming from the same terminal node for all i ∈ M. We use this method to cluster
borrowers into borrowers with similar features and default rates. These clusters there-
fore represent infered groups in the data at the level which we believe the treatment is
applied and are analagous to the clusters defined in each tree in the forest.

Finally, we recreate the analysis above, exchanging the random forest algorithm for
two other machine learning procedures that return classification probabilities. These
are a naive Bayes classifier and a logistic LASSO. Our naive Bayes classifier first bins
nonzero values along the feature vector into quartiles. Under the naive assumption
of independence of features in the feature vector, the classifier constructs P(default|X)

using Bayes’ formula under the assumption that P(X|default) is Gaussian, though this
is functionally irrelevant due to binning.

For the logistic LASSO, we take the log of nonzero values of continuous features,
dummying out zero values using indicator variables. We perform a logistic regression
with a λ penalty term of the sum absolute value of the coefficients and use three-fold
cross validation to pick λ for each model; see figure B3.

Finally, we classify observations’ socioeconomic status by training a random for-
est classifier on observations for whom the bank defined socioeconomic status group.
Our three-fold cross validation procedure indicates that we are able to do this with ap-
proximately 35% accuracy using a random forest composed of 100 trees and built on a
feature vector consisting of continuous measures of consumer debt, mortgage amount,
debt balance, credit line, bank default, average cose, age, total default amount, and
indicators for gender, new borrowing, and having positive borrowing cap.

16We estimate CART-style regression trees that split using variance reduction (Breiman, Friedman, Stone
and Olshen 1984).
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Figure B1: Cross-validation output for ACpre random forest predictions
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Figure B2: Cross-validation output for ACpost random forest predictions

Figure B3: Cross-validation output for ACpost logistic LASSO predictions
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